51
|
Wang Z, Wang SP, Shao Q, Li PF, Sun Y, Luo LZ, Yan XQ, Fan ZY, Hu J, Zhao J, Hang PZ, Du ZM. Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free Radic Biol Med 2019; 145:187-197. [PMID: 31574344 DOI: 10.1016/j.freeradbiomed.2019.09.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway is associated with ischemic heart diseases (IHD). 7,8-dihydroxyflavone (7,8-DHF), BDNF mimetic, is a potent agonist of TrkB. We aimed to investigate the effects and the underlying mechanisms of 7,8-DHF on cardiac ischemia. Myocardial ischemic mouse model was induced by ligation of left anterior descending coronary artery. 7,8-DHF (5 mg/kg) was administered intraperitoneally two days after ischemia for four weeks. Echocardiography, HE staining and transmission electron microscope were used to examine the function, histology and ultrastructure of the heart. H9c2 cells were treated with hydrogen peroxide (H2O2), 7,8-DHF or TrkB inhibitor ANA-12. The effects of 7,8-DHF on cell viability, mitochondrial membrane potential (MMP) and mitochondrial superoxide generation were examined. Furthermore, mitochondrial fission and protein expression of mitochondrial dynamics (Mfn2 [mitofusin 2], OPA1 [optic atrophy 1], Drp1 [dynamin-related protein 1] and Fis-1 [fission 1]) was detected by mitotracker green staining and western blot, respectively. 7,8-DHF attenuated cardiac dysfunction and cardiomyocyte abnormality of myocardial ischemic mice. Moreover, 7,8-DHF increased cell viability and reduced cell death accompanied by improving MMP, inhibiting mitochondrial superoxide and preventing excessive mitochondrial fission of H2O2-treated H9c2 cells. The cytoprotective effects of 7,8-DHF were antagonized by ANA-12. Mechanistically, 7,8-DHF repressed OMA1-dependent conversion of L-OPA1 into S-OPA1, which was abolished by Akt inhibitor. In conclusion, 7,8-DHF protects against cardiac ischemic injury by inhibiting the proteolytic cleavage of OPA1. These findings provide a novel pharmacological effect of 7,8-DHF on mitochondrial dynamics and a new potential target for IHD.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Shi-Peng Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Qun Shao
- Department of Cardiology, The Third Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Pei-Feng Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Yue Sun
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Lan-Zi Luo
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Xiu-Qing Yan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Zi-Yi Fan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Juan Hu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Jing Zhao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University (Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University), Harbin, 150001, China.
| | - Peng-Zhou Hang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| | - Zhi-Min Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital (The University Key Laboratory of Drug Research, Heilongjiang Province), Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
52
|
Timing of Treatment with the Flavonoid 7,8-DHF Critically Impacts on Its Effects on Learning and Memory in the Ts65Dn Mouse. Antioxidants (Basel) 2019; 8:antiox8060163. [PMID: 31174258 PMCID: PMC6617346 DOI: 10.3390/antiox8060163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
No therapies currently exist for intellectual disability in Down syndrome (DS). In view of its similarities with DS, including learning and memory (L&M) defects, the Ts65Dn mouse model of DS is widely used for the design of therapy. 7,8-dihydroxyflavone (7,8-DHF), a flavonoid that targets the tropomyosin-related kinase B (TrkB) receptor of brain-derived neurotrophic factor (BDNF), exerts positive effects in various brain disease models. Based on previous demonstration that administration of 7,8-DHF in the postnatal period P3-P15 restores hippocampal neurogenesis and spinogenesis, we sought to establish whether these effects translate into behavioral benefits after treatment cessation. We found that Ts65Dn mice treated with 7,8-DHF (5.0 mg/kg/day) during postnatal days P3-P15 did not show any L&M improvement at one month after treatment cessation, indicating that the effects of 7,8-DHF on the brain are ephemeral. Based on evidence that chronic treatment with 7,8-DHF in juvenile Ts65Dn mice restores L&M, we sought to establish whether a similar effect is elicited in adulthood. We found that Ts65Dn mice treated with 7,8-DHF (5.0 mg/kg/day) for about 40 days starting from 4 months of age did not show any improvement in L&M. The results suggest that timing of therapy with 7,8-DHF is a critical issue for attainment of positive effects on the brain.
Collapse
|
53
|
Mudd DB, Balmer TS, Kim SY, Machhour N, Pallas SL. TrkB Activation during a Critical Period Mimics the Protective Effects of Early Visual Experience on Perception and the Stability of Receptive Fields in Adult Superior Colliculus. J Neurosci 2019; 39:4475-4488. [PMID: 30940716 PMCID: PMC6554622 DOI: 10.1523/jneurosci.2598-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/09/2019] [Accepted: 03/23/2019] [Indexed: 01/12/2023] Open
Abstract
During a critical period in development, spontaneous and evoked retinal activity shape visual pathways in an adaptive fashion. Interestingly, spontaneous activity is sufficient for spatial refinement of visual receptive fields (RFs) in superior colliculus (SC) and visual cortex (V1), but early visual experience is necessary to maintain inhibitory synapses and stabilize RFs in adulthood (Carrasco et al., 2005, 2011; Carrasco and Pallas, 2006; Balmer and Pallas, 2015a). In V1, BDNF and its high-affinity receptor TrkB are important for development of visual acuity, inhibition, and regulation of the critical period for ocular dominance plasticity (Hanover et al., 1999; Huang et al., 1999; Gianfranceschi et al., 2003). To examine the generality of this signaling pathway for visual system plasticity, the present study examined the role of TrkB signaling during the critical period for RF refinement in SC. Activating TrkB receptors during the critical period (P33-P40) in dark reared subjects produced normally refined RFs, and blocking TrkB receptors in light-exposed animals resulted in enlarged adult RFs like those in dark reared animals. We also report here that deprivation- or TrkB blockade-induced RF enlargement in adulthood impaired fear responses to looming overhead stimuli and negatively impacted visual acuity. Thus, early TrkB activation is both necessary and sufficient to maintain visual RF refinement, robust looming responses, and visual acuity in adulthood. These findings suggest a common signaling pathway exists for the maturation of inhibition between V1 and SC.SIGNIFICANCE STATEMENT Receptive field refinement in superior colliculus differs from more commonly studied examples of critical period plasticity in visual pathways in that it does not require visual experience to occur; rather, spontaneous activity is sufficient. Maintenance of refinement beyond puberty requires a brief, early exposure to light to stabilize the lateral inhibition that shapes receptive fields. We find that TrkB activation during a critical period can substitute for visual experience in maintaining receptive field refinement into adulthood, and that this maintenance is beneficial to visual survival behaviors. Thus, as in some other types of plasticity, TrkB signaling plays a crucial role in receptive field refinement.
