51
|
Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 2012; 7:e36964. [PMID: 22615857 PMCID: PMC3355169 DOI: 10.1371/journal.pone.0036964] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces.
Collapse
|
52
|
Abstract
Latent transforming growth factor beta (TGF-β) binding proteins (LTBPs) are large extracellular glycoproteins structurally similar to fibrillins. They perform intricate and important roles in the extracellular matrix (ECM) and perturbations of their function manifest as a wide range of diseases. LTBPs are major regulators of TGF-β bioavailability and action. In addition, LTBPs interact with other ECM proteins-from cytokines to large multi-factorial aggregates like microfibrils and elastic fibers, affecting their genesis, structure, and performance. In the present article, we review recent advancements in the field and relate the complex roles of LTBP in development and homeostasis.
Collapse
Affiliation(s)
- Vesna Todorovic
- Department of Cell Biology, NYU Langone Medical Center, New York, New York 10016, USA.
| | | |
Collapse
|
53
|
Weist MR, Wellington MS, Bermudez JE, Kostrominova TY, Mendias CL, Arruda EM, Larkin LM. TGF-β1 enhances contractility in engineered skeletal muscle. J Tissue Eng Regen Med 2012; 7:562-71. [PMID: 22371337 DOI: 10.1002/term.551] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 10/01/2011] [Accepted: 11/15/2011] [Indexed: 12/19/2022]
Abstract
Scaffoldless engineered 3D skeletal muscle tissue created from satellite cells offers the potential to replace muscle tissue that is lost due to severe trauma or disease. Transforming growth factor-beta 1 (TGF-β1) plays a vital role in mediating migration and differentiation of satellite cells during the early stages of muscle development. Additionally, TGF-β1 promotes collagen type I synthesis in the extracellular matrix (ECM) of skeletal muscle, which provides a passive elastic substrate to support myofibres and facilitate the transmission of force. To determine the role of TGF-β1 in skeletal muscle construct formation and contractile function in vitro, we created tissue-engineered 3D skeletal muscle constructs with varying levels of recombinant TGF-β1 added to the cell culture medium. Prior to the addition of TGF-β1, the primary cell population was composed of 75% Pax7-positive cells. The peak force for twitch, tetanus and spontaneous force were significantly increased in the presence of 2.0 ng/ml TGF-β1 when compared to 0, 0.5 and 1.0 ng/ml TGF-β1. Visualization of the cellular structure with H&E and with immunofluorescence staining for sarcomeric myosin heavy chains and collagen type I showed denser regions of better organized myofibres in the presence of 2.0 ng/ml TGF-β1 versus 0, 0.5 and 1.0 ng/ml. The addition of 2.0 ng/ml TGF-β1 to the culture medium of engineered 3D skeletal muscle constructs enhanced contractility and extracellular matrix organization.
Collapse
Affiliation(s)
- Michael R Weist
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Arteaga-Solis E, Settembre C, Ballabio A, Karsenty G. Sulfatases are determinants of alveolar formation. Matrix Biol 2012; 31:253-60. [PMID: 22366163 DOI: 10.1016/j.matbio.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Alveolar formation or alveolarization is orchestrated by a finely regulated and complex interaction between growth factors and extracellular matrix proteins. The lung parenchyma contains various extracellular matrix proteins including proteoglycans, which are composed of glycosaminoglycans (GAGs) linked to a protein core. Although GAGs are known to regulate growth factor distribution and activity according to their degree of sulfation the role of sulfated GAG in the respiratory system is not well understood. The degree of sulfation of GAGs is regulated in part, by sulfatases that remove sulfate groups. In vertebrates, the enzyme Sulfatase-Modifying Factor 1 (Sumf1) activates all sulfatases. Here we utilized mice lacking Sumf1(-/-) to study the importance of proteoglycan desulfation in lung development. The Sumf1(-/-) mice have normal lungs up until the onset of alveolarization at post-natal day 5 (P5). We detected increased deposition of sulfated GAG throughout the lung parenchyma and a decrease in alveolar septa formation. Moreover, stereological analysis showed that the alveolar volume is 20% larger in Sumf1(-/-) as compared to wild type (WT) mice at P10 and P30. Additionally, pulmonary function test was consistent with increased alveolar volume. Genetic experiments demonstrate that in Sumf1(-/-) mice arrest of alveolarization is independent of fibroblast growth factor signaling. In turn, the Sumf1(-/-) mice have increased transforming growth factor β (TGFβ) signaling and in vivo injection of TGFβ neutralizing antibody leads to normalization of alveolarization. Thus, absence of sulfatase activity increases sulfated GAG deposition in the lungs causing deregulation of TGFβ signaling and arrest of alveolarization.
