51
|
Sarohi V, Srivastava S, Basak T. Comprehensive Mapping and Dynamics of Site-Specific Prolyl-Hydroxylation, Lysyl-Hydroxylation and Lysyl O-Glycosylation of Collagens Deposited in ECM During Zebrafish Heart Regeneration. Front Mol Biosci 2022; 9:892763. [PMID: 35782869 PMCID: PMC9245515 DOI: 10.3389/fmolb.2022.892763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Cardiac fibrosis-mediated heart failure (HF) is one of the major forms of end-stage cardiovascular diseases (CVDs). Cardiac fibrosis is an adaptive response of the myocardium upon any insult/injury. Excessive deposition of collagen molecules in the extracellular matrix (ECM) is the hallmark of fibrosis. This fibrotic response initially protects the myocardium from ventricular rupture. Although in mammals this fibrotic response progresses towards scar-tissue formation leading to HF, some fishes and urodeles have mastered the art of cardiac regeneration following injury-mediated fibrotic response. Zebrafish have a unique capability to regenerate the myocardium after post-amputation injury. Following post-amputation, the ECM of the zebrafish heart undergoes extensive remodeling and deposition of collagen. Being the most abundant protein of ECM, collagen plays important role in the assembly and cell-matrix interactions. However, the mechanism of ECM remodeling is not well understood. Collagen molecules undergo heavy post-translational modifications (PTMs) mainly hydroxylation of proline, lysine, and glycosylation of lysine during biosynthesis. The critical roles of these PTMs are emerging in several diseases, embryonic development, cell behavior regulation, and cell-matrix interactions. The site-specific identification of these collagen PTMs in zebrafish heart ECM is not known. As these highly modified peptides are not amenable to mass spectrometry (MS), the site-specific identification of these collagen PTMs is challenging. Here, we have implemented our in-house proteomics analytical pipeline to analyze two ECM proteomics datasets (PXD011627, PXD010092) of the zebrafish heart during regeneration (post-amputation). We report the first comprehensive site-specific collagen PTM map of zebrafish heart ECM. We have identified a total of 36 collagen chains (19 are reported for the first time here) harboring a total of 95 prolyl-3-hydroxylation, 108 hydroxylysine, 29 galactosyl-hydroxylysine, and 128 glucosylgalactosyl-hydroxylysine sites. Furthermore, we comprehensively map the three chains (COL1A1a, COL1A1b, and COL1A2) of collagen I, the most abundant protein in zebrafish heart ECM. We achieved more than 95% sequence coverage for all the three chains of collagen I. Our analysis also revealed the dynamics of prolyl-3-hydroxylation occupancy oscillations during heart regeneration at these sites. Moreover, quantitative site-specific analysis of lysine-O-glycosylation microheterogeneity during heart regeneration revealed a significant (p < 0.05) elevation of site-specific (K1017) glucosylgalactosyl-hydroxylysine on the col1a1a chain. Taken together, these site-specific PTM maps and the dynamic changes of site-specific collagen PTMs in ECM during heart regeneration will open up new avenues to decode ECM remodeling and may lay the foundation to tinker the cardiac regeneration process with new approaches.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
- BioX Center, IIT-Mandi, Mandi, India
| | - Shriya Srivastava
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
- BioX Center, IIT-Mandi, Mandi, India
- *Correspondence: Trayambak Basak,
| |
Collapse
|
52
|
Xu J, Luo X, Zhang Y, Gao J, Huang CC, Bai X, Zhang G. Extraction and characterization of bovine collagen Type V and its effects on cell behaviors. Regen Biomater 2022; 9:rbac028. [PMID: 35719205 PMCID: PMC9201972 DOI: 10.1093/rb/rbac028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
Collagen Type V (Col. V) plays an essential role in cell behaviors and has attracted increasing attention in recent years. High-purity Col. V is needed for evaluating its biological properties. In this research, the enzymatic hydrolysis process was combined with ultrafiltration to purify Col. V from the bovine cornea. The purity of Col. V was determined to be above 90% by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography methods. The effect of Col. V on cell behaviors was evaluated. The circular dichroism spectroscopy results demonstrated that the extracted Col. V exhibited a complete triple helix structure. SDS-PAGE suggested that the molecular weight of Col. V was 440 kDa. The self-assembly experiment revealed that the proportion of Col. V in the collagen mixture can affect the Col. I fiber diameter. The cell culture results implied that Col. V can inhibit fibroblasts (L929) proliferation. The L929 showed maximum mobility when the addition of Col. V was 30%. Thus, Col. V has the effect of inhibiting L929 proliferation and promoting migration. The high-purity Col. V provides useful information for further understanding its biological implications.
Collapse
Affiliation(s)
- Jun Xu
- College of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
- PARSD Biomedical Material Research Center (Changzhou), Changzhou 213176, China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Ching-Cheng Huang
- PARSD Biomedical Material Research Center (Changzhou), Changzhou 213176, China
- Department of Biomedical Engineering, Ming-Chuan University, 32033 Taiwan, China
| | - Xinpeng Bai
- College of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
- PARSD Biomedical Material Research Center (Changzhou), Changzhou 213176, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| |
Collapse
|
53
|
Okuno R, Inoue Y, Hasebe Y, Igarashi T, Kawagishi-Hotta M, Yamada T, Hasegawa S. Genome-wide association studies in Japanese women identified genetic loci associated with wrinkles and sagging. Exp Dermatol 2022; 31:1411-1420. [PMID: 35587111 DOI: 10.1111/exd.14612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Wrinkles and sagging are caused by various factors, such as ultraviolet rays; however, recent findings demonstrated that some individuals are genetically predisposed to these phenotypes of skin aging. The contribution of single nucleotide polymorphisms (SNPs) to the development of wrinkles and sagging has been demonstrated in genome-wide association studies (GWAS). However, these findings were mainly obtained from European and Chinese populations. Limited information is currently available on the involvement of SNPs in the development of wrinkles and sagging in a Japanese population. Therefore, we herein performed GWAS on wrinkles at the outer corners of the eyes and nasolabial folds in 1041 Japanese women. The results obtained revealed that 5 SNPs (19p13.2: rs2303098 (p = 3.39×10-8 ), rs56391955 (p = 3.39×10-8 ), rs67560822 (p = 3.50×10-8 ), rs889126 (p = 3.78×10-8 ), rs57490083 (p = 3.99×10-8 )) located within the COL5A3 gene associated with wrinkles at the outer corners of the eyes. Regarding nasolabial folds, 8q24.11 (rs4876369; p = 1.05×10-7 , rs6980503; p = 1.25×10-7 , rs61027543; p = 1.25×10-7 , rs16889363; p = 1.38×10-7 ) was suggested to be associated with RAD21 gene expression. These SNPs have not been reported in other populations, and were first found in Japanese women population. These SNPs may be used as markers to examine the genetic predisposition of individuals to wrinkles and sagging.
Collapse
Affiliation(s)
- Ryosuke Okuno
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshio Igarashi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
| | - Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Aichi, Japan.,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
54
|
Machol K, Polak U, Weisz-Hubshman M, Song IW, Chen S, Jiang MM, Chen-Evenson Y, Weis MAE, Keene DR, Eyre DR, Lee BH. Molecular alterations due to Col5a1 haploinsufficiency in a mouse model of classic Ehlers-Danlos syndrome. Hum Mol Genet 2022; 31:1325-1335. [PMID: 34740257 PMCID: PMC9029232 DOI: 10.1093/hmg/ddab323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023] Open
Abstract
Type V collagen is a regulatory fibrillar collagen essential for type I collagen fibril nucleation and organization and its deficiency leads to structurally abnormal extracellular matrix (ECM). Haploinsufficiency of the Col5a1 gene encoding α(1) chain of type V collagen is the primary cause of classic Ehlers-Danlos syndrome (EDS). The mechanisms by which this initial insult leads to the spectrum of clinical presentation are not fully understood. Using transcriptome analysis of skin and Achilles tendons from Col5a1 haploinsufficient (Col5a1+/-) mice, we recognized molecular alterations associated with the tissue phenotypes. We identified dysregulation of ECM components including thrombospondin-1, lysyl oxidase, and lumican in the skin of Col5a1+/- mice when compared with control. We also identified upregulation of transforming growth factor β1 (Tgf-β) in serum and increased expression of pSmad2 in skin from Col5a1+/- mice, suggesting Tgf-β dysregulation is a contributor to abnormal wound healing and atrophic scarring seen in classic EDS. Together, these findings support altered matrix to cell signaling as a component of the pathogenesis of the tissue phenotype in classic EDS and point out potential downstream signaling pathways that may be targeted for the treatment of this disease.
Collapse
Affiliation(s)
- Keren Machol
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Urszula Polak
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen-Evenson
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Mary Ann E Weis
- Department of Orthopedics and Sports Medicine, University of Washington Seattle, WA 98195, USA
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR 97239, USA
| | - David R Eyre
- Department of Orthopedics and Sports Medicine, University of Washington Seattle, WA 98195, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| |
Collapse
|
55
|
Thorlacius-Ussing J, Jensen C, Madsen EA, Nissen NI, Manon-Jensen T, Chen IM, Johansen JS, Diab HMH, Jørgensen LN, Karsdal MA, Willumsen N. Type XX Collagen Is Elevated in Circulation of Patients with Solid Tumors. Int J Mol Sci 2022; 23:4144. [PMID: 35456962 PMCID: PMC9032593 DOI: 10.3390/ijms23084144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the tumor microenvironment, the extracellular matrix (ECM) has been recognized as an important part of cancer development. The dominant ECM proteins are the 28 types of collagens, each with a unique function in tissue architecture. Type XX collagen, however, is poorly characterized, and little is known about its involvement in cancer. We developed an ELISA quantifying type XX collagen, named PRO-C20, using a monoclonal antibody raised against the C-terminus. PRO-C20 and PRO-C1, an ELISA targeting the N-terminal pro-peptide of type I collagen, was measured in sera of 219 patients with various solid cancer types and compared to sera levels of 33 healthy controls. PRO-C20 was subsequently measured in a separate cohort comprising 36 patients with pancreatic ductal adenocarcinoma (PDAC) and compared to 20 healthy controls and 11 patients with chronic pancreatitis. PRO-C20 was significantly elevated in all cancers tested: bladder, breast, colorectal, head and neck, kidney, lung, melanoma, ovarian, pancreatic, prostate, and stomach cancer (p < 0.01−p < 0.0001). PRO-C1 was only elevated in patients with ovarian cancer. PRO-C20 could discriminate between patients and healthy controls with AUROC values ranging from 0.76 to 0.92. Elevated levels were confirmed in a separate cohort of patients with PDAC (p < 0.0001). High PRO-C20 levels (above 2.57 nM) were predictive of poor survival after adjusting for the presence of metastasis, age, and sex (HR: 4.25, 95% CI: 1.52−11.9, p-value: 0.006). Circulating type XX collagen is elevated in sera of patients with various types of cancer and has prognostic value in PDAC. If validated, PRO-C20 may be a novel biomarker for patients with solid tumors and can help understand the ECM biology of cancer.
Collapse
Affiliation(s)
- Jeppe Thorlacius-Ussing
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christina Jensen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| | - Emilie A. Madsen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| | - Neel I. Nissen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), 2200 Copenhagen, Denmark
| | - Tina Manon-Jensen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (I.M.C.); (J.S.J.)
| | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (I.M.C.); (J.S.J.)
