51
|
Tanaka Y, Yamada K, Satake K, Nishida I, Heuberger M, Kuwahara T, Iwatsubo T. Seeding Activity-Based Detection Uncovers the Different Release Mechanisms of Seed-Competent Tau Versus Inert Tau via Lysosomal Exocytosis. Front Neurosci 2019; 13:1258. [PMID: 31824253 PMCID: PMC6881304 DOI: 10.3389/fnins.2019.01258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The pathological aggregation of tau characterizes a set of neurodegenerative diseases collectively referred to as tauopathies. Recent studies using cellular and animal models have suggested that tau pathology progresses by trans-cellular propagation. The process of propagation is mediated by certain species of extracellular tau, which are taken up by recipient cells and serve as a seed for tau aggregation. Tau propagation is currently one of the most active areas of research in dementia. Previous efforts to identify the specific tau molecules involved in propagation have suggested that multiple forms of tau with different molecular weights derived from recombinant tau or brain lysates exert seeding activity. Nonetheless, the molecular characteristics of the “extracellular” seed-competent tau as well as its release mechanisms remain to be elucidated. Given that tau is physiologically released into the extracellular space, it is critical to distinguish seed-competent tau from normal monomeric tau. Utilizing biosensor cells expressing P301S mutant tau fused to CFP/YFP, here we discriminated between seed-competent tau and inert monomer tau released from HEK293 cells. By analyzing the size-exclusion fractions of the media, we found that seed-competent tau was enriched in high molecular weight fractions of >2,000 kDa, while the majority of soluble tau in the media positively detected by ELISA was in low molecular weight fractions. We also found that lysosomal stress not only increased Ca2+-dependent release of seed-competent tau but also altered its molecular size. Inhibiting lysosomal exocytosis specifically decreased release of seed-competent tau without influencing total tau. These data underscore the differential response of seed-competent tau and inert tau to lysosomal stress and indicates the presence of distinct release mechanisms via lysosomes.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Satake
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Itaru Nishida
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Matthias Heuberger
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
52
|
Initiation of Parkinson's disease from gut to brain by δ-secretase. Cell Res 2019; 30:70-87. [PMID: 31649329 DOI: 10.1038/s41422-019-0241-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Lewy pathology, composed of α-Synuclein (α-Syn) inclusions, a hallmark of Parkinson's disease (PD), progressively spreads from the enteric nervous system (ENS) to the central nervous system (CNS). However, it remains unclear how this process is regulated at a molecular level. Here we show that δ-secretase (asparagine endopeptidase, AEP) cleaves both α-Syn at N103 and Tau at N368, and mediates their fibrillization and retrograde propagation from the gut to the brain, triggering nigra dopaminergic neuronal loss associated with Lewy bodies and motor dysfunction. α-Syn N103 and Tau N368 robustly interact with each other and are highly elevated in PD patients' gut and brain. Chronic oral administration of the neurotoxin rotenone induces AEP activation and α-Syn N103/Tau N368 complex formation in the gut, eliciting constipation and dopaminergic neuronal death in an AEP-dependent manner. Preformed fibrils (PFFs) of α-Syn N103/Tau N368 are more neurotoxic and compact, and aggregate more quickly along the vagus nerve than their FL/FL counterparts or the individual fragments' fibrils. Colonic injection of PFFs induces PD pathologies, motor dysfunctions, and cognitive impairments. Thus, δ-secretase plays a crucial role in initiating PD pathology progression from the ENS to the CNS.
Collapse
|
53
|
Polinski NK, Volpicelli-Daley LA, Sortwell CE, Luk KC, Cremades N, Gottler LM, Froula J, Duffy MF, Lee VMY, Martinez TN, Dave KD. Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents. JOURNAL OF PARKINSONS DISEASE 2019; 8:303-322. [PMID: 29400668 PMCID: PMC6004926 DOI: 10.3233/jpd-171248] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting approximately one-percent of the population over the age of sixty. Although many animal models have been developed to study this disease, each model presents its own advantages and caveats. A unique model has arisen to study the role of alpha-synuclein (aSyn) in the pathogenesis of PD. This model involves the conversion of recombinant monomeric aSyn protein to a fibrillar form—the aSyn pre-formed fibril (aSyn PFF)—which is then injected into the brain or introduced to the media in culture. Although many groups have successfully adopted and replicated the aSyn PFF model, issues with generating consistent pathology have been reported by investigators. To improve the replicability of this model and diminish these issues, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) has enlisted the help of field leaders who performed key experiments to establish the aSyn PFF model to provide the research community with guidelines and practical tips for improving the robustness and success of this model. Specifically, we identify key pitfalls and suggestions for avoiding these mistakes as they relate to generating the aSyn PFFs from monomeric protein, validating the formation of pathogenic aSyn PFFs, and using the aSyn PFFs in vivo or in vitro to model PD. With this additional information, adoption and use of the aSyn PFF model should present fewer challenges, resulting in a robust and widely available model of PD.