Collapse
Affiliation(s)
- Emilio Arteaga-Solis
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
55
|
Renard M, Callewaert B, Baetens M, Campens L, MacDermot K, Fryns JP, Bonduelle M, Dietz HC, Gaspar IM, Cavaco D, Stattin EL, Schrander-Stumpel C, Coucke P, Loeys B, De Paepe A, De Backer J. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFβ signaling in FTAAD. Int J Cardiol 2011; 165:314-21. [PMID: 21937134 PMCID: PMC3253210 DOI: 10.1016/j.ijcard.2011.08.079] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/12/2011] [Accepted: 08/21/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm/dissection (TAAD) is a common phenotype that may occur as an isolated manifestation or within the constellation of a defined syndrome. In contrast to syndromic TAAD, the elucidation of the genetic basis of isolated TAAD has only recently started. To date, defects have been found in genes encoding extracellular matrix proteins (fibrillin-1, FBN1; collagen type III alpha 1, COL3A1), proteins involved in transforming growth factor beta (TGFβ) signaling (TGFβ receptor 1 and 2, TGFBR1/2; and SMAD3) or proteins that build up the contractile apparatus of aortic smooth muscle cells (myosin heavy chain 11, MYH11; smooth muscle actin alpha 2, ACTA2; and MYLK). METHODS AND RESULT In 110 non-syndromic TAAD patients that previously tested negative for FBN1 or TGFBR1/2 mutations, we identified 7 ACTA2 mutations in a cohort of 43 familial TAAD patients, including 2 premature truncating mutations. Sequencing of MYH11 revealed an in frame splice-site alteration in one out of two probands with TAA(D) associated with PDA but none in the series of 22 probands from the cohort of 110 patients with non-syndromic TAAD. Interestingly, immunohistochemical staining of aortic biopsies of a patient and a family member with MYH11 and patients with ACTA2 missense mutations showed upregulation of the TGFβ signaling pathway. CONCLUSIONS MYH11 mutations are rare and typically identified in patients with TAAD associated with PDA. ACTA2 mutations were identified in 16% of a cohort presenting familial TAAD. Different molecular defects in TAAD may account for a different pathogenic mechanism of enhanced TGFβ signaling.
Collapse
Affiliation(s)
- Marjolijn Renard
- Center for Medical Genetics, University Hospital of Ghent, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011; 32:6692-709. [PMID: 21715002 DOI: 10.1016/j.biomaterials.2011.05.078] [Citation(s) in RCA: 948] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022]
Abstract
A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses.
Collapse
Affiliation(s)
- Sandra Franz
- Department of Dermatology, Venerology and Allergology, University Leipzig, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
57
|
Gantus MAV, Alves LM, Stipursky J, Souza ECL, Teodoro AJ, Alves TR, Carvalho DP, Martinez AMB, Gomes FCA, Nasciutti LE. Estradiol modulates TGF-β1 expression and its signaling pathway in thyroid stromal cells. Mol Cell Endocrinol 2011; 337:71-9. [PMID: 21315800 DOI: 10.1016/j.mce.2011.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 01/14/2023]
Abstract
The higher prevalence of thyroid disease in women suggests that estrogen (E2) might be involved in the pathophysiology of thyroid dysfunction. To approach the question of the effect of stromal cells in the modulation of thyroid epithelial cells activity, we established and characterized a homogeneous stromal cell population (TS7 cells) of rat thyroid gland. These fibroblastic cells synthesize the cytoskeleton proteins α-smooth muscle actin and vimentin, produce basement membrane components and express the cytokine transforming growth factor beta 1 (TGF-β1). Here, we hypothesized that the effects of E2 on follicular thyroid cells are mediated by TGF-β1 synthesis and secretion by stromal cells (paracrine action). Thus we investigated the effect of E2 on TGF-β1 synthesis and its signaling pathway in TS7 cells. In addition, we analyzed the role of TGF-β1 signaling pathway as mediator of TS7-PC CL3 thyroid epithelial cells interactions. We report that TS7 stromal cells expressed α and β estrogen receptors (ERα and ERβ). Further, both isoforms of TGF-β1 receptors, TGFRI and TGFRII, were also identified in TS7 cells, suggesting that these cells might be a target for this cytokine in vitro. Treatment of TS7 cells with E2 induced both synthesis and secretion of TGF-β1. This event was followed by phosphorylation of the transcription factor Smad2, a hallmark of TGF-β1 pathway activation. Co-culture of PC CL3 cells onto TS7 cells monolayers yielded round aggregates of PC CL3 cells surrounded by TS7 cells. TS7 cells induced a decrease in iodide uptake by PC CL3 cells, probably by a mechanism involving TGF-β1. Moreover, E2 affected synthesis and organization of the extracellular matrix (ECM) components, tenascin C and chondroitin sulfate, in these co-culture cells. Our results point to the TGF-β1/Smad-2 signaling pathway as a putative target of estrogen actions on thyroid stromal cells and contribute to understanding the interplay between stromal and follicular cells in thyroid physiology.