- Department of Medicine, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Hadi M. H. Diab
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark;
| | - Lars N. Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark;
| | - Morten A. Karsdal
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| | - Nicholas Willumsen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| |
Collapse
|
56
|
Fett J, Dimori M, Carroll JL, Morello R. Haploinsufficiency of Col5a1 causes intrinsic lung and respiratory changes in a mouse model of classical Ehlers-Danlos syndrome. Physiol Rep 2022; 10:e15275. [PMID: 35439366 PMCID: PMC9017971 DOI: 10.14814/phy2.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are inherited connective tissue diseases with primary manifestations that affect the skin and the musculoskeletal system. However, the effects of EDS on the respiratory system are not well understood and are described in the literature as sporadic case reports. We performed histological, histomorphometric, and the first in-depth characterization of respiratory system function in a mouse model of classical EDS (cEDS) with haploinsufficiency of type V collagen (Col5a1+/-). In young adult male and female mice, lung histology showed reduced alveolar density, reminiscent of emphysematous-like changes. Respiratory mechanics showed a consistent increase in respiratory system compliance accompanied by increased lung volumes in Col5a1+/- compared to control mice. Flow-volume curves, generated to mimic human spirometry measurements, demonstrated larger volumes throughout the expiratory limb of the flow volume curves in Col5a1+/- compared to controls. Some parameters showed a sexual dimorphism with significant changes in male but not female mice. Our study identified a clear respiratory phenotype in the Col5a1+/- mouse model of EDS and indicated that intrinsic respiratory and lung changes may exist in cEDS patients. Their potential impact on the respiratory function during lung infections, other respiratory disease processes, or insults may be significant and justify further clinical evaluation.
Collapse
Affiliation(s)
- Jordan Fett
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Milena Dimori
- Department of Physiology & Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - John L. Carroll
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Physiology & Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Roy Morello
- Department of Physiology & Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Orthopaedic SurgeryUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Division of GeneticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
57
|
Mollo N, Aurilia M, Scognamiglio R, Zerillo L, Cicatiello R, Bonfiglio F, Pagano P, Paladino S, Conti A, Nitsch L, Izzo A. Overexpression of the Hsa21 Transcription Factor RUNX1 Modulates the Extracellular Matrix in Trisomy 21 Cells. Front Genet 2022; 13:824922. [PMID: 35356434 PMCID: PMC8960062 DOI: 10.3389/fgene.2022.824922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Down syndrome is a neurodevelopmental disorder frequently characterized by other developmental defects, such as congenital heart disease. Analysis of gene expression profiles of hearts from trisomic fetuses have shown upregulation of extracellular matrix (ECM) genes. The aim of this work was to identify genes on chromosome 21 potentially responsible for the upregulation of ECM genes and to pinpoint any functional consequences of this upregulation. By gene set enrichment analysis of public data sets, we identified the transcription factor RUNX1, which maps to chromosome 21, as a possible candidate for regulation of ECM genes. We assessed that approximately 80% of ECM genes overexpressed in trisomic hearts have consensus sequences for RUNX1 in their promoters. We found that in human fetal fibroblasts with chromosome 21 trisomy there is increased expression of both RUNX1 and several ECM genes, whether located on chromosome 21 or not. SiRNA silencing of RUNX1 reduced the expression of 11 of the 14 ECM genes analyzed. In addition, collagen IV, an ECM protein secreted in high concentrations in the culture media of trisomic fibroblasts, was modulated by RUNX1 silencing. Attenuated expression of RUNX1 increased the migratory capacity of trisomic fibroblasts, which are characterized by a reduced migratory capacity compared to euploid controls.
Collapse
Affiliation(s)
- Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Miriam Aurilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Roberta Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucrezia Zerillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Ferdinando Bonfiglio
- CEINGE-Advanced Biotechnologies, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Pasqualina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- *Correspondence: Antonella Izzo,
| |
Collapse
|
58
|
Xu J, Xing F, Luo X, Gao J, Zhang Y, Zhang G, Bai X, Huang CC. Quantitation of Collagen Type V in Tissues by High-Performance Liquid Chromatography Coupled to Mass Spectrometry. Tissue Eng Part C Methods 2022; 28:95-103. [PMID: 35172620 DOI: 10.1089/ten.tec.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A method for quantifying the bovine collagen type V (Col. V) was established based on high-performance liquid chromatography coupled to mass spectrometry by the marker peptide external standard. High-purity Col. V was extracted by the acid-enzyme hydrolysis process, and the marker peptide of Col. V was identified by LCQ mass spectrometry as GPAGPMGLTGR. A broad linear range (0.01-5.00 μg/mL) with a correlation coefficient of 0.9984 was achieved, and the limit of detection and limit of quantification were found to be 3.00 × 10-3 and 6.25 × 10-3 μg/mL, respectively. The method precision was 1.49%. The recovery rate was determined as 97.1-109.6% with a relative standard deviation less than 5%. The proposed method was successfully applied for the determination of Col. V contents in the bovine heart, lung, and cornea, which were 0.72 ± 0.01%, 0.23 ± 0.01%, and 2.89 ± 0.00%, respectively. The results show that the proposed method is more suitable for measuring the content of Col. V in tissue samples compared with the enzyme-linked immunosorbent assay. The marker peptide method has high accuracy and great reproducibility, and will lay a foundation for the extraction and application of Col. V. Impact statement The accurate quantitative method for collagen type V (Col. V) is particularly important in scientific research, disease diagnosis and treatment, and industrial production. In this article, we proposed a high-performance liquid chromatography coupled to mass spectrometry method based on the external standard marker peptide to quantify bovine Col. V. This method shows a higher accuracy and recovery rate than enzyme-linked immunosorbent assay (ELISA), indicating that it is more suitable for measuring the content of Col. V in tissue samples than ELISA. The establishment of this method has laid a solid foundation for the extraction and application of Col. V.
Collapse
Affiliation(s)
- Jun Xu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou, China
- PARSD Biomedical Material Research Center (Changzhou), Changzhou, China
| | - Fangyu Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Guifeng Zhang
- PARSD Biomedical Material Research Center (Changzhou), Changzhou, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Xinpeng Bai
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou, China
- PARSD Biomedical Material Research Center (Changzhou), Changzhou, China
| | - Ching-Cheng Huang
- PARSD Biomedical Material Research Center (Changzhou), Changzhou, China
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, China
| |
Collapse
|
59
|
Slimak L, Zanolli C, Higham T, Frouin M, Schwenninger JL, Arnold LJ, Demuro M, Douka K, Mercier N, Guérin G, Valladas H, Yvorra P, Giraud Y, Seguin-Orlando A, Orlando L, Lewis JE, Muth X, Camus H, Vandevelde S, Buckley M, Mallol C, Stringer C, Metz L. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. SCIENCE ADVANCES 2022; 8:eabj9496. [PMID: 35138885 PMCID: PMC8827661 DOI: 10.1126/sciadv.abj9496] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Determining the extent of overlap between modern humans and other hominins in Eurasia, such as Neanderthals and Denisovans, is fundamental to understanding the nature of their interactions and what led to the disappearance of archaic hominins. Apart from a possible sporadic pulse recorded in Greece during the Middle Pleistocene, the first settlements of modern humans in Europe have been constrained to ~45,000 to 43,000 years ago. Here, we report hominin fossils from Grotte Mandrin in France that reveal the earliest known presence of modern humans in Europe between 56,800 and 51,700 years ago. This early modern human incursion in the Rhône Valley is associated with technologies unknown in any industry of that age outside Africa or the Levant. Mandrin documents the first alternating occupation of Neanderthals and modern humans, with a modern human fossil and associated Neronian lithic industry found stratigraphically between layers containing Neanderthal remains associated with Mousterian industries.
Collapse
Affiliation(s)
- Ludovic Slimak
- CNRS, UMR 5608, TRACES, Université de Toulouse Jean Jaurès, 5 Allées Antonio Machado, 31058 Toulouse Cedex 9, France
- Corresponding author. (L.S.); (C.Z.)
| | - Clément Zanolli
- Université de Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France
- Corresponding author. (L.S.); (C.Z.)
| | - Tom Higham
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
- Department of Evolutionary Anthropology, University of Vienna, University Biology Building, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Marine Frouin
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
- Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences Building, Stony Brook, NY 11794-2100, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Jean-Luc Schwenninger
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
| | - Lee J. Arnold
- School of Physical Sciences, Environment Institute, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Martina Demuro
- School of Physical Sciences, Environment Institute, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Katerina Douka
- Department of Evolutionary Anthropology, University of Vienna, University Biology Building, Djerassiplatz 1, A-1030 Vienna, Austria
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische, Str. 10, 07745 Jena, Germany
| | - Norbert Mercier
- CNRS, UMR 5060, Institut de Recherche sur les Archéomatériaux and Centre de Recherche en Physique Appliquée à l’Archéologie (CRP2A), Maison de l’Archéologie, Université Bordeaux Montaigne, 33607 Pessac, France
| | - Gilles Guérin
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212 CEA CNRS UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Hélène Valladas
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212 CEA CNRS UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Pascale Yvorra
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l’Homme, BP 647, 5 rue du Château de l’Horloge, F-13094, Aix-en-Provence Cedex 2, France
| | - Yves Giraud
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l’Homme, BP 647, 5 rue du Château de l’Horloge, F-13094, Aix-en-Provence Cedex 2, France
| | | | - Ludovic Orlando
- CNRS, UMR 5288, CAGT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Jason E. Lewis
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | | | - Hubert Camus
- PROTEE-EXPERT, 4 rue des Aspholdèles, 34750 Villeneuve-lès-Maguelone, France
| | - Ségolène Vandevelde
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212 CEA CNRS UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Université Paris 1–Panthéon-Sorbonne, Équipe Archéologies Environnementales, UMR 7041, ArScAn, Équipe Archéologies Environnementales, 21 allée de l’Université, 92023 Nanterre Cedex, France
| | - Mike Buckley
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Carolina Mallol
- Archaeological Micromorphology and Biomarkers Laboratory (AMBI Lab), Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Geografía e Historia, UDI Prehistoria, Arqueología e Historia Antigua, Facultad de Geografía e Historia, Universidad de La Laguna, Tenerife, Spain
| | - Chris Stringer
- Centre for Human Evolution Research (CHER), Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Laure Metz
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l’Homme, BP 647, 5 rue du Château de l’Horloge, F-13094, Aix-en-Provence Cedex 2, France
- College of Liberal Arts and Sciences, University of Connecticut, 215 Glenbrook Road, U-4098, Storrs, CT 06269-4098, USA
| |
Collapse
|
60
|
The Ehlers–Danlos Syndromes against the Backdrop of Inborn Errors of Metabolism. Genes (Basel) 2022; 13:genes13020265. [PMID: 35205310 PMCID: PMC8872221 DOI: 10.3390/genes13020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The Ehlers–Danlos syndromes are a group of multisystemic heritable connective tissue disorders with clinical presentations that range from multiple congenital malformations, over adolescent-onset debilitating or even life-threatening complications of connective tissue fragility, to mild conditions that remain undiagnosed in adulthood. To date, thirteen different EDS types have been recognized, stemming from genetic defects in 20 different genes. While initial biochemical and molecular analyses mainly discovered defects in genes coding for the fibrillar collagens type I, III and V or their modifying enzymes, recent discoveries have linked EDS to defects in non-collagenous matrix glycoproteins, in proteoglycan biosynthesis and in the complement pathway. This genetic heterogeneity explains the important clinical heterogeneity among and within the different EDS types. Generalized joint hypermobility and skin hyperextensibility with cutaneous fragility, atrophic scarring and easy bruising are defining manifestations of EDS; however, other signs and symptoms of connective tissue fragility, such as complications of vascular and internal organ fragility, orocraniofacial abnormalities, neuromuscular involvement and ophthalmological complications are variably present in the different types of EDS. These features may help to differentiate between the different EDS types but also evoke a wide differential diagnosis, including different inborn errors of metabolism. In this narrative review, we will discuss the clinical presentation of EDS within the context of inborn errors of metabolism, give a brief overview of their underlying genetic defects and pathophysiological mechanisms and provide a guide for the diagnostic approach.