Collapse
Affiliation(s)
- Nicole K Polinski
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nunilo Cremades
- Institute for Biocomputation and Complex Systems Physics (BIFI), University of Zaragoza, Zaragoza, Spain
| | | | - Jessica Froula
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Megan F Duffy
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Terina N Martinez
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| |
Collapse
|
54
|
de Oliveira GAP, Silva JL. Alpha-synuclein stepwise aggregation reveals features of an early onset mutation in Parkinson's disease. Commun Biol 2019; 2:374. [PMID: 31633065 PMCID: PMC6789109 DOI: 10.1038/s42003-019-0598-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023] Open
Abstract
Amyloid formation is a process involving interconverting protein species and results in toxic oligomers and fibrils. Aggregated alpha-synuclein (αS) participates in neurodegenerative maladies, but a closer understanding of the early αS polymerization stages and polymorphism of heritable αS variants is sparse still. Here, we distinguished αS oligomer and protofibril interconversions in Thioflavin T polymerization reactions. The results support a hypothesis reconciling the nucleation-polymerization and nucleation-conversion-polymerization models to explain the dissimilar behaviors of wild-type and the A53T mutant. Cryo-electron microscopy with a direct detector shows the polymorphic nature of αS fibrils formed by heritable A30P, E46K, and A53T point mutations. By showing that A53T rapidly nucleates competent species, continuously elongates fibrils in the presence of increasing amounts of seeds, and overcomes wild-type surface requirements for growth, our findings place A53T with features that may explain the early onset of familial Parkinson's disease cases bearing this mutation.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901 Brazil
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22904 USA
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901 Brazil
| |
Collapse
|
55
|
Abstract
The prion strain, surface type, and matrix containing PrPSc can influence PrPSc surface adsorption. The cumulative effect of these factors can result in strain- and soil-specific differences in prion bioavailability. Environmental weathering processes can result in decreases in PrPSc conversion efficiency and infectivity. Little is known about how incomplete inactivation of surface-bound PrPSc affects transmission and prion strain emergence. Here, we show that strain interference occurs with soil-bound prions and that altering the ratios of prion strains by strain-specific inactivation can affect strain emergence. Additionally, we identify a novel mechanism of inhibition of prion conversion by environmental treatment-induced changes at the soil-protein interface altering strain emergence. These novel findings suggest that environmental factors can influence strain emergence of surface-bound prions. Prions can persist in the environment for extended periods of time after adsorption to surfaces, including soils, feeding troughs, or fences. Prion strain- and soil-specific differences in prion adsorption, infectivity, and response to inactivation may be involved in strain maintenance or emergence of new strains in a population. Extensive proteinase K (PK) digestion of Hyper (HY) and Drowsy (DY) PrPSc resulted in a greater reduction in the level of DY PrPSc than of HY PrPSc. Use of the PK-digested material in protein misfolding cyclic amplification strain interference (PMCAsi) resulted in earlier emergence of HY PrPSc than of undigested controls. This result established that strain-specific alteration of the starting ratios of conversion-competent HY and DY PrPSc can alter strain emergence. We next investigated whether environmentally relevant factors such as surface binding and weathering could alter strain emergence. Adsorption of HY and DY PrPSc to silty clay loam (SCL), both separately and combined, resulted in DY interfering with the emergence of HY in PMCAsi in a manner similar to that seen with unbound controls. Similarly, repeated cycles of wetting and drying of SCL-bound HY and DY PrPSc did not alter the emergence of HY PrPSc compared to untreated controls. Importantly, these data indicate that prion strain interference can occur when prions are bound to surfaces. Interestingly, we found that drying of adsorbed brain homogenate on SCL could restore its ability to interfere with the emergence of HY, suggesting a novel strain interference mechanism. Overall, these data provide evidence that the emergence of a strain from a mixture can be influenced by nonhost factors. IMPORTANCE The prion strain, surface type, and matrix containing PrPSc can influence PrPSc surface adsorption. The cumulative effect of these factors can result in strain- and soil-specific differences in prion bioavailability. Environmental weathering processes can result in decreases in PrPSc conversion efficiency and infectivity. Little is known about how incomplete inactivation of surface-bound PrPSc affects transmission and prion strain emergence. Here, we show that strain interference occurs with soil-bound prions and that altering the ratios of prion strains by strain-specific inactivation can affect strain emergence. Additionally, we identify a novel mechanism of inhibition of prion conversion by environmental treatment-induced changes at the soil-protein interface altering strain emergence. These novel findings suggest that environmental factors can influence strain emergence of surface-bound prions.
Collapse
|
56
|
Chung HK, Ho HA, Pérez-Acuña D, Lee SJ. Modeling α-Synuclein Propagation with Preformed Fibril Injections. J Mov Disord 2019; 12:139-151. [PMID: 31556259 PMCID: PMC6763716 DOI: 10.14802/jmd.19046] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) has been implicated in the pathogenesis of many neurodegenerative disorders, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Postmortem analyses of α-syn pathology, especially that of PD, have suggested that aggregates progressively spread from a few discrete locations to wider brain regions. The neuron-to-neuron propagation of α-syn has been suggested to be the underlying mechanism by which aggregates spread throughout the brain. Many cellular and animal models has been created to study cell-to-cell propagation. Recently, it has been shown that a single injection of preformed fibrils (PFFs) made of recombinant α-syn proteins into various tissues and organs of many different animal species results in widespread α-syn pathology in the central nervous system (CNS). These PFF models have been extensively used to study the mechanism by which aggregates spread throughout the brain. Here, we review what we have learned from PFF models, describe the nature of PFFs and the neuropathological features, neurophysiological characteristics, and behavioral outcomes of the models.
Collapse
Affiliation(s)
- Hyun Kyung Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hoang-Anh Ho
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Dayana Pérez-Acuña
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
57
|
Gao J, Perera G, Bhadbhade M, Halliday GM, Dzamko N. Autophagy activation promotes clearance of α-synuclein inclusions in fibril-seeded human neural cells. J Biol Chem 2019; 294:14241-14256. [PMID: 31375560 DOI: 10.1074/jbc.ra119.008733] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/28/2019] [Indexed: 01/12/2023] Open
Abstract
There is much interest in delineating the mechanisms by which the α-synuclein protein accumulates in brains of individuals with Parkinson's disease (PD). Preclinical studies with rodent and primate models have indicated that fibrillar forms of α-synuclein can initiate the propagation of endogenous α-synuclein pathology. However, the underlying mechanisms by which α-synuclein fibrils seed pathology remain unclear. To investigate this further, we have used exogenous fibrillar α-synuclein to seed endogenous α-synuclein pathology in human neuronal cell lines, including primary human neurons differentiated from induced pluripotent stem cells. Fluorescence microscopy and immunoblot analyses were used to monitor levels of α-synuclein and key autophagy/lysosomal proteins over time in the exogenous α-synuclein fibril-treated neurons. We observed that temporal changes in the accumulation of cytoplasmic α-synuclein inclusions were associated with changes in the key autophagy/lysosomal markers. Of note, chloroquine-mediated blockade of autophagy increased accumulation of α-synuclein inclusions, and rapamycin-induced activation of autophagy, or use of 5'-AMP-activated protein kinase (AMPK) agonists, promoted the clearance of fibril-mediated α-synuclein pathology. These results suggest a key role for autophagy in clearing fibrillar α-synuclein pathologies in human neuronal cells. We propose that our findings may help inform the development of human neural cell models for screening of potential therapeutic compounds for PD or for providing insight into the mechanisms of α-synuclein propagation. Our results further add to existing evidence that AMPK activation may be a therapeutic option for managing PD.