Collapse
Affiliation(s)
- David B Mudd
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Timothy S Balmer
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - So Yeon Kim
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Noura Machhour
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Sarah L Pallas
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
54
|
Khan MI, Dowarha D, Katte R, Chou RH, Filipek A, Yu C. Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain. PLoS One 2019; 14:e0216427. [PMID: 31071146 PMCID: PMC6508705 DOI: 10.1371/journal.pone.0216427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
In this report, using NMR and molecular modeling, we have studied the structure of lysozyme-S100A6 complex and the influence of tranilast [N-(3, 4-dimethoxycinnamoyl) anthranilic acid], an antiallergic drug which binds to lysozyme, on lysozyme-S100A6 and S100A6-RAGE complex formation and, finally, on cell proliferation. We have found that tranilast may block the S100A6-lysozyme interaction and enhance binding of S100A6 to RAGE. Using WST1 assay, we have found that lysozyme, most probably by blocking the interaction between S100A6 and RAGE, inhibits cell proliferation while tranilast may reverse this effect by binding to lysozyme. In conclusion, studies presented in this work, describing the protein-protein/-drug interactions, are of great importance for designing new therapies to treat diseases associated with cell proliferation such as cancers.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Deepu Dowarha
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Revansiddha Katte
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
55
|
7,8-Dihydroxyflavone Protects Nigrostriatal Dopaminergic Neurons from Rotenone-Induced Neurotoxicity in Rodents. PARKINSONS DISEASE 2019; 2019:9193534. [PMID: 30944722 PMCID: PMC6421741 DOI: 10.1155/2019/9193534] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/11/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is thought to be a promising therapeutic agent for various neurodegenerative diseases. The major purpose of this study was to investigate the neuroprotective effects of 7,8-DHF on the rotenone-induced motor deficit of Parkinson's disease. Nine-month-old rats were treated with rotenone (2 mg/kg/day, i.h.) for 5 weeks to establish the animal model of Parkinson's disease (PD), and 7,8-DHF (5 mg/kg, i.p.) was administrated daily throughout the whole period of rotenone injection. Five weeks later, an open field test was used to assess the motor ability of the animals. TH immunostaining was performed to evaluate rotenone-induced neurotoxicity on substantia nigra (SN) dopaminergic neurons and the DA terminals in the striatum. Western blot analyses were used to examine the expressions of TH, BDNF/TrkB signaling cascades, phospho-α-synuclein (Ser129), α-synuclein, and phospho-tau (Ser396) in SN. The results revealed that treatment with 7,8-DHF improved PD model's behavioral performance and reduced dopaminergic neuron loss in the SN and striatum, associated with the activation of TrkB receptors and its signaling cascades, and reduced p-MAPK, p-α-synuclein, and p-tau. Collectively, these results indicated that 7,8-DHF displayed prominent neuroprotective properties, providing a promising therapeutic strategy for PD treatment.
Collapse
|
56
|
Mitra S, Behbahani H, Eriksdotter M. Innovative Therapy for Alzheimer's Disease-With Focus on Biodelivery of NGF. Front Neurosci 2019; 13:38. [PMID: 30804738 PMCID: PMC6370742 DOI: 10.3389/fnins.2019.00038] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with abnormal protein modification, inflammation and memory impairment. Aggregated amyloid beta (Aβ) and phosphorylated tau proteins are medical diagnostic features. Loss of memory in AD has been associated with central cholinergic dysfunction in basal forebrain, from where the cholinergic circuitry projects to cerebral cortex and hippocampus. Various reports link AD progression with declining activity of cholinergic neurons in basal forebrain. The neurotrophic molecule, nerve growth factor (NGF), plays a major role in the maintenance of cholinergic neurons integrity and function, both during development and adulthood. Numerous studies have also shown that NGF contributes to the survival and regeneration of neurons during aging and in age-related diseases such as AD. Changes in neurotrophic signaling pathways are involved in the aging process and contribute to cholinergic and cognitive decline as observed in AD. Further, gradual dysregulation of neurotrophic factors like NGF and brain derived neurotrophic factor (BDNF) have been reported during AD development thus intensifying further research in targeting these factors as disease modifying therapies against AD. Today, there is no cure available for AD and the effects of the symptomatic treatment like cholinesterase inhibitors (ChEIs) and memantine are transient and moderate. Although many AD treatment studies are being carried out, there has not been any breakthrough and new therapies are thus highly needed. Long-term effective therapy for alleviating cognitive impairment is a major unmet need. Discussion and summarizing the new advancements of using NGF as a potential therapeutic implication in AD are important. In summary, the intent of this review is describing available experimental and clinical data related to AD therapy, priming to gain additional facts associated with the importance of NGF for AD treatment, and encapsulated cell biodelivery (ECB) as an efficient tool for NGF delivery.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Homira Behbahani
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Aging Theme, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
57
|
Zhao J, Du J, Pan Y, Chen T, Zhao L, Zhu Y, Chen Y, Zheng Y, Liu Y, Sun L, Hang P, Du Z. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radic Biol Med 2019; 130:557-567. [PMID: 30472367 DOI: 10.1016/j.freeradbiomed.2018.11.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) pathway has been revealed as a novel therapeutic target for several neurological diseases. Recently, small-molecule TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) has received considerable attention as a novel potential candidate for the treatment of various BDNF-implicated human disorders. However, its roles in cardiac diseases are not fully understood. Here, the present study aimed to clarify the effects and mechanisms of 7,8-DHF on doxorubicin (Dox)-induced cardiotoxicity. Kunming mice and H9c2 cells were employed to investigate the functional role of 7,8-DHF both in vivo and in vitro. 7,8-DHF markedly increased cell viability and reduced cell death of Dox-treated cells. Meanwhile, 7,8-DHF significantly increased mitochondrial respiration, membrane potential, and optic atrophy 1 (OPA1) protein expression. 7,8-DHF improved cardiac function and attenuated cardiac injury in Dox mice model. Expression of AMP-activated protein kinase (AMPK) and signal transducers and activators of transcription 3 (STAT3) was restored by 7,8-DHF. Furthermore, the protective role of 7,8-DHF was abolished by ANA-12 (a specific antagonist of TrkB). In elucidating the molecular mechanism, the phosphorylation of Akt was significantly increased while extracellular regulated protein kinase (ERK) was decreased after 7,8-DHF treatment. The regulatory effects of 7,8-DHF on STAT3 and AMPK was reversed by Akt inhibitor. In summary, 7,8-DHF attenuated Dox-induced cardiotoxicity by activating Akt and increasing mitochondrial oxidative phosphorylation and thereby regulating STAT3, AMPK, and ERK signals. The present study enhanced current understanding of TrkB receptor in the cardiovascular system and provided a novel target for prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University (Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University), Harbin 150001, PR China