Collapse
Affiliation(s)
- M A V Gantus
- Laboratory of Cellular Interactions, Program of Cellular Biology and Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Involvement of host cell heparan sulfate proteoglycan in Trypanosoma cruzi amastigote attachment and invasion. Parasitology 2011; 138:593-601. [PMID: 21269549 DOI: 10.1017/s0031182010001678] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell surface glycosaminoglycans (GAGs) play an important role in the attachment and invasion process of a variety of intracellular pathogens. We have previously demonstrated that heparan sulfate proteoglycans (HSPG) mediate the invasion of trypomastigote forms of Trypanosoma cruzi in cardiomyocytes. Herein, we analysed whether GAGs are also implicated in amastigote invasion. Competition assays with soluble GAGs revealed that treatment of T. cruzi amastigotes with heparin and heparan sulfate leads to a reduction in the infection ratio, achieving 82% and 65% inhibition of invasion, respectively. Other sulfated GAGs, such as chondroitin sulfate, dermatan sulfate and keratan sulfate, had no effect on the invasion process. In addition, a significant decrease in infection occurred after interaction of amastigotes with GAG-deficient Chinese Hamster Ovary (CHO) cells, decreasing from 20% and 28% in wild-type CHO cells to 5% and 9% in the mutant cells after 2 h and 4 h of infection, respectively. These findings suggest that amastigote invasion also involves host cell surface heparan sulfate proteoglycans. The knowledge of the mechanism triggered by heparan sulfate-binding T. cruzi proteins may provide new potential candidates for Chagas disease therapy.
Collapse
|
59
|
Olivieri J, Smaldone S, Ramirez F. Fibrillin assemblies: extracellular determinants of tissue formation and fibrosis. FIBROGENESIS & TISSUE REPAIR 2010; 3:24. [PMID: 21126338 PMCID: PMC3012016 DOI: 10.1186/1755-1536-3-24] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/02/2010] [Indexed: 11/13/2022]
Abstract
The extracellular matrix (ECM) plays a key role in tissue formation, homeostasis and repair, mutations in ECM components have catastrophic consequences for organ function and therefore, for the fitness and survival of the organism. Collagen, fibrillin and elastin polymers represent the architectural scaffolds that impart specific mechanic properties to tissues and organs. Fibrillin assemblies (microfibrils) have the additional function of distributing, concentrating and modulating local transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) signals that regulate a plethora of cellular activities, including ECM formation and remodeling. Fibrillins also contain binding sites for integrin receptors, which induce adaptive responses to changes in the extracellular microenvironment by reorganizing the cytoskeleton, controlling gene expression, and releasing and activating matrix-bound latent TGF-β complexes. Genetic evidence has indicated that fibrillin-1 and fibrillin-2 contribute differently to the organization and structural properties of non-collagenous architectural scaffolds, which in turn translate into discrete regulatory outcomes of locally released TGF-β and BMP signals. Additionally, the study of congenital dysfunctions of fibrillin-1 has yielded insights into the pathogenesis of acquired connective tissue disorders of the connective tissue, such as scleroderma. On the one hand, mutations that affect the structure or expression of fibrillin-1 perturb microfibril biogenesis, stimulate improper latent TGF-β activation, and give rise to the pleiotropic manifestations in Marfan syndrome (MFS). On the other hand, mutations located around the integrin-binding site of fibrillin-1 perturb cell matrix interactions, architectural matrix assembly and extracellular distribution of latent TGF-β complexes, and lead to the highly restricted fibrotic phenotype of Stiff Skin syndrome. Understanding the molecular similarities and differences between congenital and acquired forms of skin fibrosis may therefore provide new therapeutic tools to mitigate or even prevent disease progression in scleroderma and perhaps other fibrotic conditions.