Collapse
Affiliation(s)
- Jianqun Gao
- ForeFront Dementia and Movement Disorders Laboratory, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2033, Australia.,Neuroscience Research Australia, Randwick, New South Wales 2031, Australia
| | - Gayathri Perera
- ForeFront Dementia and Movement Disorders Laboratory, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Megha Bhadbhade
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Glenda M Halliday
- ForeFront Dementia and Movement Disorders Laboratory, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2033, Australia.,Neuroscience Research Australia, Randwick, New South Wales 2031, Australia
| | - Nicolas Dzamko
- ForeFront Dementia and Movement Disorders Laboratory, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia .,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2033, Australia.,Neuroscience Research Australia, Randwick, New South Wales 2031, Australia
| |
Collapse
|
58
|
Tarutani A, Hasegawa M. Prion-like propagation of α-synuclein in neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:323-348. [PMID: 31699325 DOI: 10.1016/bs.pmbts.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are defined as proteinaceous infectious particles that do not contain nucleic acids. Neuropathological investigations of post-mortem brains and recent studies of experimental transmission have suggested that amyloid-like abnormal protein aggregates, which are the defining feature of many neurodegenerative diseases, behave like prions and propagate throughout the brain. This prion-like propagation may be the underlying mechanism of onset and progression of neurodegenerative diseases, although the precise molecular mechanisms involved remain unclear. However, in vitro and in vivo experimental models of prion-like propagation using pathogenic protein seeds are well established and are extremely valuable for the exploration and evaluation of novel drugs and therapies for neurodegenerative diseases for which there is no effective treatment. In this chapter, we introduce the experimental models of prion-like propagation of α-synuclein, which is accumulated in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, and we describe their applications for the development of new diagnostic and therapeutic modalities. We also introduce the concept of "α-syn strains," which may underlie the pathological and clinical diversity of α-synucleinopathies.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
59
|
Patterson JR, Duffy MF, Kemp CJ, Howe JW, Collier TJ, Stoll AC, Miller KM, Patel P, Levine N, Moore DJ, Luk KC, Fleming SM, Kanaan NM, Paumier KL, El-Agnaf OMA, Sortwell CE. Time course and magnitude of alpha-synuclein inclusion formation and nigrostriatal degeneration in the rat model of synucleinopathy triggered by intrastriatal α-synuclein preformed fibrils. Neurobiol Dis 2019; 130:104525. [PMID: 31276792 DOI: 10.1016/j.nbd.2019.104525] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
Animal models that accurately recapitulate the accumulation of alpha-synuclein (α-syn) inclusions, progressive neurodegeneration of the nigrostriatal system and motor deficits can be useful tools for Parkinson's disease (PD) research. The preformed fibril (PFF) synucleinopathy model in rodents generally displays these PD-relevant features, however, the magnitude and predictability of these events is far from established. We therefore sought to optimize the magnitude of α-syn accumulation and nigrostriatal degeneration, and to understand the time course of both. Rats were injected unilaterally with different quantities of α-syn PFFs (8 or 16 μg of total protein) into striatal sites selected to concentrate α-syn inclusion formation in the substantia nigra pars compacta (SNpc). Rats displayed an α-syn PFF quantity-dependent increase in the magnitude of ipsilateral SNpc inclusion formation at 2 months and bilateral loss of nigral dopamine neurons at 6 months. Unilateral 16 μg PFF injection also resulted in modest sensorimotor deficits in forelimb adjusting steps associated with degeneration at 6 months. Bilateral injection of 16 μg α-syn PFFs resulted in symmetric bilateral degeneration equivalent to the ipsilateral nigral degeneration observed following unilateral 16 μg PFF injection (~50% loss). Bilateral PFF injections additionally resulted in alterations in several gait analysis parameters. These α-syn PFF parameters can be applied to generate a reproducible synucleinopathy model in rats with which to study pathogenic mechanisms and vet potential disease-modifying therapies.
Collapse
Affiliation(s)
- Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA.
| | - Megan F Duffy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Jacob W Howe
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kathryn M Miller
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Pooja Patel
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Nathan Levine
- Center of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Center of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sheila M Fleming
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Katrina L Paumier
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Omar M A El-Agnaf
- Neurological Disorders Researcher Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| |
Collapse
|
60
|
Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, Lee JH, Kim WR, Kook M, Foss CA, Shen C, Lee H, Kulkarni S, Pasricha PJ, Lee G, Pomper MG, Dawson VL, Dawson TM, Ko HS. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson's Disease. Neuron 2019; 103:627-641.e7. [PMID: 31255487 DOI: 10.1016/j.neuron.2019.05.035] [Citation(s) in RCA: 923] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
Analysis of human pathology led Braak to postulate that α-synuclein (α-syn) pathology could spread from the gut to brain via the vagus nerve. Here, we test this postulate by assessing α-synucleinopathy in the brain in a novel gut-to-brain α-syn transmission mouse model, where pathological α-syn preformed fibrils were injected into the duodenal and pyloric muscularis layer. Spread of pathologic α-syn in brain, as assessed by phosphorylation of serine 129 of α-syn, was observed first in the dorsal motor nucleus, then in caudal portions of the hindbrain, including the locus coeruleus, and much later in basolateral amygdala, dorsal raphe nucleus, and the substantia nigra pars compacta. Moreover, loss of dopaminergic neurons and motor and non-motor symptoms were observed in a similar temporal manner. Truncal vagotomy and α-syn deficiency prevented the gut-to-brain spread of α-synucleinopathy and associated neurodegeneration and behavioral deficits. This study supports the Braak hypothesis in the etiology of idiopathic Parkinson's disease (PD).