| | - Jingjing Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Yang Pan
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Tingting Chen
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Lihui Zhao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Yanmeng Zhu
- Department of Pharmacology, Harbin Medical University, Harbin 150081, PR China
| | - Yingfu Chen
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Yuyang Zheng
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Yu Liu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, PR China
| | - Pengzhou Hang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Zhimin Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
58
|
Zafer D, Aycan N, Ozaydin B, Kemanli P, Ferrazzano P, Levine JE, Cengiz P. Sex differences in Hippocampal Memory and Learning following Neonatal Brain Injury: Is There a Role for Estrogen Receptor-α? Neuroendocrinology 2019; 109:249-256. [PMID: 30884486 PMCID: PMC6893032 DOI: 10.1159/000499661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/17/2019] [Indexed: 01/11/2023]
Abstract
Neonatal encephalopathy due to hypoxia-ischemia (HI) leads to severe, life-long morbidities in thousands of neonates born in the USA and worldwide each year. Varying capacities of long-term episodic memory, verbal working memory, and learning can present without cerebral palsy and have been associated with the severity of neonatal encephalopathy sustained at birth. Among children who sustain a moderate degree of HI at birth, girls have larger hippocampal volumes compared to boys. Clinical studies indicate that female neonatal brains are more resistant to the effects of neonatal HI, resulting in better long-term cognitive outcomes compared to males with comparable brain injury. Our most recent mechanistic studies have addressed the origins and cellular basis of sex differences in hippocampal neuroprotection following neonatal HI-related brain injury and implicate estrogen receptor-α (ERα) in the neurotrophin receptor-mediated hippocampal neuroprotection in female mice. This review summarizes the recent findings on ERα-dependent, neurotrophin-mediated hippocampal neuroprotection and weighs the evidence that this mechanism plays an important role in preservation of long-term memory and learning following HI in females.
Collapse
Affiliation(s)
- Dila Zafer
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Nur Aycan
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Burak Ozaydin
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Pinar Kemanli
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Peter Ferrazzano
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Pelin Cengiz
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA,
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA,
| |
Collapse
|
59
|
Cerquone Perpetuini A, Mathoux J, Kennedy BN. The potential of small molecule brain-derived neurotrophic factor: mimetics to treat inherited retinal degeneration. Neural Regen Res 2018; 14:85-86. [PMID: 30531081 PMCID: PMC6262985 DOI: 10.4103/1673-5374.243711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Andrea Cerquone Perpetuini
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Justine Mathoux
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Breandán N Kennedy
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
60
|
Simmons DA. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington's Disease. J Huntingtons Dis 2018; 6:303-325. [PMID: 29254102 PMCID: PMC5757655 DOI: 10.3233/jhd-170275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
61
|
He B, Qu Z, Tian Z, Zhao K, Wei L, Ma L. 7,8-dihydroxyflavone enhanced cholinergic contraction of rat gastric smooth muscle via augmenting muscarinic M3 receptor expression. Clin Exp Pharmacol Physiol 2018; 45:1170-1180. [PMID: 29927500 DOI: 10.1111/1440-1681.12999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Baoguo He
- Department of Gastroenterology, Affiliated Hospital; Qingdao University; Qingdao China
| | - Zhiqiang Qu
- Center for Medical Research, Affiliated Hospital; Qingdao University; Qingdao China
| | - Zibin Tian
- Department of Gastroenterology, Affiliated Hospital; Qingdao University; Qingdao China
| | - Kun Zhao
- Department of Gastroenterology, Affiliated Hospital; Qingdao University; Qingdao China
| | - Liangzhou Wei
- Department of Gastroenterology, Affiliated Hospital; Qingdao University; Qingdao China
| | - Li Ma
- Department of Clinical Nutrition, Affiliated Hospital; Qingdao University; Qingdao China
| |
Collapse
|
62
|
Özdemir S, Altun S, Özkaraca M, Ghosi A, Toraman E, Arslan H. Cypermethrin, chlorpyrifos, deltamethrin, and imidacloprid exposure up-regulates the mRNA and protein levels of bdnf and c-fos in the brain of adult zebrafish (Danio rerio). CHEMOSPHERE 2018; 203:318-326. [PMID: 29626809 DOI: 10.1016/j.chemosphere.2018.03.190] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study is to investigate the toxicity effects of frequently used pesticides, involving cypermethrin, deltamethrin, chlorpyrifos and imidacloprid, on the expression of bdnf and c-fos genes in zebrafish brain tissues. Therefore, brain tissues exposed to intoxication was primarily analyzed by indirect immunofluorescence assay. Afterwards, the mRNA transcription levels of BNDF and c-fos genes and the protein levels were measured by qRT-PCR and Western blotting, respectively. The data of the immunofluorescence assay revealed intensive immunopositivity for bdnf and c-fos genes in the tissues exposed to pesticide intoxication in comparison to the control group (p<0.05). Moreover, the transcription levels of BNDF and c-fos genes, and protein levels were elevated following the intoxication (p<0.05, p<0.01, and p<0.001, respectively). These results showed that the exposure to the acute cypermethrin, deltamethrin, chlorpyrifos and imidacloprid intoxication disrupted the normal neuronal activity, resulting in neurotoxic effect, also DNA-binding Increasing c-fos activation, an oncoprotein from the family of the Nuclear Proteins, is also true of the knowledge that these chemicals are oncogenic in zebrafish brain tissues. Thus, the use of these pesticides poses a potential neuronal and oncogenic risk to the non-target organisms.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey.