Collapse
Affiliation(s)
- Jacopo Olivieri
- Scienze Mediche e Chirurgiche, Sezione Clinica Medica, Universita' Politecnica delle Marche, Ancona, Italy
| | - Silvia Smaldone
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | - Francesco Ramirez
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
60
|
Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in mice. Proc Natl Acad Sci U S A 2010; 107:21671-6. [PMID: 21106754 DOI: 10.1073/pnas.1016233107] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Permanent scars form upon healing of tissue injuries such as those caused by ischemia (myocardial infarction, stroke), trauma, surgery, and inflammation. Current options in reducing scar formation are limited to local intervention. We have designed a systemically administered, target-seeking biotherapeutic for scar prevention. It consists of a vascular targeting peptide that specifically recognizes angiogenic blood vessels and extravasates into sites of injury, fused with a therapeutic molecule, decorin. Decorin prevents tissue fibrosis and promotes tissue regeneration by inhibiting TGF-β activity and by other regulatory activities. The decorin-targeting peptide fusion protein had substantially increased neutralizing activity against TGF-β1 in vitro compared with untargeted decorin. In vivo, the fusion protein selectively accumulated in wounds, and promoted wound healing and suppressed scar formation at doses where nontargeted decorin was inactive. These results show that selective targeting yields a tissue-healing and scar-reducing compound with enhanced specificity and potency. This approach may help make reducing scar formation by systemic drug delivery a feasible option for surgery and for the treatment of pathological processes in which scar formation is a problem.
Collapse
|
61
|
Nistala H, Lee-Arteaga S, Smaldone S, Siciliano G, Carta L, Ono RN, Sengle G, Arteaga-Solis E, Levasseur R, Ducy P, Sakai LY, Karsenty G, Ramirez F. Fibrillin-1 and -2 differentially modulate endogenous TGF-β and BMP bioavailability during bone formation. ACTA ACUST UNITED AC 2010; 190:1107-21. [PMID: 20855508 PMCID: PMC3101602 DOI: 10.1083/jcb.201003089] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular microfibrils composed of fibrillin-1 and -2 regulate bone formation through modulation of TGF-β and BMP signaling. Extracellular regulation of signaling by transforming growth factor (TGF)–β family members is emerging as a key aspect of organ formation and tissue remodeling. In this study, we demonstrate that fibrillin-1 and -2, the structural components of extracellular microfibrils, differentially regulate TGF-β and bone morphogenetic protein (BMP) bioavailability in bone. Fibrillin-2–null (Fbn2−/−) mice display a low bone mass phenotype that is associated with reduced bone formation in vivo and impaired osteoblast maturation in vitro. This Fbn2−/− phenotype is accounted for by improper activation of latent TGF-β that selectively blunts expression of osterix, the transcriptional regulator of osteoblast maturation, and collagen I, the structural template for bone mineralization. Cultured osteoblasts from Fbn1−/− mice exhibit improper latent TGF-β activation as well, but mature faster because of increased availability of otherwise matrix-bound BMPs. Additional in vitro evidence excludes a direct role of microfibrils in supporting mineral deposition. Together, these findings identify the extracellular microfibrils as critical regulators of bone formation through the modulation of endogenous TGF-β and BMP signaling.