Collapse
Affiliation(s)
- Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun Hee Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wonjoong Richard Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minjee Kook
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chentian Shen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hojae Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Subhash Kulkarni
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pankaj J Pasricha
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA.
| |
Collapse
|
61
|
Ma J, Gao J, Wang J, Xie A. Prion-Like Mechanisms in Parkinson's Disease. Front Neurosci 2019; 13:552. [PMID: 31275093 PMCID: PMC6591488 DOI: 10.3389/fnins.2019.00552] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Formation and aggregation of misfolded proteins in the central nervous system (CNS) is a key hallmark of several age-related neurodegenerative diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS). These diseases share key biophysical and biochemical characteristics with prion diseases. It is believed that PD is characterized by abnormal protein aggregation, mainly that of α-synuclein (α-syn). Of particular importance, there is growing evidence indicating that abnormal α-syn can spread to neighboring brain regions and cause aggregation of endogenous α-syn in these regions as seeds, in a “prion-like” manner. Abundant studies in vitro and in vivo have shown that α-syn goes through a templated conformational change, propagates from the original region to neighboring regions, and eventually cause neuron degeneration in the substantia nigra and striatum. The objective of this review is to summarize the mechanisms involved in the aggregation of abnormal intracellular α-syn and its subsequent cell-to-cell transmission. According to these findings, we look forward to effective therapeutic perspectives that can block the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiangnan Ma
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
62
|
Shimozawa A, Fujita Y, Kondo H, Takimoto Y, Terada M, Sanagi M, Hisanaga SI, Hasegawa M. Effect of L-DOPA/Benserazide on Propagation of Pathological α-Synuclein. Front Neurosci 2019; 13:595. [PMID: 31258461 PMCID: PMC6587610 DOI: 10.3389/fnins.2019.00595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/24/2019] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) and related disorders are characterized by filamentous or fibrous structures consisting of abnormal α-synuclein in the brains of patients, and the distributions and spread of these pathologies are closely correlated with disease progression. L-DOPA (a dopamine precursor) is the most effective therapy for PD, but it remains unclear whether the drug has any effect on the formation and propagation of pathogenic abnormal α-synuclein in vivo. Here, we tested whether or not L-DOPA influences the prion-like spread of α-synuclein pathologies in a wild-type (WT) mouse model of α-synuclein propagation. To quantitative the pathological α-synuclein in mice, we prepared brain sections stained with an anti-phosphoSer129 (PS129) antibody after pretreatments with autoclaving and formic acid, and carefully analyzed positive aggregates on multiple sections covering the areas of interest using a microscope. Notably, a significant reduction in the accumulation of phosphorylated α-synuclein was detected in substantia nigra of L-DOPA/benserazide (a dopamine decarboxylase inhibitor)-treated mice, compared with control mice. These results suggest that L-DOPA may slow the progression of PD in vivo by suppressing the aggregation of α-synuclein in dopaminergic neurons and the cell-to-cell propagation of abnormal α-synuclein. This is the first report describing the suppressing effect of L-DOPA/benserazide on the propagation of pathological α-synuclein. The experimental protocols and detection methods in this study are expected to be useful for evaluation of drug candidates or new therapies targeting the propagation of α-synuclein.
Collapse
Affiliation(s)
- Aki Shimozawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuuki Fujita
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiromi Kondo
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yu Takimoto
- Discovery Service, Charles River Laboratories Japan, Inc., Ibaraki, Japan
| | - Makoto Terada
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masanao Sanagi
- Discovery Service, Charles River Laboratories Japan, Inc., Ibaraki, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
63
|
Froula JM, Castellana-Cruz M, Anabtawi NM, Camino JD, Chen SW, Thrasher DR, Freire J, Yazdi AA, Fleming S, Dobson CM, Kumita JR, Cremades N, Volpicelli-Daley LA. Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice. J Biol Chem 2019; 294:10392-10406. [PMID: 31142553 DOI: 10.1074/jbc.ra119.007743] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar neuronal inclusions composed of aggregated α-synuclein (α-syn). These inclusions are associated with behavioral and pathological PD phenotypes. One strategy for therapeutic interventions is to prevent the formation of these inclusions to halt disease progression. α-Synuclein exists in multiple structural forms, including disordered, nonamyloid oligomers, ordered amyloid oligomers, and fibrils. It is critical to understand which conformers contribute to specific PD phenotypes. Here, we utilized a mouse model to explore the pathological effects of stable β-amyloid-sheet oligomers compared with those of fibrillar α-synuclein. We biophysically characterized these species with transmission EM, atomic-force microscopy, CD spectroscopy, FTIR spectroscopy, analytical ultracentrifugation, and thioflavin T assays. We then injected these different α-synuclein forms into the mouse striatum to determine their ability to induce PD-related phenotypes. We found that β-sheet oligomers produce a small but significant loss of dopamine neurons in the substantia nigra pars compacta (SNc). Injection of small β-sheet fibril fragments, however, produced the most robust phenotypes, including reduction of striatal dopamine terminals, SNc loss of dopamine neurons, and motor-behavior defects. We conclude that although the β-sheet oligomers cause some toxicity, the potent effects of the short fibrillar fragments can be attributed to their ability to recruit monomeric α-synuclein and spread in vivo and hence contribute to the development of PD-like phenotypes. These results suggest that strategies to reduce the formation and propagation of β-sheet fibrillar species could be an important route for therapeutic intervention in PD and related disorders.