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Atena Ghosi
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Emine Toraman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Harun Arslan
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| |
Collapse
|
63
|
Katte R, Yu C. Blocking the interaction between S100A9 protein and RAGE V domain using S100A12 protein. PLoS One 2018; 13:e0198767. [PMID: 29902210 PMCID: PMC6001950 DOI: 10.1371/journal.pone.0198767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022] Open
Abstract
The proteins S100A9 and S100A12 are associated with the human S100 calcium-binding protein family. These proteins promote interaction with target proteins and alter their conformation when they bind to calcium ions in EF-hand motifs. The V domain of RAGE (Receptor for Advanced Glycation End products) is crucial for S100A9 binding. The binding of RAGE with S100 family proteins aids in cell proliferation. In this report, we demonstrate that S100A12 protein hinders the binding of S100A9 with the RAGE V-domain. We used fluorescence and NMR spectroscopy to analyze the interaction of S100A9 with S100A12. The binary complex models of S100A9-S100A12 were developed using data obtained from 1H-15N HSQC NMR titrations and the HADDOCK program. We overlaid the complex models of S100A9-S100A12 with the same orientation of S100A9 and the RAGE V-domain. This complex showed that S100A12 protein blocks the interaction between S100A9 and the RAGE V-domain. It means S100A12 may be used as an antagonist for S100A9. The results could be favorable for developing anti-cancer drugs based on S100 family proteins.
Collapse
Affiliation(s)
- Revansiddha Katte
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
64
|
Kempfle JS, Nguyen K, Hamadani C, Koen N, Edge AS, Kashemirov BA, Jung DH, McKenna CE. Bisphosphonate-Linked TrkB Agonist: Cochlea-Targeted Delivery of a Neurotrophic Agent as a Strategy for the Treatment of Hearing Loss. Bioconjug Chem 2018; 29:1240-1250. [PMID: 29485861 DOI: 10.1021/acs.bioconjchem.8b00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hearing loss affects more than two-thirds of the elderly population, and more than 17% of all adults in the U.S. Sensorineural hearing loss related to noise exposure or aging is associated with loss of inner ear sensory hair cells (HCs), cochlear spiral ganglion neurons (SGNs), and ribbon synapses between HCs and SGNs, stimulating intense interest in therapies to regenerate synaptic function. 7,8-Dihydroxyflavone (DHF) is a selective and potent agonist of tropomyosin receptor kinase B (TrkB) and protects the neuron from apoptosis. Despite evidence that TrkB agonists can promote survival of SGNs, local delivery of drugs such as DHF to the inner ear remains a challenge. We previously demonstrated in an animal model that a fluorescently labeled bisphosphonate, 6-FAM-Zol, administered to the round window membrane penetrated the membrane and diffused throughout the cochlea. Given their affinity for bone mineral, including cochlear bone, bisphosphonates offer an intriguing modality for targeted delivery of neurotrophic agents to the SGNs to promote survival, neurite outgrowth, and, potentially, regeneration of synapses between HCs and SGNs. The design and synthesis of a bisphosphonate conjugate of DHF (Ris-DHF) is presented, with a preliminary evaluation of its neurotrophic activity. Ris-DHF increases neurite outgrowth in vitro, maintains this ability after binding to hydroxyapatite, and regenerates synapses in kainic acid-damaged cochlear organ of Corti explants dissected in vitro with attached SGNs. The results suggest that bisphosphonate-TrkB agonist conjugates have promise as a novel approach to targeted delivery of drugs to treat sensorineural hearing loss.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Otolaryngology , University of Tübingen Medical Center , Tübingen 72076 , Germany
| | - Kim Nguyen
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| | - Christine Hamadani
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Nicholas Koen
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Albert S Edge
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Boris A Kashemirov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| | - David H Jung
- Department of Otolaryngology and The Eaton-Peabody Laboratories , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts 02114 , United States.,Department of Otology and Laryngology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Charles E McKenna
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
65
|
García-Díaz Barriga G, Giralt A, Anglada-Huguet M, Gaja-Capdevila N, Orlandi JG, Soriano J, Canals JM, Alberch J. 7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington's disease mouse model through specific activation of the PLCγ1 pathway. Hum Mol Genet 2018; 26:3144-3160. [PMID: 28541476 DOI: 10.1093/hmg/ddx198] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease with motor, cognitive and psychiatric impairment. Dysfunctions in HD models have been related to reduced levels of striatal brain-derived neurotrophic factor (BDNF) and imbalance between its receptors TrkB and p75(NTR). Thus, molecules with activity on the BDNF/TrkB/p75 system can have therapeutic potential. 7,8-Dihydroxyflavone (7,8-DHF) was described as a TrkB agonist in several models of neuro-degenerative diseases, however, its TrkB activation profile needs further investigation due to its pleiotropic properties and divergence from BDNF effect. To investigate this, we used in vitro and in vivo models of HD to dissect TrkB activation upon 7,8-DHF treatment. 7,8-DHF treatment in primary cultures showed phosphorylation of TrkBY816 but not TrkBY515 with activation of the PLCγ1 pathway leading to morphological and functional improvements. Chronic administration of 7,8-DHF delayed motor deficits in R6/1 mice and reversed deficits on the Novel Object Recognition Test (NORT) at 17 weeks. Morphological and biochemical analyses revealed improved striatal levels of enkephalin, and prevention of striatal volume loss. We found a TrkBY816 but not TrkBY515 phosphorylation recovery in striatum concordant with in vitro results. Additionally, 7,8-DHF normalized striatal levels of induced and neuronal nitric oxide synthase (iNOS and nNOS, respectively) and ameliorated the imbalance of p75/TrkB. Our results provide new insights into the mechanism of action of 7,8-DHF suggesting that its effect through the TrkB receptor in striatum is via selective phosphorylation of its Y816 residue and activation of PLCγ1 pathway, but pleiotropic effects of the drug also contribute to its therapeutic potential.