Collapse
Affiliation(s)
- Harikiran Nistala
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Massam-Wu T, Chiu M, Choudhury R, Chaudhry SS, Baldwin AK, McGovern A, Baldock C, Shuttleworth CA, Kielty CM. Assembly of fibrillin microfibrils governs extracellular deposition of latent TGF beta. J Cell Sci 2010; 123:3006-18. [PMID: 20699357 PMCID: PMC2923573 DOI: 10.1242/jcs.073437] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2010] [Indexed: 11/20/2022] Open
Abstract
Control of the bioavailability of the growth factor TGFbeta is essential for tissue formation and homeostasis, yet precisely how latent TGFbeta is incorporated into the extracellular matrix is unknown. Here, we show that deposition of a large latent TGFbeta complex (LLC), which contains latent TGFbeta-binding protein 1 (LTBP-1), is directly dependent on the pericellular assembly of fibrillin microfibrils, which interact with fibronectin during higher-order fibrillogenesis. LTBP-1 formed pericellular arrays that colocalized with microfibrils, whereas fibrillin knockdown inhibited fibrillar LTBP-1 and/or LLC deposition. Blocking alpha5beta1 integrin or supplementing cultures with heparin, which both inhibited microfibril assembly, disrupted LTBP-1 deposition and enhanced Smad2 phosphorylation. Full-length LTBP-1 bound only weakly to N-terminal pro-fibrillin-1, but this association was strongly enhanced by heparin. The microfibril-associated glycoprotein MAGP-1 (MFAP-2) inhibited LTBP-1 binding to fibrillin-1 and stimulated Smad2 phosphorylation. By contrast, fibulin-4, which interacted strongly with full-length LTBP-1, did not induce Smad2 phosphorylation. Thus, LTBP-1 and/or LLC deposition is dependent on pericellular microfibril assembly and is governed by complex interactions between LTBP-1, heparan sulfate, fibrillin-1 and microfibril-associated molecules. In this way, microfibrils control TGFbeta bioavailability.
Collapse
Affiliation(s)
| | | | - Rawshan Choudhury
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Shazia S. Chaudhry
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Andrew K. Baldwin
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Amanda McGovern
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - C. Adrian Shuttleworth
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Cay M. Kielty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
63
|
|
64
|
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126-40. [PMID: 19854168 PMCID: PMC2854274 DOI: 10.1016/j.ydbio.2009.10.026] [Citation(s) in RCA: 952] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
65
|
Mikedis MM, Downs KM. Collagen type IV and Perlecan exhibit dynamic localization in the Allantoic Core Domain, a putative stem cell niche in the murine allantois. Dev Dyn 2010; 238:3193-204. [PMID: 19924818 DOI: 10.1002/dvdy.22129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A body of evidence suggests that the murine allantois contains a stem cell niche, the Allantoic Core Domain (ACD), that may contribute to a variety of allantoic and embryonic cell types. Given that extracellular matrix (ECM) regulates cell fate and function in niches, the allantois was systematically examined for Collagen type IV (ColIV) and Perlecan, both of which are associated with stem cell proliferation and differentiation. Not only was localization of ColIV and Perlecan more widespread during gastrulation than previously reported, but protein localization profiles were particularly robust and dynamic within the allantois and associated visceral endoderm as the ACD formed and matured. We propose that these data provide further evidence that the ACD is a stem cell niche whose activity is synchronized with associated visceral endoderm, possibly via ECM proteins.
Collapse
Affiliation(s)
- Maria M Mikedis
- Department of Anatomy, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
66
|
Davids JS, Carothers AM, Damas BC, Bertagnolli MM. Chronic cyclooxygenase-2 inhibition promotes myofibroblast-associated intestinal fibrosis. Cancer Prev Res (Phila) 2010; 3:348-58. [PMID: 20179298 PMCID: PMC2833233 DOI: 10.1158/1940-6207.capr-09-0146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Anti-inflammatory drugs prevent intestinal tumor formation, an activity related to their ability to inhibit inflammatory pathway signaling in the target tissue. We previously showed that treatment of Min/(+) mice with the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib induced rapid tumor regression; however, drug-resistant tumors appeared with long-term treatment. In this study, we investigated whole-tissue changes in inflammatory signaling by studying constituents of the tissue stroma and extracellular matrix. We found that celecoxib resistance was associated with changes in factors regulating autocrine transforming growth factor-beta (TGFbeta) signaling. Chronic drug treatment expanded the population of bone marrow-derived CD34(+) vimentin(+) alphaSMA(-) myofibroblast precursors and alphaSMA(+) vimentin(+) F4/80(-) myofibroblasts in the lamina propria and submucosa, providing a source of increased TGFbeta and COX-2 expression. Membrane constituents regulating TGFbeta availability, including syndecan-1 and heparanase-1, were also modified by chronic treatment in a manner promoting increased TGFbeta signaling. Finally, long-term celecoxib treatment induced tissue fibrosis, as indicated by increased expression of collagen, fibronectin, and laminin in the basement membrane. We conclude that chronic COX-2 inhibition alters TGFbeta signaling in the intestinal mucosa, producing conditions consistent with chronic inflammation.