Collapse
Affiliation(s)
- Jessica M Froula
- From the Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Marta Castellana-Cruz
- the Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom, and
| | - Nadia M Anabtawi
- From the Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - José D Camino
- the Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain
| | - Serene W Chen
- the Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom, and
| | - Drake R Thrasher
- From the Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer Freire
- From the Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Allen A Yazdi
- From the Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sheila Fleming
- the Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Christopher M Dobson
- the Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom, and
| | - Janet R Kumita
- the Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom, and
| | - Nunilo Cremades
- the Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain,
| | - Laura A Volpicelli-Daley
- From the Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
64
|
Candelise N, Schmitz M, Llorens F, Villar-Piqué A, Cramm M, Thom T, da Silva Correia SM, da Cunha JEG, Möbius W, Outeiro TF, Álvarez VG, Banchelli M, D'Andrea C, de Angelis M, Zafar S, Rabano A, Matteini P, Zerr I. Seeding variability of different alpha synuclein strains in synucleinopathies. Ann Neurol 2019; 85:691-703. [PMID: 30805957 DOI: 10.1002/ana.25446] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Currently, the exact reasons why different α-synucleinopathies exhibit variable pathologies and phenotypes are still unknown. A potential explanation may be the existence of distinctive α-synuclein conformers or strains. Here, we intend to analyze the seeding activity of dementia with Lewy bodies (DLB) and Parkinson's disease (PD) brain-derived α-synuclein seeds by real-time quaking-induced conversion (RT-QuIC) and to investigate the structure and morphology of the α-synuclein aggregates generated by RT-QuIC. METHODS A misfolded α-synuclein-enriched brain fraction from frontal cortex and substantia nigra pars compacta tissue, isolated by several filtration and centrifugation steps, was subjected to α-synuclein/RT-QuIC analysis. Our study included neuropathologically well-characterized cases with DLB, PD, and controls (Ctrl). Biochemical and morphological analyses of RT-QuIC products were conducted by western blot, dot blot analysis, Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. RESULTS Independently from the brain region, we observed different seeding kinetics of α-synuclein in the RT-QuIC in patients with DLB compared to PD and Ctrl. Biochemical characterization of the RT-QuIC product indicated the generation of a proteinase K-resistant and fibrillary α-synuclein species in DLB-seeded reactions, whereas PD and control seeds failed in the conversion of wild-type α-synuclein substrate. INTERPRETATION Structural variances of α-synuclein seeding kinetics and products in DLB and PD indicated, for the first time, the existence of different α-synuclein strains in these groups. Therefore, our study contributes to a better understanding of the clinical heterogeneity among α-synucleinopathies, offers an opportunity for a specific diagnosis, and opens new avenues for the future development of strain-specific therapies. Ann Neurol 2019;85:691-703.
Collapse
Affiliation(s)
- Niccolò Candelise
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Franc Llorens
- CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain and IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitale de Llobregat, Spain
| | - Anna Villar-Piqué
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Maria Cramm
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tobias Thom
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susana Margarida da Silva Correia
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Wiebke Möbius
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany.,Max Planck Institute for Experimental Medicine Medicine Department of Neurogenetics, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine Medicine Department of Neurogenetics, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Valentina González Álvarez
- Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Madrid, Spain
| | - Martina Banchelli
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Cristiano D'Andrea
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Marella de Angelis
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Saima Zafar
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Alberto Rabano
- Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Madrid, Spain
| | - Paolo Matteini
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Inga Zerr
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
65
|
Nigrostriatal pathology with reduced astrocytes in LRRK2 S910/S935 phosphorylation deficient knockin mice. Neurobiol Dis 2018; 120:76-87. [PMID: 30194047 PMCID: PMC6197399 DOI: 10.1016/j.nbd.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is genetically implicated in both familial and sporadic Parkinson's disease (PD). Moreover, LRRK2 has emerged as a compelling therapeutic target for the treatment of PD. Consequently, there is much interest in understanding LRRK2 and its role in PD pathogenesis. LRRK2 is constitutively phosphorylated on two serines, S910 and S935, that are required for interaction of LRRK2 with members of the 14-3-3 family of scaffolding proteins. Pathogenic LRRK2 missense mutations impair the phosphorylation of LRRK2 at these sites, but whether this contributes to PD pathology is unclear. To better understand how loss of LRRK2 phosphorylation relates to PD pathology, we have studied double knockin mice in which Lrrk2's serine 910 and 935 have both been mutated to alanine and can therefore no longer be phosphorylated. Nigrostriatal PD pathology was assessed in adult mice, aged mice, and mice inoculated with α-synuclein fibrils. Under all paradigms there was evidence of early PD pathology in the striatum of the knockin mice, namely alterations in dopamine regulating proteins and accumulation of α-synuclein. Striatal pathology was accompanied by a significant decrease in the number of astrocytes in the knockin mice. Despite striatal pathology, there was no degeneration of dopamine neurons in the substantia nigra and no evidence of a PD motor phenotype in the knockin mice. Our results suggest that modulation of LRRK2 serine 910 and 935 phosphorylation sites may have implications for dopamine turnover and astrocyte function, but loss of phosphorylation at these residues is not sufficient to induce PD neurodegeneration.
Collapse
|
66
|
Franco R, Aguinaga D, Reyes I, Canela EI, Lillo J, Tarutani A, Hasegawa M, Del Ser-Badia A, Del Rio JA, Kreutz MR, Saura CA, Navarro G. N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APP Sw,Ind Mice. Front Mol Neurosci 2018; 11:273. [PMID: 30233307 PMCID: PMC6127644 DOI: 10.3389/fnmol.2018.00273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/18/2018] [Indexed: 11/14/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer’s disease model. Interestingly, a very marked increase in NMDAR–NCS1 complexes was identified in neurons and a marked increase of both NMDAR–NCS1 and NMDAR–CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor–calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Aguinaga
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Reyes
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Enric I Canela
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Anna Del Ser-Badia
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José A Del Rio
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group Dendritic Organelles and Synaptic Function, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos A Saura
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
67
|
Rodriguez L, Marano MM, Tandon A. Import and Export of Misfolded α-Synuclein. Front Neurosci 2018; 12:344. [PMID: 29875627 PMCID: PMC5974333 DOI: 10.3389/fnins.2018.00344] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
In Parkinson's disease, intracellular α-synuclein (α-syn) inclusions form in neurons and are referred to as Lewy bodies. These aggregates spread through the brain following a specific pattern leading to the hypothesis that neuron-to-neuron transfer is critical for the propagation of Lewy body pathology. Here we review recent studies employing pre-formed fibrils generated from recombinant α-syn to evaluate the uptake, trafficking, and release of α-syn fibrils. We outline methods of internalization as well as cell surface receptors that have been described in the literature as regulating α-syn fibril uptake. Pharmacological and genetic studies indicate endocytosis is the primary method of α-syn internalization. Once α-syn fibrils have crossed the plasma membrane they are typically trafficked through the endo-lysosomal system with autophagy acting as the dominant method of α-syn clearance. Interestingly, both chaperone-mediated autophagy and macroautophagy have been implicated in the degradation of α-syn, although it remains unclear which system is chiefly responsible for the removal of α-syn fibrils. The major hallmark of α-syn spreading is the templating of misfolded properties onto healthy protein resulting in a conformational change; we summarize the evidence indicating misfolded α-syn can seed endogenous α-syn to form new aggregates. Finally, recent studies demonstrate that cells release misfolded and aggregated α-syn and that these processes may involve different chaperones. Nonetheless, the exact mechanism for the release of fibrillar α-syn remains unclear. This review highlights what is known, and what requires further clarification, regarding each step of α-syn transmission.