Collapse
|
61
|
The Hypoxia-Related Gene COL5A1 Is a Prognostic and Immunological Biomarker for Multiple Human Tumors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6419695. [PMID: 35082969 PMCID: PMC8786464 DOI: 10.1155/2022/6419695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 01/19/2023]
Abstract
Background Collagen type V alpha 1 chain (COL5A1) is a hypoxia-related gene (a collagen family protein) and participates in the formation of the extracellular matrix. Although some evidence supports a significant role for COL5A1 in the progression of several cancers, a pan-cancer analysis of COL5A1 is not currently available. Herein, we aimed to assess the prognostic value of COL5A1 in 33 human cancers and to investigate its underlying immunological function. Methods Through multiple bioinformatics methods, we analyzed the data from Oncomine, TCGA, CCLE, HPA, DNMIVD, and cBioPortal database to explore the potential underlying carcinogenic effect of COL5A1, including the relevance of COL5A1 to the outcome, DNA methylation, tumor microenvironment, immune cells infiltration, and drug sensitivity in 33 human cancers. The effects of COL5A1 on glioma cell proliferation, migration, and invasion were verified in cellular experiments. Results Our findings indicated that COL5A1 was expressed at high levels in 13 cancers and was negatively related to the prognosis of 11 cancers. Additionally, COL5A1 was coexpressed with genes encoding the major histocompatibility complex, immune activators, immune suppressors, chemokines, chemokine receptors, mismatch repair genes, and immune checkpoints. We also identified different roles for COL5A1 in the immunocyte infiltration in different cancers. The correlation between COL5A1 and drug sensitivity was found in several cancers. COL5A1 potentially influenced the tumor progression through immune-related pathways, negative regulation of immune system processes, chemokine signaling pathways, JAK-STAT pathways, T cell receptor pathways, lymphocyte migration, and antigen processing and presentation, among other processes. Conclusions Based on our study, COL5A1 may be employed as a prognostic marker in different malignancies because of its impact on tumorigenesis and immune cell infiltration and have implications for cancer immune checkpoint inhibitors and chemotherapy.
Collapse
|
62
|
Juarez A, Djallali M, Piché M, Thériault M, Groleau M, Beroual S, McTiernan CD, Lin G, Hélie P, Carrier M, Griffith M, Brunette I. A Liquid Hydrogel to Restore Long Term Corneal Integrity After Perforating and Non-Perforating Trauma in Feline Eyes. Front Bioeng Biotechnol 2022; 9:773294. [PMID: 34976970 PMCID: PMC8714956 DOI: 10.3389/fbioe.2021.773294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: To evaluate long-term in vivo functionality of corneas regenerated using a cell-free, liquid hydrogel filler (LiQD Cornea) after deep corneal trauma in the feline model. Methods: Two healthy cats underwent 4 mm diameter stepwise 250/450 µm deep surgical corneal ablation with and without needle perforation. The filler comprising 10% (w/w) collagen-like peptide conjugated to polyethylene glycol (CLP-PEG) and 1% fibrinogen and crosslinked with 2% (w/w) 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), was applied to the wound bed previously coated with thrombin (250 U/ml). In situ gelation occurred within 5 min, and a temporary tarsorrhaphy was performed. Eyes were examined weekly for 1 month, then monthly over 12 months. Outcome parameters included slit-lamp, Scheimpflug tomography, optical coherence tomography, confocal and specular microscopy, and immunohistochemistry studies. Results: The gelled filler was seamlessly incorporated, supporting smooth corneal re-epithelialization. Progressive in-growth of keratocytes and nerves into the filler corresponding to the mild haze observed faded with time. The regenerated neo-cornea remained stably integrated throughout the 12 months, without swelling, inflammation, infection, neovascularization, or rejection. The surrounding host stroma and endothelium remained normal at all times. Tomography confirmed restoration of a smooth surface curvature. Conclusion: Biointegration of this hydrogel filler allowed stable restoration of corneal shape and transparency in the feline model, with less inflammation and no neovascularization compared to previous reports in the minipig and rabbit models. It offers a promising alternative to cyanoacrylate glue and corneal transplantation for ulcerated and traumatized corneas in human patients.
Collapse
Affiliation(s)
- Alejandro Juarez
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Centre Universitaire d'Ophtalmologie de l'Université de Montréal à l'Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Mohamed Djallali
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Marilyse Piché
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Mathieu Thériault
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Marc Groleau
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Sharifa Beroual
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | | | - Grace Lin
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Pierre Hélie
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC, Canada
| | - Michel Carrier
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC, Canada
| | - May Griffith
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada.,Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Brunette
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Centre Universitaire d'Ophtalmologie de l'Université de Montréal à l'Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| |
Collapse
|
63
|
Koch V, Weber C, Riffel JH, Buchner K, Buss SJ, Hein S, Mereles D, Hagenmueller M, Erbel C, März W, Booz C, Albrecht MH, Vogl TJ, Frey N, Hardt SE, Ochs M. Impact of Homoarginine on Myocardial Function and Remodeling in a Rat Model of Chronic Renal Failure. J Cardiovasc Pharmacol Ther 2022; 27:10742484211054620. [PMID: 34994208 DOI: 10.1177/10742484211054620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Low plasma concentrations of the amino acid homoarginine (HA) have been shown to correlate with adverse cardiovascular outcome, particularly in patients with chronic kidney disease. The present study sought to investigate the effect of HA treatment on cardiac remodeling in rats undergoing artificially induced renal insufficiency by 5/6 nephrectomy (5/6 Nx). METHODS A total of 33 male Wistar rats were randomly divided into sham and 5/6 Nx groups, receiving either placebo treatment or 400 mg·kg-1·day-1 HA over a 4-week period. RESULTS 5/6 Nx per se resulted in adverse myocardial remodeling with aggravated cardiac function and associated cardiac overload as the most obvious alteration (-23% ejection fraction, P < 0.0001), as well as increased myocardial fibrosis (+80%, P = 0.0005) compared to placebo treated sham animals. HA treatment of 5/6 Nx rats has led to an improvement of ejection fraction (+24%, P = 0.0003) and fractional shortening (+21%, P = 0.0126), as well as a decrease of collagen deposition (-32%, P = 0.0041), left ventricular weight (-14%, P = 0.0468), and myocyte cross-sectional area (-12%, P < 0.0001). These changes were accompanied by a downregulation of atrial natriuretic factor (-65% P < 0.0001) and collagen type V alpha 1 chain (-44%, P = 0.0006). Sham animals revealed no significant changes in cardiac function, myocardial fibrosis, or any of the aforementioned molecular changes after drug treatment. CONCLUSION Dietary HA supplementation appears to have the potential of preventing cardiac remodeling and improving heart function in the setting of chronic kidney disease. Our findings shed new light on HA as a possible new therapeutic agent for patients at high cardiovascular risk.
Collapse
Affiliation(s)
- Vitali Koch
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Christophe Weber
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes H Riffel
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Kristina Buchner
- Institute of Human Genetics, Section for Developmental Genetics, 27178University of Heidelberg, Heidelberg, Germany
| | - Sebastian J Buss
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Selina Hein
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Derliz Mereles
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Marco Hagenmueller
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Erbel
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Winfried März
- Synlab Academy, Synlab Holding Deutschland GmbH, Augsburg, Germany
| | - Christian Booz
- 9173Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Thomas J Vogl
- 9173Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan E Hardt
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Marco Ochs
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
64
|
Revell CK, Jensen OE, Shearer T, Lu Y, Holmes DF, Kadler KE. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biol Plus 2021; 12:100079. [PMID: 34381990 PMCID: PMC8334717 DOI: 10.1016/j.mbplus.2021.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Collagen fibrils are essential for metazoan life. They are the largest, most abundant, and most versatile protein polymers in animals, where they occur in the extracellular matrix to form the structural basis of tissues and organs. Collagen fibrils were first observed at the turn of the 20th century. During the last 40 years, the genes that encode the family of collagens have been identified, the structure of the collagen triple helix has been solved, the many enzymes involved in the post-translational modifications of collagens have been identified, mutations in the genes encoding collagen and collagen-associated proteins have been linked to heritable disorders, and changes in collagen levels have been associated with a wide range of diseases, including cancer. Yet despite extensive research, a full understanding of how cells assemble collagen fibrils remains elusive. Here, we review current models of collagen fibril self-assembly, and how cells might exert control over the self-assembly process to define the number, length and organisation of fibrils in tissues.
Collapse
Affiliation(s)
- Christopher K. Revell
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Oliver E. Jensen
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Tom Shearer
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David F. Holmes
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karl E. Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
65
|
Mammary collagen is under reproductive control with implications for breast cancer. Matrix Biol 2021; 105:104-126. [PMID: 34839002 DOI: 10.1016/j.matbio.2021.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/26/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
Mammographically-detected breast density impacts breast cancer risk and progression, and fibrillar collagen is a key component of breast density. However, physiologic factors influencing collagen production in the breast are poorly understood. In female rats, we analyzed gene expression of the most abundantly expressed mammary collagens and collagen-associated proteins across a pregnancy, lactation, and weaning cycle. We identified a triphasic pattern of collagen gene regulation and evidence for reproductive state-dependent composition. An initial phase of collagen deposition occurred during pregnancy, followed by an active phase of collagen suppression during lactation. The third phase of collagen regulation occurred during weaning-induced mammary gland involution, which was characterized by increased collagen deposition. Concomitant changes in collagen protein abundance were confirmed by Masson's trichrome staining, second harmonic generation (SHG) imaging, and mass spectrometry. We observed similar reproductive-state dependent collagen patterns in human breast tissue obtained from premenopausal women. SHG analysis also revealed structural variation in collagen across a reproductive cycle, with higher packing density and more collagen fibers arranged perpendicular to the mammary epithelium in the involuting rat mammary gland compared to nulliparous and lactating glands. Involution was also characterized by high expression of the collagen cross-linking enzyme lysyl oxidase, which was associated with increased levels of cross-linked collagen. Breast cancer relevance is suggested, as we found that breast cancer diagnosed in recently postpartum women displayed gene expression signatures of increased collagen deposition and crosslinking compared to breast cancers diagnosed in age-matched nulliparous women. Using publically available data sets, we found this involution-like, collagen gene signature correlated with poor progression-free survival in breast cancer patients overall and in younger women. In sum, these findings of physiologic collagen regulation in the normal mammary gland may provide insight into normal breast function, the etiology of breast density, and inform breast cancer risk and outcomes.