Collapse
Affiliation(s)
- Gerardo García-Díaz Barriga
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Anglada-Huguet
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Nuria Gaja-Capdevila
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier G Orlandi
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Josep-Maria Canals
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
66
|
Zhang XL, McGlothan JL, Miry O, Stansfield KH, Loth MK, Stanton PK, Guilarte TR. From the Cover: 7,8-Dihydroxyflavone Rescues Lead-Induced Impairment of Vesicular Release: A Novel Therapeutic Approach for Lead Intoxicated Children. Toxicol Sci 2018; 161:186-195. [PMID: 29029315 PMCID: PMC5837521 DOI: 10.1093/toxsci/kfx210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Childhood lead (Pb2+) intoxication is a public health problem of global proportion. Lead exposure during development produces multiple effects on the central nervous system including impaired synapse formation, altered synaptic plasticity, and learning deficits. In primary hippocampal neurons in culture and hippocampal slices, Pb2+ exposure inhibits vesicular release and reduces the number of fast-releasing sites, an effect associated with Pb2+ inhibition of NMDA receptor-mediated trans-synaptic Brain-Derived Neurotrophic Factor (BDNF) signaling. The objective of this study was to determine if activation of TrkB, the cognate receptor for BDNF, would rescue Pb2+-induced impairments of vesicular release. Rats were chronically exposed to Pb2+ prenatally and postnatally until 50 days of age. This chronic Pb2+ exposure paradigm enhanced paired-pulse facilitation of synaptic potentials in Schaffer collateral-CA1 synapses in the hippocampus, a phenomenon indicative of reduced vesicular release probability. Decreased vesicular release probability was confirmed by both mean-variance analysis and direct 2-photon imaging of vesicular release from hippocampal slices of rats exposed to Pb2+in vivo. We also found a Pb2+-induced impairment of calcium influx in Schaffer collateral-CA1 synaptic terminals. Intraperitoneal injections of Pb2+ rats with the TrkB receptor agonist 7,8-dihydroxyflavone (5 mg/kg) for 14-15 days starting at postnatal day 35, reversed all Pb2+-induced impairments of presynaptic transmitter release at Schaffer collateral-CA1 synapses. This study demonstrates for the first time that in vivo pharmacological activation of TrkB receptors by small molecules such as 7,8-dihydroxyflavone can reverse long-term effects of chronic Pb2+ exposure on presynaptic terminals, pointing to TrkB receptor activation as a promising therapeutic intervention in Pb2+-intoxicated children.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York 10595
| | - Jennifer L McGlothan
- Department of Environmental & Occupational Health, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida 33199
| | - Omid Miry
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York 10595
| | - Kirstie H Stansfield
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Meredith K Loth
- Department of Environmental & Occupational Health, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida 33199
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York 10595
| | - Tomás R Guilarte
- Department of Environmental & Occupational Health, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida 33199
| |
Collapse
|
67
|
Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol 2018; 16:1018-1035. [PMID: 29676228 PMCID: PMC6120108 DOI: 10.2174/1570159x16666180419121247] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration is a major feature of glaucoma pathology. Neuroprotective approaches that delay or halt the progression of RGC loss are needed to prevent vision loss which can occur even after conventional medical or surgical treatments to lower intraocular pressure. OBJECTIVE The aim of this review was to examine the progress in genetics and cellular mechanisms associated with endoplasmic reticulum (ER) stress, RGC dysfunction and cell death pathways in glaucoma. MATERIALS AND METHODS Here, we review the involvement of neurotrophins like brain derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin receptor kinase (TrkB) in glaucoma. The role of ER stress markers in human and animal retinas in health and disease conditions is also discussed. Further, we analysed the literature highlighting genetic linkage in the context of primary open angle glaucoma and suggested mechanistic insights into potential therapeutic options relevant to glaucoma management. RESULTS The literature review of the neurobiology underlying neurotrophin pathways, ER stress and gene associations provide critical insights into association of RGCs death in glaucoma. Alteration in signalling pathway is associated with increased risk of misfolded protein aggregation in ER promoting RGC apoptosis. Several genes that are linked with neurotrophin signalling pathways have been reported to be associated with glaucoma pathology. CONCLUSION Understanding genetic heterogeneity and involvement of neurotrophin biology in glaucoma could help to understand the complex pathophysiology of glaucoma. Identification of novel molecular targets will be critical for drug development and provide neuroprotection to the RGCs and optic nerve.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Address correspondence to this author at the Faculty of Medicine and Health Sciences, 75, Talavera Road, Macquarie University, Sydney, NSW 2109, Australia; Tel: +61-298502760; E-mail:
| | | | | | | | | | | |
Collapse
|
68
|
Boltaev U, Meyer Y, Tolibzoda F, Jacques T, Gassaway M, Xu Q, Wagner F, Zhang YL, Palmer M, Holson E, Sames D. Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists. Sci Signal 2017; 10:10/493/eaal1670. [PMID: 28831019 DOI: 10.1126/scisignal.aal1670] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), have emerged as key regulators of brain plasticity and represent disease-modifying targets for several brain disorders, including Alzheimer's disease and major depressive disorder. Because of poor pharmacokinetic properties of BDNF, the interest in small-molecule TrkB agonists and modulators is high. Several compounds have been reported to act as TrkB agonists, and their increasing use in various nervous system disorder models creates the perception that these are reliable probes. To examine key pharmacological parameters of these compounds in detail, we have developed and optimized a series of complementary quantitative assays that measure TrkB receptor activation, TrkB-dependent downstream signaling, and gene expression in different cellular contexts. Although BDNF and other neurotrophic factors elicited robust and dose-dependent receptor activation and downstream signaling, we were unable to reproduce these activities using the reported small-molecule TrkB agonists. Our findings indicate that experimental results obtained with these compounds must be carefully interpreted and highlight the challenge of developing reliable pharmacological activators of this key molecular target.