Collapse
Affiliation(s)
- Lilia Rodriguez
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, Toronto, ON, Canada
| | - Maria M Marano
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
68
|
Shamoto-Nagai M, Hisaka S, Naoi M, Maruyama W. Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease. J Clin Biochem Nutr 2018; 62:207-212. [PMID: 29892158 PMCID: PMC5990400 DOI: 10.3164/jcbn.18-25] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Recently, toxic α-synuclein oligomer, which can mediate cell-to-cell propagation is suggested to cause sporadic Parkinson disease. α-Synuclein interacts with membrane lipids especially polyunsaturated fatty acids to stabilize its three-dementional structure. Peroxidation of polyunsaturated fatty acids may reduce their affinity to α-synuclein and peroxidation byproducts might modify α-synuclein. 4-Hydroxy-2-nonenal derived from n-6 polyunsaturated fatty acids was reported to modify α-synuclein to produce a toxic oligomer. Moreover, the accumulation of 4-hydroxy-2-nonenal, which could induce oligomeriztion of α-synuclein, was found in parkinsonian brains. Docosahexaenoic acid, an n-3 polyunsaturated fatty acids abundant in the neuronal membrane, was also found to enhance α-synuclein oligomerization; however, the precise details of the chemical reaction involved are unclear. Propanoylated lysine, a specific indicator of docosahexaenoic acid oxidation, was increased in neuronal differentiated human neuroblastoma SH-SY5Y cells overexpressing α-synuclein. α-Synuclein might be modified by the peroxidation products and then, is degraded by the autophagy-lysosome system. In addition, in the cells overexpressing α-synuclein, the mitochondrial electrone transfer chain was found to be inhibited. Accumulation of abnormal α-synuclein modified by lipid radicals derived from polyunsaturated fatty acids may be not only an indicator of brain oxidative stress but also causative of neurodegeneration such as Parkinson disease by impairing mitochondrial function.
Collapse
Affiliation(s)
- Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nissin, Aichi 470-0195, Japan
| | - Shinsuke Hisaka
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya, Aichi 466-8503, Japan
| | - Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nissin, Aichi 470-0195, Japan
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nissin, Aichi 470-0195, Japan
| |
Collapse
|
69
|
Duffy MF, Collier TJ, Patterson JR, Kemp CJ, Luk KC, Tansey MG, Paumier KL, Kanaan NM, Fischer DL, Polinski NK, Barth OL, Howe JW, Vaikath NN, Majbour NK, El-Agnaf OMA, Sortwell CE. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation 2018; 15:129. [PMID: 29716614 PMCID: PMC5930695 DOI: 10.1186/s12974-018-1171-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.
Collapse
Affiliation(s)
- Megan F Duffy
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Joseph R Patterson
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Christopher J Kemp
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katrina L Paumier
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - D Luke Fischer
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
- MD/PhD Program, Michigan State University, Grand Rapids, MI, USA
| | - Nicole K Polinski
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
| | - Olivia L Barth
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Jacob W Howe
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Omar M A El-Agnaf
- Life Sciences Division, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA.
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA.
| |
Collapse
|
70
|
Tarutani A, Arai T, Murayama S, Hisanaga SI, Hasegawa M. Potent prion-like behaviors of pathogenic α-synuclein and evaluation of inactivation methods. Acta Neuropathol Commun 2018; 6:29. [PMID: 29669601 PMCID: PMC5907316 DOI: 10.1186/s40478-018-0532-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The concept that abnormal protein aggregates show prion-like propagation between cells has been considered to explain the onset and progression of many neurodegenerative diseases. Indeed, both synthetic amyloid-like fibrils and pathogenic proteins extracted from patients’ brains induce self-templated amplification and cell-to-cell transmission in vitro and in vivo. However, it is unclear whether exposure to exogenous prion-like proteins can potentially cause these diseases in humans. Here, we investigated in detail the prion-like seeding activities of several kinds of pathogenic α-synuclein (α-syn), including synthetic fibrils and detergent-insoluble fractions extracted from brains of patients with α-synucleinopathies. Exposure to synthetic α-syn fibrils at concentrations above 100 pg/mL caused seeded aggregation of α-syn in SH-SY5Y cells, and seeded aggregation was also observed in C57BL/6 J mice after intracerebral inoculation of at least 0.1 μg/animal. α-Syn aggregates extracted from brains of multiple system atrophy (MSA) patients showed higher seeding activity than those extracted from patients with dementia with Lewy bodies (DLB), and their potency was similar to that of synthetic α-syn fibrils. We also examined the effects of various methods that have been reported to inactivate abnormal prion proteins (PrPSc), including autoclaving at various temperatures, exposure to sodium dodecyl sulfate (SDS), and combined treatments. The combination of autoclaving and 1% SDS substantially reduced the seeding activities of synthetic α-syn fibrils and α-syn aggregates extracted from MSA brains. However, single treatment with 1% SDS or generally used sterilization conditions proved insufficient to prevent accumulation of pathological α-syn. In conclusion, α-syn aggregates derived from MSA patients showed a potent prion-like seeding activity, which could be efficiently reduced by combined use of SDS and autoclaving.