Collapse
|
66
|
Micale L, Fusco C, Castori M. Ehlers-Danlos Syndromes, Joint Hypermobility and Hypermobility Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:207-233. [PMID: 34807421 DOI: 10.1007/978-3-030-80614-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ehlers-Danlos syndrome is an umbrella term for a clinically and genetically heterogeneous group of hereditary soft connective tissue disorders mainly featuring abnormal cutaneous texture (doughy/velvety, soft, thin, and/or variably hyperextensible skin), easy bruising, and joint hypermobility. Currently, musculoskeletal manifestations related to joint hypermobility are perceived as the most prevalent determinants of the quality of life of affected individuals. The 2017 International Classification of Ehlers-Danlos syndromes and related disorders identifies 13 clinical types due to deleterious variants in 19 different genes. Recent publications point out the possibility of a wider spectrum of conditions that may be considered members of the Ehlers-Danlos syndrome community. Most Ehlers-Danlos syndromes are due to inherited abnormalities affecting the biogenesis of fibrillar collagens and other components of the extracellular matrix. The introduction of next-generation sequencing technologies in the diagnostic setting fastened patients' classification and improved our knowledge on the phenotypic variability of many Ehlers-Danlos syndromes. This is impacting significantly patients' management and family counseling. At the same time, most individuals presenting with joint hypermobility and associated musculoskeletal manifestations still remain without a firm diagnosis, due to a too vague clinical presentation and/or the lack of an identifiable molecular biomarker. These individuals are currently defined with the term "hypermobility spectrum disorders". Hence, in parallel with a continuous update of the International Classification of Ehlers-Danlos syndromes, the scientific community is investing efforts in offering a more efficient framework for classifying and, hopefully, managing individuals with joint hypermobility.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
67
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
68
|
Atta G, Tempfer H, Kaser-Eichberger A, Traweger A, Heindl LM, Schroedl F. Is the human sclera a tendon-like tissue? A structural and functional comparison. Ann Anat 2021; 240:151858. [PMID: 34798297 DOI: 10.1016/j.aanat.2021.151858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Collagen rich connective tissues fulfill a variety of important functions throughout the human body, most of which having to resist mechanical challenges. This review aims to compare structural and functional aspects of tendons and sclera, two tissues with distinct location and function, but with striking similarities regarding their cellular content, their extracellular matrix and their low degree of vascularization. The description of these similarities meant to provide potential novel insight for both the fields of orthopedic research and ophthalmology.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Tempfer
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Andreas Traweger
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne - Düsseldorf, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| |
Collapse
|
69
|
Bahcecioglu G, Yue X, Howe E, Guldner I, Stack MS, Nakshatri H, Zhang S, Zorlutuna P. Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100128. [PMID: 34617419 PMCID: PMC8596116 DOI: 10.1002/advs.202100128] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Age is a major risk factor for cancer. While the importance of age related genetic alterations in cells on cancer progression is well documented, the effect of aging extracellular matrix (ECM) has been overlooked. This study shows that the aging breast ECM alone is sufficient to drive normal human mammary epithelial cells (KTB21) to a more invasive and cancer-like phenotype, while promoting motility and invasiveness in MDA-MB-231 cells. Decellularized breast matrix from aged mice leads to loss of E-cadherin membrane localization in KTB21 cells, increased cell motility and invasion, and increased production of inflammatory cytokines and cancer-related proteins. The aged matrix upregulates cancer-related genes in KTB21 cells and enriches a cell subpopulation highly expressing epithelial-mesenchymal transition-related genes. Lysyl oxidase knockdown reverts the aged matrix-induced changes to the young levels; it relocalizes E-cadherin to cell membrane, and reduces cell motility, invasion, and cytokine production. These results show for the first time that the aging ECM harbors key biochemical, physical, and mechanical cues contributing to invasive and cancer-like behavior in healthy and cancer mammary cells. Differential response of cells to young and aged ECMs can lead to identification of new targets for cancer treatment and prevention.
Collapse
Affiliation(s)
- Gokhan Bahcecioglu
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Xiaoshan Yue
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Erin Howe
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Ian Guldner
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - M. Sharon Stack
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIN46556USA
| | - Harikrishna Nakshatri
- Department of SurgerySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologySchool of MedicineIndiana UniversityIndianapolisIN46202USA
| | - Siyuan Zhang
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIN46556USA
| |
Collapse
|
70
|
Stachon T, Latta L, Seitz B, Szentmáry N. Different mRNA expression patterns in keratoglobus and pellucid marginal degeneration keratocytes. Exp Eye Res 2021; 213:108804. [PMID: 34756941 DOI: 10.1016/j.exer.2021.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Alike keratoconus (KC), keratoglobus (KG) and pellucid marginal degeneration (PMD) belong to ectatic corneal diseases. While there are numerous studies on keratoconus pathophysiology, there is no exact knowledge on genetic and pathophysiological background of KG and PMD, so far. It is not yet clarified, whether KG and PMD are independent clinical entities or represent different stages of the same disease. Our purpose was to investigate key parameters concerning collagen synthesis, intracellular LOX expression and inflammation in corneal stromal cells of KG and PMD subjects, in vitro. METHODS Normal human keratocytes of corneas from the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz and human keratocytes of KG and PMD patients were isolated and cultured as keratocytes. To examine Collagen I and V (Col I, Col V), heat shock protein 47 (Hsp47), Lysyl Oxidase (LOX), nuclear factor kappa B (NF-κB) mRNA and protein expression in all cell types, quantitative PCR and Western blot analysis has been performed. RESULTS Col5A1 mRNA expression was significantly lower in KG and PMD keratocytes and LOX mRNA expression was significantly higher in KG-keratocytes, compared to controls. Col1A1, Hsp47 and NF-κB mRNA expression and the analyzed protein expressions did not differ from controls, in KG or PMD. CONCLUSIONS Col5A1 mRNA expression is decreased in KG and PMD and LOX mRNA expression is increased in KG. Therefore, the pathophysiology of KG and PMD differs from KC and these seem to be from KC independent entities. The explanation of the peripheral corneal thinning in KG and PMD must be investigated in further studies.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany.
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
71
|
Meunier M, Scandolera A, Chapuis E, Lapierre L, Sandré J, Brunner G, Lovchik M, Reynaud R. The anti-wrinkles properties of sodium acetylated hyaluronate. J Cosmet Dermatol 2021; 21:2749-2762. [PMID: 34708918 PMCID: PMC9543187 DOI: 10.1111/jocd.14539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intrinsic aging promotes wrinkles formation by an imbalance between matrix synthesis/degradation in favor of degradation. This is accelerated by the exposome leading to overproduction of protease and fewer remodeling. OBJECTIVE Protecting the integrity of extracellular matrix appears as the most efficient anti-aging solution. We developed a grafted HA specifically designed to get anti-aging property due to a specific molecular weight and acetylation degree. METHODS A transcriptomic analysis was performed on fibroblasts, followed by a measurement of MMP secretion and subsequent effect on collagen degradation. MMP expression in skin explants concerned by chronobiological and extrinsic aging was analyzed by immunostaining. A clinical study was conducted on volunteers presenting wrinkles on face to evaluate flash reduction of wrinkles after 6 h of application by profilometry and anti-aging efficacy after 2 months by VISIA® CR2.3. RESULTS Transcriptomic analysis evidenced an inhibition of MMP gene expression with acetylated HA, confirmed by an inhibition of MMPs release by fibroblasts, and a protection of type I collagen against degradation. We confirmed the reduction of MMPs in mature skin and in skin explants exposed to UV and urban dust. We demonstrated during clinical studies the flash reduction effect of acetylated HA on crow's feet wrinkles and a filling of nasogenian areas 6 h after application, and a wrinkles number reduction on nasogenian area up to 2 months of application. CONCLUSION We developed a new grafted HA owing protective properties against ECM degradation induced by chronobiological and extrinsic aging, leading to a significant and efficient anti-wrinkles effect.
Collapse
Affiliation(s)
- Marie Meunier
- Givaudan Active Beauty, Research and Development, Pomacle, France
| | | | - Emilie Chapuis
- Givaudan Active Beauty, Research and Development, Pomacle, France
| | - Laura Lapierre
- Givaudan Active Beauty, Research and Development, Pomacle, France
| | | | | | | | - Romain Reynaud
- Givaudan Active Beauty, Research and Development, Toulouse, France
| |
Collapse
|
72
|
Vroman R, Malfait AM, Miller RE, Malfait F, Syx D. Animal Models of Ehlers-Danlos Syndromes: Phenotype, Pathogenesis, and Translational Potential. Front Genet 2021; 12:726474. [PMID: 34712265 PMCID: PMC8547655 DOI: 10.3389/fgene.2021.726474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of heritable connective tissues disorders mainly characterized by skin hyperextensibility, joint hypermobility and generalized tissue fragility. Currently, 14 EDS subtypes each with particular phenotypic features are recognized and are caused by genetic defects in 20 different genes. All of these genes are involved in the biosynthesis and/or fibrillogenesis of collagens at some level. Although great progress has been made in elucidating the molecular basis of different EDS subtypes, the pathogenic mechanisms underlying the observed phenotypes remain poorly understood, and consequentially, adequate treatment and management options for these conditions remain scarce. To date, several animal models, mainly mice and zebrafish, have been described with defects in 14 of the 20 hitherto known EDS-associated genes. These models have been instrumental in discerning the functions and roles of the corresponding proteins during development, maturation and repair and in portraying their roles during collagen biosynthesis and/or fibrillogenesis, for some even before their contribution to an EDS phenotype was elucidated. Additionally, extensive phenotypical characterization of these models has shown that they largely phenocopy their human counterparts, with recapitulation of several clinical hallmarks of the corresponding EDS subtype, including dermatological, cardiovascular, musculoskeletal and ocular features, as well as biomechanical and ultrastructural similarities in tissues. In this narrative review, we provide a comprehensive overview of animal models manifesting phenotypes that mimic EDS with a focus on engineered mouse and zebrafish models, and their relevance in past and future EDS research. Additionally, we briefly discuss domestic animals with naturally occurring EDS phenotypes. Collectively, these animal models have only started to reveal glimpses into the pathophysiological aspects associated with EDS and will undoubtably continue to play critical roles in EDS research due to their tremendous potential for pinpointing (common) signaling pathways, unveiling possible therapeutic targets and providing opportunities for preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Robin Vroman
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne-Marie Malfait
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Rachel E. Miller
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
73
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
74
|
van Praagh JB, de Wit JG, Olinga P, de Haan JJ, Nagengast WB, Fehrmann RSN, Havenga K. Colorectal anastomotic leak: transcriptomic profile analysis. Br J Surg 2021; 108:326-333. [PMID: 33793728 DOI: 10.1093/bjs/znaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/17/2020] [Accepted: 10/03/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Anastomotic leakage in patients undergoing colorectal surgery is associated with morbidity and mortality. Although multiple risk factors have been identified, the underlying mechanisms are mainly unknown. The aim of this study was to perform a transcriptome analysis of genes underlying the development of anastomotic leakage. METHODS A set of human samples from the anastomotic site collected during stapled colorectal anastomosis were used in the study. Transcriptomic profiles were generated for patients who developing anastomotic leakage and case-matched controls with normal anastomotic healing to identify genes and biological processes associated with the development of anastomotic leakage. RESULTS The analysis included 22 patients with and 69 without anastomotic leakage. Differential expression analysis showed that 44 genes had adjusted P < 0.050, consisting of two upregulated and 42 downregulated genes. Co-functionality analysis of the 150 most upregulated and 150 most downregulated genes using the GenetICA framework showed formation of clusters of genes with different enrichment for biological pathways. The enriched pathways for the downregulated genes are involved in immune response, angiogenesis, protein metabolism, and collagen cross-linking. The enriched pathways for upregulated genes are involved in cell division. CONCLUSION These data indicate that patients who develop anastomotic leakage start the healing process with an error at the level of gene regulation at the time of surgery. Despite normal macroscopic appearance during surgery, the transcriptome data identified several differences in gene expression between patients who developed anastomotic leakage and those who did not. The expressed genes and enriched processes are involved in the different stages of wound healing. These provide therapeutic and diagnostic targets for patients at risk of anastomotic leakage.