Collapse
Affiliation(s)
- Jennifer S Davids
- Department of Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
67
|
Abstract
Fibrillin-1 and fibrillin-2 are large cysteine-rich glycoproteins that serve two key physiological functions: as supporting structures that impart tissue integrity and as regulators of signaling events that instruct cell performance. The structural role of fibrillins is exerted through the temporal and hierarchical assembly of microfibrils and elastic fibers, whereas the instructive role reflects the ability of fibrillins to sequester transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) complexes in the extracellular matrix. Characterization of fibrillin mutations in human patients and in genetically engineered mice has demonstrated that perturbation of either function manifests in disease. More generally, these studies have indicated that fibrillins are integral components of a broader biological network of extracellular, cell surface, and signaling molecules that orchestrate morphogenetic and homeostatic programs in multiple organ systems. They have also suggested that the relative composition of fibrillin-rich microfibrils imparts contextual specificity to TGFbeta and BMP signaling by concentrating the ligands locally so as to regulate cell differentiation within a spatial context during organ formation (positive regulation) and by restricting their bioavailability so as to modulate cell performance in a timely fashion during tissue remodeling/repair (negative regulation). Correlative evidence suggests functional coupling of the cell-directed assembly of microfibrils and targeting of TGFbeta and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals, with TGFbeta and BMPs as the nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.
Collapse
Affiliation(s)
- Francesco Ramirez
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
68
|
Fuster MM, Wang L. Endothelial heparan sulfate in angiogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:179-212. [PMID: 20807646 DOI: 10.1016/s1877-1173(10)93009-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heparan sulfate (HS) is a linear polysaccharide composed of 50-200 glucosamine and uronic acid (glucuronic acid or iduronic acid) disaccharide repeats with epimerization and various sulfation modifications. HS is covalently attached to core proteins to form HS-proteoglycans. Most of the functions of HS-proteoglycans are mediated by their HS moieties. The biosynthesis of HS is initiated by chain polymerization and is followed by stepwise modification reactions, including sulfation and epimerization. These modifications generate ligand-binding sites that modulate cell functions and activities of proteinases and/or proteinase inhibitors. HS is abundantly expressed in developing and mature vasculature, and understanding its roles in vascular biology and related human diseases is an area of intense investigation. In this chapter, we summarize the significant recent advances in our understanding of the roles of HS in developmental and pathological angiogenesis with a major focus on studies using transgenic as well as gene knockout/knockdown models in mice and zebrafish. These studies have revealed that HS critically regulates angiogenesis by playing a proangiogenic role, and this regulatory function critically depends on HS fine structure. The latter is responsible for facilitating cell-surface binding of various proangiogenic growth factors that in turn mediate endothelial growth signaling. In cancer, mouse studies have revealed important roles for endothelial cell-surface HS as well as matrix-associated HS, wherein signaling by multiple growth factors as well as matrix storage of growth factors may be regulated by HS. We also discuss important mediators that may fine-tune such regulation, such as heparanase and sulfatases; and models wherein targeting HS (or core protein) biosynthesis may affect tumor growth and vascularization. Finally, the importance of targeting HS in other human diseases wherein angiogenesis may play pathophysiologic (or even therapeutic) roles is considered.