Collapse
|
71
|
Manfredsson FP, Luk KC, Benskey MJ, Gezer A, Garcia J, Kuhn NC, Sandoval IM, Patterson JR, O'Mara A, Yonkers R, Kordower JH. Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiol Dis 2018; 112:106-118. [PMID: 29341898 DOI: 10.1016/j.nbd.2018.01.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Alpha-Synuclein (α-syn) is by far the most highly vetted pathogenic and therapeutic target in Parkinson's disease. Aggregated α-syn is present in sporadic Parkinson's disease, both in the central nervous system (CNS) and peripheral nervous system (PNS). The enteric division of the PNS is of particular interest because 1) gastric dysfunction is a key clinical manifestation of Parkinson's disease, and 2) Lewy pathology in myenteric and submucosal neurons of the enteric nervous system (ENS) has been referred to as stage zero in the Braak pathological staging of Parkinson's disease. The presence of Lewy pathology in the ENS and the fact that patients often experience enteric dysfunction before the onset of motor symptoms has led to the hypothesis that α-syn pathology starts in the periphery, after which it spreads to the CNS via interconnected neural pathways. Here we sought to directly test this hypothesis in rodents and non-human primates (NHP) using two distinct models of α-syn pathology: the α-syn viral overexpression model and the preformed fibril (PFF) model. Subjects (rat and NHP) received targeted enteric injections of PFFs or adeno-associated virus overexpressing the Parkinson's disease associated A53T α-syn mutant. Rats were evaluated for colonic motility monthly and sacrificed at 1, 6, or 12 months, whereas NHPs were sacrificed 12 months following inoculation, after which the time course and spread of pathology was examined in all animals. Rats exhibited a transient GI phenotype that resolved after four months. Minor α-syn pathology was observed in the brainstem (dorsal motor nucleus of the vagus and locus coeruleus) 1 month after PFF injections; however, no pathology was observed at later time points (nor in saline or monomer treated animals). Similarly, a histopathological analysis of the NHP brains revealed no pathology despite the presence of robust α-syn pathology throughout the ENS which persisted for the entirety of the study (12 months). Our study shows that induction of α-syn pathology in the ENS is sufficient to induce GI dysfunction. Moreover, our data suggest that sustained spread of α-syn pathology from the periphery to the CNS and subsequent propagation is a rare event, and that the presence of enteric α-syn pathology and dysfunction may represent an epiphenomenon.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Mercy Health Saint Mary's, Grand Rapids, MI, United States.
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Matthew J Benskey
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Aysegul Gezer
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; DO/PHD Physician Scientist Training Program, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Joanna Garcia
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Nathan C Kuhn
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Joseph R Patterson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Alana O'Mara
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Undergraduate Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Reid Yonkers
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Undergraduate Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Jeffrey H Kordower
- Dept. of Neurological Science, Rush University Medical Center, Chicago, IL, United States; Center on Neurodegeneration, Van Andel Research Institute, Grand Rapids, MI, United States
| |
Collapse
|
72
|
Chan DKY, Xu YH, Chan LKM, Braidy N, Mellick GD. Mini-review on initiatives to interfere with the propagation and clearance of alpha-synuclein in Parkinson's disease. Transl Neurodegener 2017; 6:33. [PMID: 29270291 PMCID: PMC5738184 DOI: 10.1186/s40035-017-0104-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 11/24/2022] Open
Abstract
In this mini-review, we summarize recent findings relating to the prion-like propagation of α-synuclein (α-syn) and the development of novel therapeutic strategies to target synucleinopathy in Parkinson’s disease (PD). We link the Braak’s staging hypothesis of PD with the recent evidence from in-vivo and in-vitro studies for the prion-like cell-to-cell propagation of α-syn (via exocytosis and endocytosis). The classical accumulation of aggregated α-syn in PD may result from an increased production or a failure in the mechanisms of clearance of α-syn. We discuss novel agents, currently in clinical trial for PD including the ones that impact the aggregation of α-syn and others that interfere with α-syn endocytosis as a means to target the progression of the disease.
Collapse
Affiliation(s)
- Daniel Kam Yin Chan
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW 2200 Australia.,Ingham Institute, Liverpool, NSW 2170 Australia.,University of New South Wales, Faculty of Medicine, Sydney, Australia
| | - Ying Hua Xu
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW 2200 Australia.,Ingham Institute, Liverpool, NSW 2170 Australia.,University of New South Wales, Faculty of Medicine, Sydney, Australia
| | - Luke Kar Man Chan
- Faculty of Medical Science, Griffith University, Nathan, QLD Australia
| | - Nady Braidy
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW 2200 Australia.,Ingham Institute, Liverpool, NSW 2170 Australia.,University of New South Wales, Faculty of Medicine, Sydney, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia
| |
Collapse
|
73
|
Afitska K, Fucikova A, Shvadchak VV, Yushchenko DA. Modification of C Terminus Provides New Insights into the Mechanism of α-Synuclein Aggregation. Biophys J 2017; 113:2182-2191. [PMID: 28939194 DOI: 10.1016/j.bpj.2017.08.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022] Open
Abstract
Aggregation of neuronal protein α-synuclein leads to the formation of amyloid fibrils, which are associated with the development of Parkinson's disease. The mechanism of α-synuclein pathology is not fully understood and is a subject of active research in the field. To tackle this problem, the fusions of fluorescent proteins to α-synuclein C-terminus are often used in cellular and animal studies. The effects induced by such α-synuclein sequence extension on α-synuclein aggregation propensity are, however, not systematically examined despite the evidence that the negatively charged C-terminus plays a critical role in the regulation of α-synuclein aggregation. In this work, we investigated how the charge and length variations of the C-terminus affect the aggregation propensity of α-synuclein. To address these questions, we prepared mutants of α-synuclein carrying additional moieties of different charge and length at the protein C-terminus. We determined the rates of two different aggregation stages (primary nucleation and elongation) based on a thioflavin T kinetic assay. We observed that all mutants bearing neutrally charged moieties of different length fibrilized slower than wild-type α-synuclein. The primary nucleation and elongation rates strongly decreased with increase of the C-terminal extension length. Meanwhile, charge variation of the C-terminus significantly changed the rate of α-synuclein nucleation, but did not markedly affect the rate of fibril elongation. Our data demonstrate that both the charge and length of the C-terminus play an important role at the stage of initial fibril formation, but the stage of fibril elongation is affected mainly by the length of C-terminal extension. In addition, our results suggest that there are at least two steps of incorporation of α-synuclein monomers into the amyloid fibril: namely, the initial monomer binding to the fibril end (charge-dependent, relatively fast), and the subsequent conformational change of the protein (charge-independent, relatively slow, and thus the rate-limiting step).