Collapse
Affiliation(s)
- J B van Praagh
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - J G de Wit
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - P Olinga
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - J J de Haan
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - W B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - R S N Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - K Havenga
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
75
|
Chandrasekaran P, Kwok B, Han B, Adams SM, Wang C, Chery DR, Mauck RL, Dyment NA, Lu XL, Frank DB, Koyama E, Birk DE, Han L. Type V Collagen Regulates the Structure and Biomechanics of TMJ Condylar Cartilage: A Fibrous-Hyaline Hybrid. Matrix Biol 2021; 102:1-19. [PMID: 34314838 DOI: 10.1016/j.matbio.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
This study queried the role of type V collagen in the post-natal growth of temporomandibular joint (TMJ) condylar cartilage, a hybrid tissue with a fibrocartilage layer covering a secondary hyaline cartilage layer. Integrating outcomes from histology, immunofluorescence imaging, electron microscopy and atomic force microscopy-based nanomechanical tests, we elucidated the impact of type V collagen reduction on TMJ condylar cartilage growth in the type V collagen haploinsufficiency and inducible knockout mice. Reduction of type V collagen led to significantly thickened collagen fibrils, decreased tissue modulus, reduced cell density and aberrant cell clustering in both the fibrous and hyaline layers. Post-natal growth of condylar cartilage involves the chondrogenesis of progenitor cells residing in the fibrous layer, which gives rise to the secondary hyaline layer. Loss of type V collagen resulted in reduced proliferation of these cells, suggesting a possible role of type V collagen in mediating the progenitor cell niche. When the knockout of type V collagen was induced in post-weaning mice after the start of physiologic TMJ loading, the hyaline layer exhibited pronounced thinning, supporting an interplay between type V collagen and occlusal loading in condylar cartilage growth. The phenotype in hyaline layer can thus be attributed to the impact of type V collagen on the mechanically regulated progenitor cell activities. In contrast, knee cartilage does not contain the progenitor cell population at post-natal stages, and develops normal structure and biomechanical properties with the loss of type V collagen. Therefore, in the TMJ, in addition to its established role in regulating the assembly of collagen I fibrils, type V collagen also impacts the mechanoregulation of progenitor cell activities in the fibrous layer. We expect such knowledge to establish a foundation for understanding condylar cartilage matrix development and regeneration, and to yield new insights into the TMJ symptoms in patients with classic Ehlers-Danlos syndrome, a genetic disease due to autosomal mutation of type V collagen.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
76
|
Lipp SN, Jacobson KR, Hains DS, Schwarderer AL, Calve S. 3D Mapping Reveals a Complex and Transient Interstitial Matrix During Murine Kidney Development. J Am Soc Nephrol 2021; 32:1649-1665. [PMID: 33875569 PMCID: PMC8425666 DOI: 10.1681/asn.2020081204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/20/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a network of proteins and glycosaminoglycans that provides structural and biochemical cues to cells. In the kidney, the ECM is critical for nephrogenesis; however, the dynamics of ECM composition and how it relates to 3D structure during development is unknown. METHODS Using embryonic day 14.5 (E14.5), E18.5, postnatal day 3 (P3), and adult kidneys, we fractionated proteins based on differential solubilities, performed liquid chromatography-tandem mass spectrometry, and identified changes in ECM protein content (matrisome). Decellularized kidneys were stained for ECM proteins and imaged in 3D using confocal microscopy. RESULTS We observed an increase in interstitial ECM that connects the stromal mesenchyme to the basement membrane (TNXB, COL6A1, COL6A2, COL6A3) between the embryo and adult, and a transient elevation of interstitial matrix proteins (COL5A2, COL12A1, COL26A1, ELN, EMID1, FBN1, LTBP4, THSD4) at perinatal time points. Basement membrane proteins critical for metanephric induction (FRAS1, FREM2) were highest in abundance in the embryo, whereas proteins necessary for integrity of the glomerular basement membrane (COL4A3, COL4A4, COL4A5, LAMB2) were more abundant in the adult. 3D visualization revealed a complex interstitial matrix that dramatically changed over development, including the perinatal formation of fibrillar structures that appear to support the medullary rays. CONCLUSION By correlating 3D ECM spatiotemporal organization with global protein abundance, we revealed novel changes in the interstitial matrix during kidney development. This new information regarding the ECM in developing kidneys offers the potential to inform the design of regenerative scaffolds that can guide nephrogenesis in vitro.
Collapse
Affiliation(s)
- Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Medical Scientist/Engineer Training Program, Indiana University, Indianapolis, Indiana
| | - Kathryn R. Jacobson
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
| | - David S. Hains
- Department of Pediatrics, School of Medicine, Indiana University, Riley Children’s Hospital, Indianapolis, Indiana
| | - Andrew L. Schwarderer
- Department of Pediatrics, School of Medicine, Indiana University, Riley Children’s Hospital, Indianapolis, Indiana
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
77
|
Asthmatic Eosinophils Promote Contractility and Migration of Airway Smooth Muscle Cells and Pulmonary Fibroblasts In Vitro. Cells 2021; 10:cells10061389. [PMID: 34199925 PMCID: PMC8229663 DOI: 10.3390/cells10061389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
Enhanced contractility and migration of airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) are part of airway remodeling in asthma. Eosinophils are the central inflammatory cells that participate in airway inflammation. However, the role of asthmatic eosinophils in ASMC and PF contractility, migration, and differentiation to contractile phenotype has not yet been precisely described. A total of 38 individuals were included in this study: 13 steroid-free non-severe allergic asthma (AA) patients, 11 severe non-allergic eosinophilic asthma (SNEA) patients, and 14 healthy subjects (HS). For AA patients and HS groups, a bronchial allergen challenge with D. pteronyssinus was performed. Individual combined cell cultures were prepared from isolated peripheral blood eosinophils and immortalized ASMC or commercial PF cell lines separately. The migration of ASMC and PF was evaluated using wound healing assay and contractility using collagen gel assay. Gene expression of contractile apparatus proteins, COL1A1, COL5A1, and FN, in ASMC and PF was evaluated using qRT-PCR. We found that contractility and migration of ASMC and PF significantly increased after incubation with asthmatic eosinophils compared to HS eosinophils, p < 0.05, and SNEA eosinophils demonstrated the highest effect on contractility of ASMC and migration of both cell lines, p < 0.05. AA and SNEA eosinophils significantly increased gene expression of contractile apparatus proteins, COL1A1 and FN, in both cell lines, p < 0.05. Furthermore, the allergen-activated AA eosinophils significantly increased the contractility of ASMC, and migration and gene expression in ASMC and PF, p < 0.05. Thus, asthmatic eosinophils change ASMC and PF behavior by increasing their contractility and migration, contributing to airway remodeling.
Collapse
|
78
|
Chen P, Yu B, Li Z, Chen Y, Sun Y, Wang DW. COL5A1 Variants Cause Aortic Dissection by Activating TGF-β-Signaling Pathway. J Am Heart Assoc 2021; 10:e019276. [PMID: 34041919 PMCID: PMC8483548 DOI: 10.1161/jaha.120.019276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Aortic dissection (AD) is one of the most life‐threatening cardiovascular diseases that exhibit high genetic heterogeneity. However, it is unclear whether variants within the COL5A1 gene can cause AD. Therefore, we intend to determine whether COL5A1 is a causative gene of AD. Methods and Results We performed targeted sequencing in 702 patients with unrelated sporadic AD and 163 matched healthy controls using a predesigned panel with 152 vessel matrix‐related genes. As a result, we identified that 11 variants in COL5A1 caused AD in 11 out of the 702 patients with AD. Furthermore, Col5a1 knockout (Col5a1+/−) rats were generated through the CRISPR/Cas9 system. Although there was no spontaneous AD, electron microscopy revealed a fracture of elastic fibers and disarray of collagenous fibers in 6‐week‐old Col5a1+/− rats, but not in WT rats (93.3% versus 0.0%, P<0.001). Three‐week‐old rats were used to induce the AD phenotype with β‐aminopropionitrile monofumarate for 4 weeks followed by angiotensin II for 72 hours. The β‐aminopropionitrile monofumarate and angiotensin II‐treated rat model confirmed that Col5a1+/− rats had considerably higher AD incidence than WT rats. Subsequent mechanism analyses demonstrated that the transforming growth factor‐β‐signaling pathway was significantly activated in Col5a1+/− rats. Conclusions Our findings, for the first time, revealed a relationship between variants in COL5A1 and AD via targeted sequencing in 1.57% patients with sporadic aortic dissection. The Col5a1 knockout rats exhibited AD after an intervention, indicating that COL5A1 is a causative gene of AD. Activation of the transforming growth factor‐β‐signaling pathway may be implicated in the pathogenesis of this kind of AD.
Collapse
Affiliation(s)
- Peng Chen
- Division of Cardiology Departments of Internal Medicine and Genetic Diagnosis Center Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders Wuhan China
| | - Bo Yu
- Division of Cardiology Departments of Internal Medicine and Genetic Diagnosis Center Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders Wuhan China
| | - Zongzhe Li
- Division of Cardiology Departments of Internal Medicine and Genetic Diagnosis Center Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders Wuhan China
| | - Yanghui Chen
- Division of Cardiology Departments of Internal Medicine and Genetic Diagnosis Center Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders Wuhan China
| | - Yang Sun
- Division of Cardiology Departments of Internal Medicine and Genetic Diagnosis Center Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders Wuhan China
| | - Dao Wen Wang
- Division of Cardiology Departments of Internal Medicine and Genetic Diagnosis Center Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders Wuhan China.,Collaborative Innovation Center for Genetics and Development School of Life Sciences Fudan University Shanghai China
| |
Collapse
|
79
|
Lakhani A, Sharma E, Kapila A, Khatri K. Known data on applied regenerative medicine in tendon healing. Bioinformation 2021; 17:514-527. [PMID: 34602779 PMCID: PMC8450149 DOI: 10.6026/97320630017514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022] Open
Abstract
Tendons and ligaments are important structures in the musculoskeletal system. Ligaments connect various bones and provide stability in complex movements of joints in the knee. Tendon is made of dense connective tissue and transmits the force of contraction from muscle to bone. They are injured due to direct trauma in sports or roadside accidents. Tendon healing after repair is often poor due to the formation of fibro vascular scar tissues with low mechanical property. Regenerative techniques such as PRP (platelet-rich plasma), stem cells, scaffolds, gene therapy, cell sheets, and scaffolds help augment repair and regenerate tissue in this context. Therefore, it is of interest to document known data (repair process, tissue regeneration, mechanical strength, and clinical outcome) on applied regenerative medicine in tendon healing.
Collapse
Affiliation(s)
- Amit Lakhani
- Dr Br Ambedkar State Institute of Medical Sciences, Mohali Punjab, India
| | - Ena Sharma
- Maharishi Markandeshwar College of Dental Sciences and Hospital Mullana, Ambala, Haryana, India
| | | | - Kavin Khatri
- All India Institute of Medical Sciences, Bathinda, Punjab, India
| |
Collapse
|
80
|
Malek S, Köster DV. The Role of Cell Adhesion and Cytoskeleton Dynamics in the Pathogenesis of the Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders. Front Cell Dev Biol 2021; 9:649082. [PMID: 33968931 PMCID: PMC8097055 DOI: 10.3389/fcell.2021.649082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of 13 disorders, clinically defined through features of joint hypermobility, skin hyperextensibility, and tissue fragility. Most subtypes are caused by mutations in genes affecting the structure or processing of the extracellular matrix (ECM) protein collagen. The Hypermobility Spectrum Disorders (HSDs) are clinically indistinguishable disorders, but are considered to lack a genetic basis. The pathogenesis of all these disorders, however, remains poorly understood. Genotype-phenotype correlations are limited, and findings of aberrant collagen fibrils are inconsistent and associate poorly with the subtype and severity of the disorder. The defective ECM, however, also has consequences for cellular processes. EDS/HSD fibroblasts exhibit a dysfunctional phenotype including impairments in cell adhesion and cytoskeleton organization, though the pathological significance of this has remained unclear. Recent advances in our understanding of fibroblast mechanobiology suggest these changes may actually reflect features of a pathomechanism we herein define. This review departs from the traditional view of EDS/HSD, where pathogenesis is mediated by the structurally defective ECM. Instead, we propose EDS/HSD may be a disorder of membrane-bound collagen, and consider how aberrations in cell adhesion and cytoskeleton dynamics could drive the abnormal properties of the connective tissue, and be responsible for the pathogenesis of EDS/HSD.