Collapse
Affiliation(s)
- Umed Boltaev
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Yves Meyer
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Farangis Tolibzoda
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Teresa Jacques
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Madalee Gassaway
- Department of Chemistry, Columbia University, New York, NY 10027, USA.,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| | - Qihong Xu
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Florence Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle Palmer
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Edward Holson
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA. .,NeuroTechnology Center at Columbia University, New York, NY 10027, USA
| |
Collapse
|
69
|
Prince CS, Maloyan A, Myatt L. Tropomyosin Receptor Kinase B Agonist, 7,8-Dihydroxyflavone, Improves Mitochondrial Respiration in Placentas From Obese Women. Reprod Sci 2017; 25:452-462. [PMID: 28677406 DOI: 10.1177/1933719117716776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal obesity negatively impacts the placenta, being associated with increased inflammation, decreased mitochondrial respiration, decreased expression of brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TRKB). TRKB induction by 7,8-dihydroxyflavone (7,8-DHF) improves energy expenditure in an obesity animal model. We hypothesized that TRKB activation would improve mitochondrial respiration in trophoblasts from placentas of obese women. Placentas were collected from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI > 30) women at term following cesarean section delivery without labor. Cytotrophoblasts were isolated and plated, permitting syncytialization. At 72 hours, syncytiotrophoblasts (STs) were treated for 1 hour with 7,8-DHF (10 nM-10 M), TRKB antagonists (ANA-12 (10 nM-1 M), Cyclotraxin B (1 nM-1M)), or vehicle. Mitochondrial respiration was measured using the XF24 Extracellular Flux Analyzer. TRKB, MAPK, and PGC1α were measured using Western blotting. Maternal obesity was associated with decreased mitochondrial respiration in STs; however, 7,8-DHF increased basal, ATP-coupled, maximal, spare capacity, and nonmitochondrial respiration. A 10 μM dose of 7,8-DHF reduced spare capacity in STs from lean women, with no effect on other respiration parameters. 7,8-DHF had no effect on TRKB phosphorylation; however, there was a concentration-dependent decrease of p38 MAPK phosphorylation and increase of PGC1α in STs from obese, but not in lean women. TRKB antagonism attenuated ATP-coupled respiration, maximal respiration, and spare capacity in STs from lean and obese women. 7,8-DHF improves mitochondrial respiration in STs from obese women, suggesting that the obese phenotype in the placenta can be rescued by TRKB activation.
Collapse
Affiliation(s)
- Calais S Prince
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA
| | - Alina Maloyan
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA.,2 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA.,3 Deparment of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
70
|
Sun T, Chen S, Huang H, Li T, Yang W, Liu L. Metabolic profile study of 7, 8-dihydroxyflavone in monkey plasma using high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:97-102. [PMID: 28715685 DOI: 10.1016/j.jchromb.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 01/17/2023]
Abstract
7, 8-Dihydroxyflavone, as a high-affinity tropomyosin-receptor-kinase B agonist, can mimic the physiological actions of brain-derived neurotrophic factor and exert a variety of neurological actions in numerous models including Parkinsońs disease, depression, learning and memory. Nonetheless, a limited number of studies have been focused on its metabolism in mammal and no methodology has been reported for the determination of 7, 8-DHF and its metabolites. Herein, we developed a rapid, sensitive and accurate method using high performance liquid chromatography-tandem mass spectroscopy for the determination of 7, 8-DHF and its metabolites in monkey plasma. The lower limits of quantification for analytes were 0.4-2.0ngmL-1. The intra-day and inter-day precisions (relative standard deviation, %) of analytes were within 11.83%, and the accuracy (relative error, %) ranged from -6.86 to 14.00%. The mean extraction recoveries for analytes were more than 89.14%. This validated method was successfully applied to the metabolic profile study of 7, 8-DHF in monkey plasma. The results indicated that 7, 8-DHF undergoes methylation, glucuronidation and/or sulfation, and the conjugated forms are the main metabolites in monkey plasma. We further demonstrated that methylated 7, 8-DHF can be also conjugated with glucuronidation/sulfation, and the methylation occurs mainly in the 8 position.
Collapse
Affiliation(s)
- Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijing Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
71
|
Structure-activity relationships for flavone interactions with amyloid β reveal a novel anti-aggregatory and neuroprotective effect of 2′,3′,4′-trihydroxyflavone (2-D08). Bioorg Med Chem 2017; 25:3827-3834. [DOI: 10.1016/j.bmc.2017.05.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022]
|
72
|
Brain-Derived Neurotrophic Factor Loaded PS80 PBCA Nanocarrier for In Vitro Neural Differentiation of Mouse Induced Pluripotent Stem Cells. Int J Mol Sci 2017; 18:ijms18030663. [PMID: 28335495 PMCID: PMC5372675 DOI: 10.3390/ijms18030663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 01/07/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification.