Collapse
Affiliation(s)
- Kseniia Afitska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anna Fucikova
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Volodymyr V Shvadchak
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dmytro A Yushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
74
|
Matsui H, Matsui N. Cerebrospinal fluid injection into adult zebrafish for disease research. J Neural Transm (Vienna) 2017; 124:1627-1633. [DOI: 10.1007/s00702-017-1787-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
|
75
|
Abstract
Cell-to-cell transmission of intracellular protein aggregates is considered a central event in many neurodegenerative diseases, but little is known about the underlying molecular mechanisms. A new study employs fluorescence quenching to examine the fate of α-synuclein, a key molecule in the pathology of Parkinson's disease and related disorders, in primary cultured neurons, finding that endocytosis and lysosomal processing of exogenous fibrils may explain the transmission of α-synuclein pathology.
Collapse
Affiliation(s)
- Masato Hasegawa
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Genjiro Suzuki
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
76
|
Abdelmotilib H, Maltbie T, Delic V, Liu Z, Hu X, Fraser KB, Moehle MS, Stoyka L, Anabtawi N, Krendelchtchikova V, Volpicelli-Daley LA, West A. α-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic Neurodegeneration. Neurobiol Dis 2017; 105:84-98. [PMID: 28576704 DOI: 10.1016/j.nbd.2017.05.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 01/26/2023] Open
Abstract
Proteinaceous inclusions in neurons, composed primarily of α-synuclein, define the pathology in several neurodegenerative disorders. Neurons can internalize α-synuclein fibrils that can seed new inclusions from endogenously expressed α-synuclein. The factors contributing to the spread of pathology and subsequent neurodegeneration are not fully understood, and different compositions and concentrations of fibrils have been used in different hosts. Here, we systematically vary the concentration and length of well-characterized α-synuclein fibrils and determine their relative ability to induce inclusions and neurodegeneration in different hosts (primary neurons, C57BL/6J and C3H/HeJ mice, and Sprague Dawley rats). Using dynamic-light scattering profiles and other measurements to determine fibril length and concentration, we find that femptomolar concentrations of fibrils are sufficient to induce robust inclusions in primary neurons. However, a narrow and non-linear dynamic range characterizes fibril-mediated inclusion induction in axons and the soma. In mice, the C3H/HeJ strain is more sensitive to fibril exposures than C57BL/6J counterparts, with more inclusions and dopaminergic neurodegeneration. In rats, injection of fibrils into the substantia nigra pars compacta (SNpc) results in similar inclusion spread and dopaminergic neurodegeneration as injection of the fibrils into the dorsal striatum, with prominent inclusion spread to the amygdala and several other brain areas. Inclusion spread, particularly from the SNpc to the striatum, positively correlates with dopaminergic neurodegeneration. These results define biophysical characteristics of α-synuclein fibrils that induce inclusions and neurodegeneration both in vitro and in vivo, and suggest that inclusion spread in the brain may be promoted by a loss of neurons.
Collapse
Affiliation(s)
- Hisham Abdelmotilib
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler Maltbie
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vedad Delic
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiyong Liu
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xianzhen Hu
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle B Fraser
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark S Moehle
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lindsay Stoyka
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nadia Anabtawi
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Valentina Krendelchtchikova
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew West
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
77
|
Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. Pharmacol Ther 2017; 172:22-33. [DOI: 10.1016/j.pharmthera.2016.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Shimozawa A, Ono M, Takahara D, Tarutani A, Imura S, Masuda-Suzukake M, Higuchi M, Yanai K, Hisanaga SI, Hasegawa M. Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathol Commun 2017; 5:12. [PMID: 28148299 PMCID: PMC5289012 DOI: 10.1186/s40478-017-0413-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/18/2017] [Indexed: 01/09/2023] Open
Abstract
α-Synuclein is a defining, key component of Lewy bodies and Lewy neurites in Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), as well as glial cytoplasmic inclusions in multiple system atrophy (MSA). The distribution and spreading of these pathologies are closely correlated with disease progression. Recent studies have revealed that intracerebral injection of synthetic α-synuclein fibrils or pathological α-synuclein prepared from DLB or MSA brains into wild-type or transgenic animal brains induced prion-like propagation of phosphorylated α-synuclein pathology. The common marmoset is a very small primate that is expected to be a useful model of human diseases. Here, we show that intracerebral injection of synthetic α-synuclein fibrils into adult wild-type marmoset brains (caudate nucleus and/or putamen) resulted in spreading of abundant α-synuclein pathologies, which were positive for various antibodies to α-synuclein, including phospho Ser129-specific antibody, anti-ubiquitin and anti-p62 antibodies, at three months after injection. Remarkably, robust Lewy body-like inclusions were formed in tyrosine hydroxylase (TH)-positive neurons in these marmosets, strongly suggesting the retrograde spreading of abnormal α-synuclein from striatum to substantia nigra. Moreover, a significant decrease in the numbers of TH-positive neurons was observed in the injection-side of the brain, where α-synuclein inclusions were deposited. Furthermore, most of the α-synuclein inclusions were positive for 1-fluoro-2,5-bis (3-carboxy-4-hydroxystyryl) benzene (FSB) and thioflavin-S, which are dyes widely used to visualize the presence of amyloid. Thus, injection of synthetic α-synuclein fibrils into brains of non-transgenic primates induced PD-like α-synuclein pathologies within only 3 months after injection. Finally, we provide evidence indicating that neurons with abnormal α-synuclein inclusions may be cleared by microglial cells. This is the first marmoset model for α-synuclein propagation. It should be helpful in studies to elucidate mechanisms of disease progression and in development and evaluation of disease-modifying drugs for α-synucleinopathies.
Collapse
|
79
|
The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy. Neural Plast 2017; 2017:5012129. [PMID: 28133550 PMCID: PMC5241463 DOI: 10.1155/2017/5012129] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration.
Collapse
|