Collapse
Affiliation(s)
- Sabeeha Malek
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Darius V Köster
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
81
|
Leduc C, Dupont L, Joannes L, Monseur C, Baiwir D, Mazzucchelli G, Deroanne C, Colige A, Bekhouche M. In vivo N-Terminomics Highlights Novel Functions of ADAMTS2 and ADAMTS14 in Skin Collagen Matrix Building. Front Mol Biosci 2021; 8:643178. [PMID: 33816558 PMCID: PMC8017238 DOI: 10.3389/fmolb.2021.643178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin type I motif (ADAMTS)2 and ADAMTS14 were originally known for their ability to cleave the aminopropeptides of fibrillar collagens. Previous work using N-terminomic approach (N-TAILS) in vitro led to the identification of new substrates, including some molecules involved in TGF-β signaling. Here, N-TAILS was used to investigate the substrates of these two enzymes in vivo, by comparing the N-terminomes of the skin of wild type mice, mice deficient in ADAMTS2, in ADAMTS14 and in both ADAMTS2 and ADAMTS14. This study identified 68 potential extracellular and cell surface proteins, with the majority of them being cleaved by both enzymes. These analyses comfort their role in collagen matrix organization and suggest their implication in inflammatory processes. Regarding fibrillar collagen, this study demonstrates that both ADAMTS2 and ADAMTS14 are involved in the processing of the aminopropeptide of alpha1 and alpha2 type V collagen. It also revealed the existence of several cleavage sites in the Col1 domain and in the C-propeptide of type I collagens. In addition to collagens and other extracellular proteins, two major components of the cell cytoskeleton, actin and vimentin, were also identified as potential substrates. The latter data were confirmed in vitro using purified enzymes and could potentially indicate other functions for ADAMTS2 and 14. This original investigation of mouse skin degradomes by N-terminomic highlights the essential role of ADAMTS2 and ADAMTS14 in collagen matrix synthesis and turnover, and gives clues to better understand their functions in skin pathophysiology. Data are available via ProteomeXchange with identifier PXD022179.
Collapse
Affiliation(s)
- Cédric Leduc
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Laura Dupont
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Loïc Joannes
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Mourad Bekhouche
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique/University of Lyon Unité Mixte de Recherche 5305, Lyon, France.,Faculté d'Odontologie de Lyon, Université de Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
82
|
Pain-related behaviors and abnormal cutaneous innervation in a murine model of classical Ehlers-Danlos syndrome. Pain 2021; 161:2274-2283. [PMID: 32483055 DOI: 10.1097/j.pain.0000000000001935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Classical Ehlers-Danlos syndrome (cEDS) is a connective tissue disorder caused by heterozygous mutations in one of the type V collagen-encoding genes, COL5A1 or COL5A2. cEDS is characterized by generalized joint hypermobility and instability, hyperextensible, fragile skin, and delayed wound healing. Chronic pain is a major problem in cEDS patients, but the underlying mechanisms are largely unknown, and studies in animal models are lacking. Therefore, we assessed pain-related behaviors in haploinsufficient Col5a1 mice, which clinically mimic human cEDS. Compared to wild-type (WT) littermates, 15 to 20-week-old Col5a1 mice of both sexes showed significant hypersensitivity to mechanical stimuli in the hind paws and the abdominal area, but responses to thermal stimuli were unaltered. Spontaneous behaviors, including distance travelled and rearing, were grossly normal in male Col5a1 mice, whereas female Col5a1 mice showed altered climbing behavior. Finally, male and female Col5a1 mice vocalized more than WT littermates when scruffed. Decreased grip strength was also noted. In view of the observed pain phenotype, Col5a1 mice were crossed with NaV1.8-tdTomato reporter mice, enabling visualization of nociceptors in the glabrous skin of the footpad. We observed a significant decrease in intraepidermal nerve fiber density, with fewer nerves crossing the epidermis, and a decreased total nerve length of Col5a1 mice compared to WT. In summary, male and female Col5a1 mice show hypersensitivity to mechanical stimuli, indicative of generalized sensitization of the nervous system, in conjunction with an aberrant organization of cutaneous nociceptors. Therefore, Col5a1 mice will provide a useful tool to study mechanisms of pain associated with cEDS.
Collapse
|
83
|
Musiime M, Chang J, Hansen U, Kadler KE, Zeltz C, Gullberg D. Collagen Assembly at the Cell Surface: Dogmas Revisited. Cells 2021; 10:662. [PMID: 33809734 PMCID: PMC8002325 DOI: 10.3390/cells10030662] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
With the increased awareness about the importance of the composition, organization, and stiffness of the extracellular matrix (ECM) for tissue homeostasis, there is a renewed need to understand the details of how cells recognize, assemble and remodel the ECM during dynamic tissue reorganization events. Fibronectin (FN) and fibrillar collagens are major proteins in the ECM of interstitial matrices. Whereas FN is abundant in cell culture studies, it is often only transiently expressed in the acute phase of wound healing and tissue regeneration, by contrast fibrillar collagens form a persistent robust scaffold in healing and regenerating tissues. Historically fibrillar collagens in interstitial matrices were seen merely as structural building blocks. Cell anchorage to the collagen matrix was thought to be indirect and occurring via proteins like FN and cell surface-mediated collagen fibrillogenesis was believed to require a FN matrix. The isolation of four collagen-binding integrins have challenged this dogma, and we now know that cells anchor directly to monomeric forms of fibrillar collagens via the α1β1, α2β1, α10β1 and α11β1 integrins. The binding of these integrins to the mature fibrous collagen matrices is more controversial and depends on availability of integrin-binding sites. With increased awareness about the importance of characterizing the total integrin repertoire on cells, including the integrin collagen receptors, the idea of an absolute dependence on FN for cell-mediated collagen fibrillogenesis needs to be re-evaluated. We will summarize data suggesting that collagen-binding integrins in vitro and in vivo are perfectly well suited for nucleating and supporting collagen fibrillogenesis, independent of FN.
Collapse
Affiliation(s)
- Moses Musiime
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway; (M.M.); (C.Z.)
| | - Joan Chang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.C.); (K.E.K.)
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital of Münster, 48149 Münster, Germany;
| | - Karl E. Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.C.); (K.E.K.)
| | - Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway; (M.M.); (C.Z.)
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway; (M.M.); (C.Z.)
| |
Collapse
|
84
|
Meunier M, Chapuis E, Lapierre L, Auriol P, Paulus C, Elbaum B, Don Simoni E, Sandré J, Auriol D, Scandolera A, Reynaud R. Mannose-6-phosphate complex and improvement in biomechanical properties of the skin. J Cosmet Dermatol 2021; 20:1598-1610. [PMID: 33580613 PMCID: PMC8251629 DOI: 10.1111/jocd.14000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The dermis is composed of a tangle of macromolecules that provides the skin its biomechanical properties. During chronological aging, fibroblasts lose their ability to synthesize collagen and an accumulation of matrix metalloproteinases leads to an increase in collagen degradation. As a result, there is a decline in the biomechanical properties of the skin. Skin aging is accelerated by external factors such as UV radiation and pollution, which induce accumulation of oxidants, and so of oxidized proteins in the skin. AIMS Atomic force microscopy (AFM) has emerged as an alternative method for studying the biomechanical properties of skin cells and tissues. METHODS/RESULTS Thus, we identified mannose-6-phosphate complex as a new powerful molecule capable of reversing the visible signs of aging by reorganizing the collagen network of the dermis and by improving the skin biomechanical properties. This effect was correlated with clinical studies that showed a marked antiaging effect through a reduction in the number of crow's feet and in the depth and size of neck wrinkles. CONCLUSION Mannose-6-phosphate complex appeared to be able to protect proteins in the dermis scaffold against oxidation and degradation, allowing an improvement in the skin biomechanical properties.
Collapse
Affiliation(s)
- Marie Meunier
- Givaudan Active Beauty, Research and Development, Pomacle, France
| | - Emilie Chapuis
- Givaudan Active Beauty, Research and Development, Pomacle, France
| | - Laura Lapierre
- Givaudan Active Beauty, Research and Development, Pomacle, France
| | - Pascale Auriol
- Givaudan Active Beauty, Research and Development, Toulouse, France
| | - Chantal Paulus
- Givaudan Active Beauty, Research and Development, Toulouse, France
| | - Boris Elbaum
- Givaudan Active Beauty, Research and Development, Toulouse, France
| | | | | | - Daniel Auriol
- Givaudan Active Beauty, Research and Development, Toulouse, France
| | | | - Romain Reynaud
- Givaudan Active Beauty, Research and Development, Toulouse, France
| |
Collapse
|
85
|
Zhang J, Zhang J, Wang F, Xu X, Li X, Guan W, Men T, Xu G. Overexpressed COL5A1 is correlated with tumor progression, paclitaxel resistance, and tumor-infiltrating immune cells in ovarian cancer. J Cell Physiol 2021; 236:6907-6919. [PMID: 33655494 DOI: 10.1002/jcp.30350] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 01/19/2023]
Abstract
Ovarian cancer (OC) remains the leading cause of cancer-related death among gynecological cancers. The present study examined the role of collagen type V alpha 1 (COL5A1) and the characteristics of COL5A1 as an oncogenic protein in OC. The association of COL5A1 with paclitaxel (PTX)-resistance and stemness in OC was also studied and the multidatabase and big data analyses of the prognostic value, coexpression network, genetic alterations, and tumor-infiltrating immune cells of COL5A1 were elucidated. We found that COL5A1 expression was high in OC cells and tissues. Knockdown of COL5A1 inhibited the proliferation and migration of OC cells. Further study also showed that COL5A1 was overexpressed in PTX-resistant OC cells compared to respective PTX-sensitive cells. Additionally, COL5A1 was more enriched in OC stem cell-like cells. Silencing COL5A1 expression decreased the OC cell resistance to PTX and inhibited the ability of OC-spheroid formation. Survival analysis predicted that the elevated COL5A1 expression was associated with a worse survival outcome and correlated to the tumor stage of OC patients. The estimating relative subsets of RNA transcripts (CIBERSORT) algorithm analysis also unveiled the correlation of several tumor-infiltrating immune cells with the expression of COL5A1. Taken together, our data demonstrate that COL5A1 is a biomarker to predict OC progression and PTX-resistance and represents a promising target for OC treatment.
Collapse
Affiliation(s)
- Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ting Men
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
86
|
Nicol L, Srikanth P, Henriksen K, Sun S, Smith R, Karsdal MA, Nagamani SCS, Shapiro J, Lee B, Leder BZ, Orwoll E. Widespread disturbance in extracellular matrix collagen biomarker responses to teriparatide therapy in osteogenesis imperfecta. Bone 2021; 142:115703. [PMID: 33099032 DOI: 10.1016/j.bone.2020.115703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/30/2022]
Abstract
Osteogenesis imperfecta (OI), a heritable disorder caused by abnormalities in synthesis or processing of type I collagen, is characterized by skeletal fragility. Type I collagen interacts with multiple components of the extracellular matrix (ECM) including other collagens types. Thus, alterations in structure or quantity may broadly affect ECM homeostasis. In fact, while OI is clinically categorized by severity of bone disease, patients can also present with extra-skeletal manifestations, including the pulmonary, muscle and cardiovascular systems. Parathyroid hormone (PTH) is a regulator of skeletal homeostasis but the receptor for PTH/PTH1R is expressed in a variety of other tissues. Given interactions between type I collagen with other collagens in the ECM and the potential for PTH action on tissues beyond the skeleton, we explored whether serum levels of non-type I collagens are altered in response to teriparatide (human parathyroid hormone 1-34). We measured biomarkers of collagens II, III, IV, V, and VI in serum from individuals with type I and types III/IV OI in response to an 18 month course of teriparatide or placebo. These results were compared to similar biomarker measures in postmenopausal (PM) women without OI treated with teriparatide. In type I OI, teriparatide therapy increased concentrations of biomarkers of collagens II, III, IV, V, and VI. In individuals with types III/IV OI these biomarker changes in response to teriparatide were blunted, as we previously reported with collagen I biomarkers during teriparatide therapy. In contrast to OI, in PM women there were no effects of teriparatide on the collagen biomarkers we assessed (II, V, and VI). These findings suggest that in OI teriparatide therapy has abnormal effects on the homeostasis of many ECM collagens likely derived from skeletal as well as extra-skeletal tissues.