Collapse
|
73
|
Krishna G, Agrawal R, Zhuang Y, Ying Z, Paydar A, Harris NG, Royes LFF, Gomez-Pinilla F. 7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1204-1213. [PMID: 28315455 DOI: 10.1016/j.bbadis.2017.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022]
Abstract
Metabolic dysfunction accompanying traumatic brain injury (TBI) severely impairs the ability of injured neurons to comply with functional demands. This limits the success of rehabilitative strategies by compromising brain plasticity and function, and highlights the need for early interventions to promote energy homeostasis. We sought to examine whether the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) normalizes brain energy deficits and reestablishes more normal patterns of functional connectivity, while enhancing the effects of exercise during post-TBI period. Moderate fluid percussion injury (FPI) was performed and 7,8-DHF (5mg/kg, i.p.) was administered in animals subjected to FPI that either had access to voluntary wheel running for 7days after injury or were sedentary. Compared to sham-injured controls, TBI resulted in reduced hippocampal activation of the BDNF receptor TrkB and associated CREB, reduced levels of plasticity markers GAP-43 and Syn I, as well as impaired memory as indicated by the Barnes maze task. While 7,8-DHF treatment and exercise individually mitigated TBI-induced effects, administration of 7,8-DHF concurrently with exercise facilitated memory performance and augmented levels of markers of cell energy metabolism viz., PGC-1α, COII and AMPK. In parallel to these findings, resting-state functional MRI (fMRI) acquired at 2weeks after injury showed that 7,8-DHF with exercise enhanced hippocampal functional connectivity, and suggests 7,8-DHF and exercise to promote increases in functional connectivity. Together, these findings indicate that post-injury 7,8-DHF treatment promotes enhanced levels of cell metabolism, synaptic plasticity in combination with exercise increases in brain circuit function that facilitates greater physical rehabilitation after TBI.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Rahul Agrawal
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Yumei Zhuang
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Afshin Paydar
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Neil G Harris
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Luiz Fernando F Royes
- Exercise and Biochemistry Laboratory, Center of Physical Education and Sports (CEFD), Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA.
| |
Collapse
|
74
|
HAP1 Is Required for Endocytosis and Signalling of BDNF and Its Receptors in Neurons. Mol Neurobiol 2017; 55:1815-1830. [PMID: 28083816 DOI: 10.1007/s12035-016-0379-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022]
Abstract
When BDNF binds to its receptors, TrkB and p75NTR, the BDNF-receptor complex is endocytosed and trafficked to the cell body for downstream signal transduction, which plays a critical role in neuronal functions. Huntingtin-associated protein 1 (HAP1) is involved in trafficking of vesicles intracellularly and also interacts with several membrane proteins including TrkB. Although it has been known that HAP1 has functions in vesicular trafficking and receptor stabilisation, it is not yet established whether HAP1 has a role in BDNF and its receptor endocytosis. In the present study, we found that HAP1 is in an interacting complex with p75NTR, TrkB and BDNF, especially newly endocytosed BDNF. BDNF and TrkB internalisation is abolished in HAP1 knock-out (KO) cortical neurons. TrkB downstream signalling pathways such as ERK, Akt and PLCγ-1 are also impaired in HAP1 KO cortical neurons upon BDNF stimulation. Proliferation of cerebellar granule cells is also impaired in cell culture and cerebellum of HAP1 KO mice. Our findings suggest that HAP1 may play a key role in BDNF and its receptor endocytosis and may promote neuronal survival and proliferation.
Collapse
|
75
|
Wurzelmann M, Romeika J, Sun D. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regen Res 2017; 12:7-12. [PMID: 28250730 PMCID: PMC5319242 DOI: 10.4103/1673-5374.198964] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.
Collapse
Affiliation(s)
- Mary Wurzelmann
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer Romeika
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dong Sun
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
76
|
Guerzoni LPB, Nicolas V, Angelova A. In Vitro Modulation of TrkB Receptor Signaling upon Sequential Delivery of Curcumin-DHA Loaded Carriers Towards Promoting Neuronal Survival. Pharm Res 2016; 34:492-505. [PMID: 27995523 DOI: 10.1007/s11095-016-2080-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE To in vitro investigate the capacity of carrier-free and lipid-nanoparticle (NP)-encapsulated phytochemical compounds to prevent neuronal damage through neurotrophin potentiating activities. Delivery of molecules promoting the neurotrophin receptor signaling in the central nervous system (CNS) present ongoing interest for combination therapy development. METHODS Super-resolution Stimulated Emission Depletion (STED) microscopy imaging and flow cytometry analysis were employed to study the expression of the neurotrophin TrkB receptor in a neuronal cell model, which is highly responsive to binding of brain-derived neurotrophic factor (BDNF). Dual drug-loaded nanoparticle formulations, prepared by self-assembly of lyotropic lipids and PEGylated amphiphile derivatives, were delivered to differentiated human neuroblastoma SH-SY5Y cells subjected to degenerative conditions. RESULTS The expression of BDNF in the intra and extracellular domains was quantified by ELISA and flow cytometry after sequential treatment of the degenerating SH-SY5Y cells by neurotherapeutic formulations. Flow cytometry was also used to assess the phosphorylation of the transcription factor cAMP response element-binding protein (CREB) in the intracellular domain as a result of the treatment by nanoformulations. CONCLUSION Over time, dual drug formulations (curcumin and docosahexaenoic acid (DHA)) promoted the neuronal survival and repair processes through enhanced BDNF secretion and increased phosphorylation of CREB as compared to untreated degenerating cells.
Collapse
Affiliation(s)
- Luis P B Guerzoni
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 5 rue J.-B. Clément, 92296, Châtenay-Malabry cedex, France
| | - Valérie Nicolas
- MIPSIT, Paris-Saclay Institute of Therapeutic Innovation (IPSIT-UMS3679 CNRS, US31 INSERM), Faculty of Pharmacy, Univ Paris Sud, Université Paris-Saclay, 5 rue J.-B. Clément, 92296, Châtenay-Malabry, France
| | - Angelina Angelova
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 5 rue J.-B. Clément, 92296, Châtenay-Malabry cedex, France.