Collapse
Affiliation(s)
- Lindsey Nicol
- Department of Pediatrics, Division of Endocrinology, Oregon Health & Science University, Portland, OR, United States of America.
| | - Priya Srikanth
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, United States of America
| | | | - Shu Sun
- Nordic Bioscience, Herlev, Denmark
| | - Rosamund Smith
- Lilly Research Laboratories, Indianapolis, IN, United States of America
| | | | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Houston, TX, United States of America
| | - Jay Shapiro
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; Dept. Endocrinology and Diabetes, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Houston, TX, United States of America
| | - Benjamin Z Leder
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Eric Orwoll
- Department of Medicine, Bone and Mineral Unit, Oregon Health & Science University, Portland, OR, United States of America
| |
Collapse
|
87
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
88
|
Maier F, Siri S, Santos S, Chen L, Feng B, Pierce DM. The heterogeneous morphology of networked collagen in distal colon and rectum of mice quantified via nonlinear microscopy. J Mech Behav Biomed Mater 2021; 113:104116. [PMID: 33049619 PMCID: PMC7725919 DOI: 10.1016/j.jmbbm.2020.104116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Visceral pain from the distal colon and rectum (colorectum) is a major complaint of patients with irritable bowel syndrome. Mechanotransduction of colorectal distension/stretch appears to play a critical role in visceral nociception, and further understanding requires improved knowledge of the micromechanical environments at different sub-layers of the colorectum. In this study, we conducted nonlinear imaging via second harmonic generation to quantify the thickness of each distinct through-thickness layer of the colorectum, as well as the principal orientations, corresponding dispersions in orientations, and the distributions of diameters of collagen fibers within each of these layers. From C57BL/6 mice of both sexes (8-16 weeks of age, 25-35 g), we dissected the distal 30 mm of the large bowel including the colorectum, divided these into three even segments, and harvested specimens (~8 × 8 mm2) from each segment. We stretched the specimens either by colorectal distension to 20 mmHg (reference) or 80 mmHg (deformed) or by biaxial stretch to 10 mN (reference) or 80 mN (deformed), and fixed them with 4% paraformaldehyde. We then conducted SHG imaging through the wall thickness and analyzed post-hoc using custom-built software to quantify the orientations of collagen fibers in all distinct layers. We also quantified the thickness of each layer of the colorectum, and the corresponding distributions of collagen density and diameters of fibers. We found collagen concentrated in the submucosal layer. The average diameter of collagen fibers was greatest in the submucosal layer, followed by the serosal and muscular layers. Collagen fibers aligned with muscle fibers in the two muscular layers, whereas their orientation varied greatly with location in the serosal layer. In colonic segments, thick collagen fibers in the submucosa presented two major orientations aligned approximately ±30° to the axial direction, and form a patterned network. Our results indicate the submucosa is likely the principal passive load-bearing structure of the colorectum. In addition, afferent endings in those collagen-rich regions present likely candidates of colorectal nociceptors to encode noxious distension/stretch.
Collapse
Affiliation(s)
- Franz Maier
- Department of Mechanical Engineering, University of Connecticut, CT, 06269, USA
| | - Saeed Siri
- Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA
| | - Stephany Santos
- Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA.
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, CT, 06269, USA; Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA.
| |
Collapse
|
89
|
Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular Matrix in Vascular Disease, Part 2/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2189-2203. [PMID: 32354385 DOI: 10.1016/j.jacc.2020.03.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Abstract
Medium-sized and large arteries consist of 3 layers: the tunica intima, tunica media, and tunica adventitia. The tunica media accounts for the bulk of the vessel wall and is the chief determinant of mechanical compliance. It is primarily composed of circumferentially arranged layers of vascular smooth muscle cells that are separated by concentrically arranged elastic lamellae; a form of extracellular matrix (ECM). The tunica media is separated from the tunica intima and tunica adventitia, the innermost and outermost layers, respectively, by the internal and external elastic laminae. This second part of a 4-part JACC Focus Seminar discusses the contributions of the ECM to vascular homeostasis and pathology. Advances in genetics and proteomics approaches have fostered significant progress in our understanding of vascular ECM. This review highlights the important role of the ECM in vascular disease and the prospect of translating these discoveries into clinical disease biomarkers and potential future therapies.
Collapse
Affiliation(s)
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Aline Verstraeten
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
90
|
Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering (Basel) 2020; 8:bioengineering8010003. [PMID: 33383610 PMCID: PMC7824244 DOI: 10.3390/bioengineering8010003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Type I collagen, the predominant protein of vertebrates, assembles into fibrils that orchestrate the form and function of bone, tendon, skin, and other tissues. Collagen plays roles in hemostasis, wound healing, angiogenesis, and biomineralization, and its dysfunction contributes to fibrosis, atherosclerosis, cancer metastasis, and brittle bone disease. To elucidate the type I collagen structure-function relationship, we constructed a type I collagen fibril interactome, including its functional sites and disease-associated mutations. When projected onto an X-ray diffraction model of the native collagen microfibril, data revealed a matrix interaction domain that assumes structural roles including collagen assembly, crosslinking, proteoglycan (PG) binding, and mineralization, and the cell interaction domain supporting dynamic aspects of collagen biology such as hemostasis, tissue remodeling, and cell adhesion. Our type III collagen interactome corroborates this model. We propose that in quiescent tissues, the fibril projects a structural face; however, tissue injury releases blood into the collagenous stroma, triggering exposure of the fibrils' cell and ligand binding sites crucial for tissue remodeling and regeneration. Applications of our research include discovery of anti-fibrotic antibodies and elucidating their interactions with collagen, and using insights from our angiogenesis studies and collagen structure-function model to inform the design of super-angiogenic collagens and collagen mimetics.
Collapse
|
91
|
Biology and Biomechanics of the Heart Valve Extracellular Matrix. J Cardiovasc Dev Dis 2020; 7:jcdd7040057. [PMID: 33339213 PMCID: PMC7765611 DOI: 10.3390/jcdd7040057] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Heart valves are dynamic structures that, in the average human, open and close over 100,000 times per day, and 3 × 109 times per lifetime to maintain unidirectional blood flow. Efficient, coordinated movement of the valve structures during the cardiac cycle is mediated by the intricate and sophisticated network of extracellular matrix (ECM) components that provide the necessary biomechanical properties to meet these mechanical demands. Organized in layers that accommodate passive functional movements of the valve leaflets, heart valve ECM is synthesized during embryonic development, and remodeled and maintained by resident cells throughout life. The failure of ECM organization compromises biomechanical function, and may lead to obstruction or leaking, which if left untreated can lead to heart failure. At present, effective treatment for heart valve dysfunction is limited and frequently ends with surgical repair or replacement, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of biomechanical valve failure in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level, namely the interstitial and endothelial lineages. However, less focus has been on the ECM, shown previously in other systems, to be a promising mechanism-inspired therapeutic target. Here, we highlight and review the biology and biomechanical contributions of key components of the heart valve ECM. Furthermore, we discuss how human diseases, including connective tissue disorders lead to aberrations in the abundance, organization and quality of these matrix proteins, resulting in instability of the valve infrastructure and gross functional impairment.
Collapse
|
92
|
Ustunel S, Prévôt ME, Clements RJ, Hegmann E. Cradle-to-cradle: designing biomaterials to fit as truly biomimetic cell scaffolds– a review. LIQUID CRYSTALS TODAY 2020. [DOI: 10.1080/1358314x.2020.1855919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Senay Ustunel
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Marianne E. Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Robert J. Clements
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- Biomedical Sciences Program, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Elda Hegmann
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- Biomedical Sciences Program, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
93
|
Ten Dam EJPM, van Driel MF, de Jong IJ, Werker PMN, Bank RA. Glimpses into the molecular pathogenesis of Peyronie's disease. Aging Male 2020; 23:962-970. [PMID: 31335242 DOI: 10.1080/13685538.2019.1643311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Peyronie's disease (PD) is a fibroproliferative disease of the penis. Since little is known about the molecular pathogenesis of PD, we compared the biochemical make-up of PD plaques with normal tunica albuginea to clarify pathological processes in the scarred tissue. Protein and mRNA levels were measured in plaques and in unaffected pieces of the tunica albuginea. We investigated the presence of myofibroblasts, the deposition of collagens, and some key elements of Wnt and YAP1 signaling at protein level. The expression of 45 genes, all related to collagen homeostasis and extracellular matrix proteins, was quantified. In plaques, more myofibroblasts were present, and we observed an activation of Wnt signaling and YAP1 signaling. Increased levels of the collagens types I and III confirm the fibrotic nature of plaques. The mRNA ratio of collagen types III, IV, and VI to type I was increased. The expression of lysyl hydroxylase 3 was higher, whereas a decreased expression level was seen for fibronectin and cathepsin K. The biochemical composition of plaques was different from unaffected tunica albuginea: the relative and absolute abundance of various extracellular matrix proteins were changed, as well as the quality of collagen and the level of the collagen-degrading enzyme cathepsin K.
Collapse
Affiliation(s)
- Evert-Jan P M Ten Dam
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Plastic Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Mels F van Driel
- Department of Urology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Igle Jan de Jong
- Department of Urology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Paul M N Werker
- Department of Plastic Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ruud A Bank
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
94
|
Song R, Zhang L. Cardiac ECM: Its Epigenetic Regulation and Role in Heart Development and Repair. Int J Mol Sci 2020; 21:ijms21228610. [PMID: 33203135 PMCID: PMC7698074 DOI: 10.3390/ijms21228610] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is the non-cellular component in the cardiac microenvironment, and serves essential structural and regulatory roles in establishing and maintaining tissue architecture and cellular function. The patterns of molecular and biochemical ECM alterations in developing and adult hearts depend on the underlying injury type. In addition to exploring how the ECM regulates heart structure and function in heart development and repair, this review conducts an inclusive discussion of recent developments in the role, function, and epigenetic guidelines of the ECM. Moreover, it contributes to the development of new therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Rui Song
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| | - Lubo Zhang
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| |
Collapse
|
95
|
Errichiello E, Malara A, Grimod G, Avolio L, Balduini A, Zuffardi O. Low penetrance COL5A1 variants in a young patient with intracranial aneurysm and very mild signs of Ehlers-Danlos syndrome. Eur J Med Genet 2020; 64:104099. [PMID: 33189937 DOI: 10.1016/j.ejmg.2020.104099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022]
Abstract
Spontaneous cervical artery dissection (CeAD) is a major cause of ischemic stroke in young adults, whose genetic susceptibility factors are still largely unknown. Nevertheless, subtle ultrastructural connective tissue alterations (especially in the collagen fibril morphology) are recognized in a large proportion of CeAD patients, in which recent genetic investigations reported an enrichment of variants in genes associated with known connective tissue disorders. In this regard, COL5A1 variants have been reported in a small subset of CeAD patients, with or without classical Ehlers-Danlos syndrome (cEDS) features. We investigated a 22-year-old patient with intracranial aneurysm and mild connective tissue manifestations reminiscent of EDS. Whole-exome sequencing identified two COL5A1 missense variants in trans configuration: NM_000093.5:c.[1588G>A];[4135C>T], NP_000084.3:p.[(Gly530Ser)];[(Pro1379Ser)]. Functional assays demonstrated a significant decrease of collagen α1(V) chain expression in both heterozygous parents compared to control cells, and an additive effect of these two variants in the proband. Interestingly, both parents manifested very subtle EDS signs, such as atrophic scars, recurrent bone fractures, colonic diverticulosis, varicose veins, and osteoarthritis. Our findings emphasize the involvement of COL5A1 in the predisposition to vascular phenotypes and provide novel insights on the c.1588G>A variant, whose functional significance has not been definitely established. In fact, it was previously reported as both "disease modifying", and as a biallelic causative mutation (with heterozygous individuals showing subtle clinical signs of cEDS). We speculated that the c.1588G>A variant might lead to overt phenotype in combination with additional genetic "hits" lowering the collagen α1(V) chain expression below a hypothetical disease threshold.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy
| | - Gianluca Grimod
- Unit of Neurosurgery, Department of Neuroscience, Hospital A. Manzoni, Lecco, Italy
| | - Luigi Avolio
- Department of Pediatric Surgery, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy
| | - Orsetta Zuffardi
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
96
|
Rajan AM, Ma RC, Kocha KM, Zhang DJ, Huang P. Dual function of perivascular fibroblasts in vascular stabilization in zebrafish. PLoS Genet 2020; 16:e1008800. [PMID: 33104690 PMCID: PMC7644104 DOI: 10.1371/journal.pgen.1008800] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Blood vessels are vital to sustain life in all vertebrates. While it is known that mural cells (pericytes and smooth muscle cells) regulate vascular integrity, the contribution of other cell types to vascular stabilization has been largely unexplored. Using zebrafish, we identified sclerotome-derived perivascular fibroblasts as a novel population of blood vessel associated cells. In contrast to pericytes, perivascular fibroblasts emerge early during development, express the extracellular matrix (ECM) genes col1a2 and col5a1, and display distinct morphology and distribution. Time-lapse imaging reveals that perivascular fibroblasts serve as pericyte precursors. Genetic ablation of perivascular fibroblasts markedly reduces collagen deposition around endothelial cells, resulting in dysmorphic blood vessels with variable diameters. Strikingly, col5a1 mutants show spontaneous hemorrhage, and the penetrance of the phenotype is strongly enhanced by the additional loss of col1a2. Together, our work reveals dual roles of perivascular fibroblasts in vascular stabilization where they establish the ECM around nascent vessels and function as pericyte progenitors. Blood vessels are essential to sustain life in humans. Defects in blood vessels can lead to serious diseases, such as hemorrhage, tissue ischemia, and stroke. However, how blood vessel stability is maintained by surrounding support cells is still poorly understood. Using the zebrafish model, we identify a new population of blood vessel associated cells termed perivascular fibroblasts, which originate from the sclerotome, an embryonic structure that is previously known to generate the skeleton of the animal. Perivascular fibroblasts are distinct from pericytes, a known population of blood vessel support cells. They become associated with blood vessels much earlier than pericytes and express several collagen genes, encoding main components of the extracellular matrix. Loss of perivascular fibroblasts or mutations in collagen genes result in fragile blood vessels prone to damage. Using cell tracing in live animals, we find that a subset of perivascular fibroblasts can differentiate into pericytes. Together, our work shows that perivascular fibroblasts play two important roles in maintaining blood vessel integrity. Perivascular fibroblasts secrete collagens to stabilize newly formed blood vessels and a sub-population of these cells also functions as precursors to generate pericytes to provide additional vascular support.
Collapse
Affiliation(s)
- Arsheen M. Rajan
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roger C. Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dan J. Zhang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
97
|
Bielajew BJ, Hu JC, Athanasiou KA. Collagen: quantification, biomechanics, and role of minor subtypes in cartilage. NATURE REVIEWS. MATERIALS 2020; 5:730-747. [PMID: 33996147 PMCID: PMC8114887 DOI: 10.1038/s41578-020-0213-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 05/02/2023]
Abstract
Collagen is a ubiquitous biomaterial in vertebrate animals. Although each of its 28 subtypes contributes to the functions of many different tissues in the body, most studies on collagen or collagenous tissues have focussed on only one or two subtypes. With recent developments in analytical chemistry, especially mass spectrometry, significant advances have been made toward quantifying the different collagen subtypes in various tissues; however, high-throughput and low-cost methods for collagen subtype quantification do not yet exist. In this Review, we introduce the roles of collagen subtypes and crosslinks, and describe modern assays that enable a deep understanding of tissue physiology and disease states. Using cartilage as a model tissue, we describe the roles of major and minor collagen subtypes in detail; discuss known and unknown structure-function relationships; and show how tissue engineers may harness the functional characteristics of collagen to engineer robust neotissues.
Collapse
Affiliation(s)
- Benjamin J. Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
98
|
Sheak JR, Jones DT, Lantz BJ, Maston LD, Vigil D, Resta TC, Resta MM, Howard TA, Kanagy NL, Guo Y, Jankowska-Gan E, Sullivan JA, Braun RK, Burlingham WJ, Gonzalez Bosc LV. NFATc3 regulation of collagen V expression contributes to cellular immunity to collagen type V and hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 319:L968-L980. [PMID: 32997513 DOI: 10.1152/ajplung.00184.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension (PH) results, in part, from T helper-17 (TH17) cell-mediated perivascular inflammation. However, the antigen(s) involved is unknown. Cellular immunity to collagen type V (col V) develops after ischemia-reperfusion injury during lung transplant and is mediated by naturally occurring (n)TH17 cells. Col5a1 gene codifies for the α1-helix of col V, which is normally hidden from the immune system within type I collagen in the extracellular matrix. COL5A1 promoter analysis revealed nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) binding sites. Therefore, we hypothesized that smooth muscle NFATc3 upregulates col V expression, leading to nTH17 cell-mediated autoimmunity to col V in response to CH, representing an upstream mechanism in PH development. To test our hypothesis, we measured indexes of PH in inducible smooth muscle cell (SMC)-specific NFATc3 knockout (KO) mice exposed to either CH (380 mmHg) or normoxia and compared them with wild-type (WT) mice. KO mice did not develop PH. In addition, COL5A1 was one of the 1,792 genes differentially affected by both CH and SMC NFATc3 in isolated intrapulmonary arteries, which was confirmed by RT-PCR and immunostaining. Cellular immunity to col V was determined using a trans vivo delayed-type hypersensitivity assay (Tv-DTH). Tv-DTH response was evident only when splenocytes were used from control mice exposed to CH but not from KO mice, and mediated by nTH17 cells. Our results suggest that SMC NFATc3 is important for CH-induced PH in adult mice, in part, by regulating the expression of the lung self-antigen COL5A1 protein contributing to col V-reactive nTH17-mediated inflammation and hypertension.
Collapse
Affiliation(s)
- Joshua R Sheak
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - David T Jones
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjamin J Lantz
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Levi D Maston
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Danielle Vigil
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Micaela M Resta
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Tamara A Howard
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Yan Guo
- Department of Internal Medicine, Bioinformatics Shared Resource Center, Division of Molecular Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ewa Jankowska-Gan
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Jeremy A Sullivan
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Rudolf K Braun
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - William J Burlingham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Laura V Gonzalez Bosc
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
99
|
Sun M, Luo EY, Adams SM, Adams T, Ye Y, Shetye SS, Soslowsky LJ, Birk DE. Collagen XI regulates the acquisition of collagen fibril structure, organization and functional properties in tendon. Matrix Biol 2020; 94:77-94. [PMID: 32950601 PMCID: PMC7722227 DOI: 10.1016/j.matbio.2020.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Collagen XI is a fibril-forming collagen that regulates collagen fibrillogenesis. Collagen XI is normally associated with collagen II-containing tissues such as cartilage, but it also is expressed broadly during development in collagen I-containing tissues, including tendons. The goals of this study are to define the roles of collagen XI in regulation of tendon fibrillar structure and the relationship to function. A conditional Col11a1-null mouse model was created to permit the spatial and temporal manipulation of Col11a1 expression. We hypothesize that collagen XI functions to regulate fibril assembly, organization and, therefore, tendon function. Previous work using cho mice with ablated Col11a1 alleles supported roles for collagen XI in tendon fibril assembly. Homozygous cho/cho mice have a perinatal lethal phenotype that limited the studies. To circumvent this, a conditional Col11a1flox/flox mouse model was created where exon 3 was flanked with loxP sites. Breeding with Scleraxis-Cre (Scx-Cre) mice yielded a tendon-specific Col11a1-null mouse line, Col11a1Δten/Δten. Col11a1flox/flox mice had no phenotype compared to wild type C57BL/6 mice and other control mice, e.g., Col11a1flox/flox and Scx-Cre. Col11a1flox/flox mice expressed Col11a1 mRNA at levels comparable to wild type and Scx-Cre mice. In contrast, in Col11a1Δten/Δten mice, Col11a1 mRNA expression decreased to baseline in flexor digitorum longus tendons (FDL). Collagen XI protein expression was absent in Col11a1Δten/Δten FDLs, and at ~50% in Col11a1+/Δten compared to controls. Phenotypically, Col11a1Δten/Δten mice had significantly decreased body weights (p < 0.001), grip strengths (p < 0.001), and with age developed gait impairment becoming hypomobile. In the absence of Col11a1, the tendon collagen fibrillar matrix was abnormal when analyzed using transmission electron microscopy. Reducing Col11a1 and, therefore collagen XI content, resulted in abnormal fibril structure, loss of normal fibril diameter control with a significant shift to small diameters and disrupted parallel alignment of fibrils. These alterations in matrix structure were observed in developing (day 4), maturing (day 30) and mature (day 60) mice. Altering the time of knockdown using inducible I-Col11a1−/− mice indicated that the primary regulatory foci for collagen XI was in development. In mature Col11a1Δten/Δten FDLs a significant decrease in the biomechanical properties was observed. The decrease in maximum stress and modulus suggest that fundamental differences in the material properties in the absence of Col11a1 expression underlie the mechanical deficiencies. These data demonstrate an essential role for collagen XI in regulation of tendon fibril assembly and organization occurring primarily during development.
Collapse
Affiliation(s)
- Mei Sun
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Eric Y Luo
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Sheila M Adams
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Thomas Adams
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA
| | - Yaping Ye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Snehal S Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612 USA; McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA.
| |
Collapse
|
100
|
Loss of ADAM9 Leads to Modifications of the Extracellular Matrix Modulating Tumor Growth. Biomolecules 2020; 10:biom10091290. [PMID: 32906814 PMCID: PMC7564588 DOI: 10.3390/biom10091290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022] Open
Abstract
ADAM9 is a metalloproteinase strongly expressed at the tumor-stroma border by both tumor and stromal cells. We previously showed that the host deletion of ADAM9 leads to enhanced growth of grafted B16F1 melanoma cells by a mechanism mediated by TIMP1 and the TNF-α/sTNFR1 pathway. This study aimed to dissect the structural modifications in the tumor microenvironment due to the stromal expression of ADAM9 during melanoma progression. We performed proteomic analysis of peritumoral areas of ADAM9 deleted mice and identified the altered expression of several matrix proteins. These include decorin, collagen type XIV, fibronectin, and collagen type I. Analysis of these matrices in the matrix producing cells of the dermis, fibroblasts, showed that ADAM9-/- and wild type fibroblasts synthesize and secreted almost comparable amounts of decorin. Conversely, collagen type I expression was moderately, but not significantly, decreased at the transcriptional level, and the protein increased in ADAM9-/- fibroblast mono- and co-cultures with melanoma media. We show here for the first time that ADAM9 can release a collagen fragment. Still, it is not able to degrade collagen type I. However, the deletion of ADAM9 in fibroblasts resulted in reduced MMP-13 and -14 expression that may account for the reduced processing of collagen type I. Altogether, the data show that the ablation of ADAM9 in the host leads to the altered expression of peritumoral extracellular matrix proteins that generate a more favorable environment for melanoma cell growth. These data underscore the suppressive role of stromal expression of ADAM9 in tumor growth and call for a better understanding of how protease activities function in a cellular context for improved targeting.
Collapse
|