| |
Collapse
|
77
|
Kazim SF, Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer's disease. Mol Neurodegener 2016; 11:50. [PMID: 27400746 PMCID: PMC4940708 DOI: 10.1186/s13024-016-0119-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/02/2016] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable and debilitating chronic progressive neurodegenerative disorder which is the leading cause of dementia worldwide. AD is a heterogeneous and multifactorial disorder, histopathologically characterized by the presence of amyloid β (Aβ) plaques and neurofibrillary tangles composed of Aβ peptides and abnormally hyperphosphorylated tau protein, respectively. Independent of the various etiopathogenic mechanisms, neurodegeneration is a final common outcome of AD neuropathology. Synaptic loss is a better correlate of cognitive impairment in AD than Aβ or tau pathologies. Thus a highly promising therapeutic strategy for AD is to shift the balance from neurodegeneration to neuroregeneration and synaptic repair. Neurotrophic factors, by virtue of their neurogenic and neurotrophic activities, have potential for the treatment of AD. However, the clinical therapeutic usage of recombinant neurotrophic factors is limited because of the insurmountable hurdles of unfavorable pharmacokinetic properties, poor blood-brain barrier (BBB) permeability, and severe adverse effects. Neurotrophic factor small-molecule mimetics, in this context, represent a potential strategy to overcome these short comings, and have shown promise in preclinical studies. Neurotrophic factor small-molecule mimetics have been the focus of intense research in recent years for AD drug development. Here, we review the relevant literature regarding the therapeutic beneficial effect of neurotrophic factors in AD, and then discuss the recent status of research regarding the neurotrophic factor small-molecule mimetics as therapeutic candidates for AD. Lastly, we summarize the preclinical studies with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021). P021 is a neurogenic and neurotrophic compound which enhances dentate gyrus neurogenesis and memory processes via inhibiting leukemia inhibitory factor (LIF) signaling pathway and increasing brain-derived neurotrophic factor (BDNF) expression. It robustly inhibits tau abnormal hyperphosphorylation via increased BDNF mediated decrease in glycogen synthase kinase-3β (GSK-3β, major tau kinase) activity. P021 is a small molecular weight, BBB permeable compound with suitable pharmacokinetics for oral administration, and without adverse effects associated with native CNTF or BDNF molecule. P021 has shown beneficial therapeutic effect in several preclinical studies and has emerged as a highly promising compound for AD drug development.
Collapse
Affiliation(s)
- Syed Faraz Kazim
- />Department of Neurochemistry, and SUNY Downstate/NYSIBR Program in Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), 1050 Forest Hill Road, Staten Island, NY 10314 USA
- />Graduate Program in Neural and Behavioral Science, and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - Khalid Iqbal
- />Department of Neurochemistry, and SUNY Downstate/NYSIBR Program in Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), 1050 Forest Hill Road, Staten Island, NY 10314 USA
| |
Collapse
|
78
|
Luo D, Shi Y, Wang J, Lin Q, Sun Y, Ye K, Yan Q, Zhang H. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents. Neurosci Lett 2016; 620:43-9. [DOI: 10.1016/j.neulet.2016.03.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/29/2022]
|
79
|
Yang P, Leu D, Ye K, Srinivasan C, Fike JR, Huang TT. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol 2016; 279:178-186. [PMID: 26946222 PMCID: PMC4933026 DOI: 10.1016/j.expneurol.2016.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/10/2016] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
Brain radiotherapy is frequently used successfully to treat brain tumors. However, radiotherapy is often associated with declines in short-term and long-term memory, learning ability, and verbal fluency. We previously identified a downregulation of the brain-derived neurotrophic factor (BDNF) following cranial irradiation in experimental animals. In the present study, we investigated whether targeting the BDNF high affinity receptor, tropomysin receptor kinase B (TrkB), could mitigate radiation-induced cognitive deficits. After irradiation, chronic treatment with a small molecule TrkB agonist, 7,8-dihydroxyflavone (DHF) in mice led to enhanced activation of TrkB and its downstream targets ERK and AKT, both important factors in neuronal development. DHF treatment significantly restored spatial, contextual, and working memory, and the positive effects persisted for at least 3months after completion of the treatment. Consistent with preservation of cognitive functions, chronic DHF treatment mitigated radiation-induced suppression of hippocampal neurogenesis. Spine density and major components of the excitatory synapses, including glutamate receptors and postsynaptic density protein 95 (PSD-95), were also maintained at normal levels by DHF treatment after irradiation. Taken together, our results show that chronic treatment with DHF after irradiation significantly mitigates radiation-induced cognitive defects. This is achieved most likely by preservation of hippocampal neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Phillip Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - David Leu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Chandra Srinivasan
- Department of Chemistry and Biochemistry, California State University Fullerton, CA 92831, USA
| | - John R Fike
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
80
|
Liu C, Chan CB, Ye K. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl Neurodegener 2016; 5:2. [PMID: 26740873 PMCID: PMC4702337 DOI: 10.1186/s40035-015-0048-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates a variety of biological processes predominantly via binding to the transmembrane receptor tyrosine kinase TrkB. It is a potential therapeutic target in numerous neurological, mental and metabolic disorders. However, the lack of efficient means to deliver BDNF into the body imposes an insurmountable hurdle to its clinical application. To address this challenge, we initiated a cell-based drug screening to search for small molecules that act as the TrkB agonist. 7,8-Dihydroxyflavone (7,8-DHF) is our first reported small molecular TrkB agonist, which has now been extensively validated in various biochemical and cellular systems. Though binding to the extracellular domain of TrkB, 7,8-DHF triggers TrkB dimerization to induce the downstream signaling. Notably, 7,8-DHF is orally bioactive that can penetrate the brain blood barrier (BBB) to exert its neurotrophic activities in the central nervous system. Numerous reports suggest 7,8-DHF processes promising therapeutic efficacy in various animal disease models that are related to deficient BDNF signaling. In this review, we summarize our current knowledge on the binding activity and specificity, structure-activity relationship, pharmacokinetic and metabolism, and the pre-clinical efficacy of 7,8-DHF against some human diseases.
Collapse
Affiliation(s)
- Chaoyang Liu
- School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073 P.R. China
| | - Chi Bun Chan
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104 USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322 USA
| |
Collapse
|
81
|
Nie S, Xu Y, Chen G, Ma K, Han C, Guo Z, Zhang Z, Ye K, Cao X. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 2015; 99:448-58. [DOI: 10.1016/j.neuropharm.2015.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
|