Collapse
Affiliation(s)
- Mark M Fuster
- Department of Medicine, Division of Pulmonary and Critical Care, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
69
|
Hintze V, Moeller S, Schnabelrauch M, Bierbaum S, Viola M, Worch H, Scharnweber D. Modifications of Hyaluronan Influence the Interaction with Human Bone Morphogenetic Protein-4 (hBMP-4). Biomacromolecules 2009; 10:3290-7. [DOI: 10.1021/bm9008827] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vera Hintze
- Institute of Material Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany, Biomaterials Department, INNOVENT e.V., 07745 Jena, Germany, and Department of Experimental and Clinical Biomedical Sciences, Università dell’Insubria, 21100 Varese, Italy
| | - Stephanie Moeller
- Institute of Material Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany, Biomaterials Department, INNOVENT e.V., 07745 Jena, Germany, and Department of Experimental and Clinical Biomedical Sciences, Università dell’Insubria, 21100 Varese, Italy
| | - Matthias Schnabelrauch
- Institute of Material Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany, Biomaterials Department, INNOVENT e.V., 07745 Jena, Germany, and Department of Experimental and Clinical Biomedical Sciences, Università dell’Insubria, 21100 Varese, Italy
| | - Susanne Bierbaum
- Institute of Material Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany, Biomaterials Department, INNOVENT e.V., 07745 Jena, Germany, and Department of Experimental and Clinical Biomedical Sciences, Università dell’Insubria, 21100 Varese, Italy
| | - Manuela Viola
- Institute of Material Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany, Biomaterials Department, INNOVENT e.V., 07745 Jena, Germany, and Department of Experimental and Clinical Biomedical Sciences, Università dell’Insubria, 21100 Varese, Italy
| | - Hartmut Worch
- Institute of Material Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany, Biomaterials Department, INNOVENT e.V., 07745 Jena, Germany, and Department of Experimental and Clinical Biomedical Sciences, Università dell’Insubria, 21100 Varese, Italy
| | - Dieter Scharnweber
- Institute of Material Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany, Biomaterials Department, INNOVENT e.V., 07745 Jena, Germany, and Department of Experimental and Clinical Biomedical Sciences, Università dell’Insubria, 21100 Varese, Italy
| |
Collapse
|
70
|
Ramirez F, Rifkin DB. Extracellular microfibrils: contextual platforms for TGFbeta and BMP signaling. Curr Opin Cell Biol 2009; 21:616-22. [PMID: 19525102 PMCID: PMC2767232 DOI: 10.1016/j.ceb.2009.05.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022]
Abstract
The extracellular matrix plays a key role in organ formation and tissue homeostasis. Recent studies have revealed that fibrillin assemblies (microfibrils) confer both tissue integrity and regulate signaling events that instruct cell performance and that perturbation of either function manifests in disease. These analyses have also indicated that fibrillin assemblies impart contextual specificity to TGFbeta and BMP signaling. Moreover, correlative evidence suggests functional coupling between cell-directed assembly of microfibrils and targeting of TGFbeta and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals with TGFbetas and BMPs as nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.
Collapse
Affiliation(s)
- Francesco Ramirez
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
71
|
Arora S, Husain M, Kumar D, Patni H, Pathak S, Mehrotra D, Reddy VK, Reddy LR, Salhan D, Yadav A, Mathieson PW, Saleem MA, Chander PN, Singhal PC. Human immunodeficiency virus downregulates podocyte apoE expression. Am J Physiol Renal Physiol 2009; 297:F653-61. [PMID: 19553347 PMCID: PMC2739717 DOI: 10.1152/ajprenal.90668.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 06/22/2009] [Indexed: 01/19/2023] Open
Abstract
Apolipoprotein E (apoE) has been demonstrated to play an important role in providing protection against mesangial cell injury. In the present study, we evaluated the role of apoE and its associated downstream effects in human immunodeficiency virus (HIV)-associated nephropathy (HIVAN). Control (n = 6) and age- and sex-matched HIV-1 transgenic mice (Tg26, n = 6) were evaluated for their renal cortical expression of apoE. Renal tissue from Tg26 mice not only showed decreased apoE expression but also displayed downregulation of perlecan mRNA expression. In in vitro studies, conditionally immortalized human podocytes (CIHPs) were transduced with either NL4-3HIV (an HIV-1 construct lacking gag and pol, used for the development of Tg26 mouse model; NL4-3/CIHP) or empty vector (EV/CIHP); NL4-3/CIHPs and EV/CIHPs were studied for apoE mRNA expression. NL4-3/CIHPs showed reduction in apoE expression compared with EV/CIHPs. To evaluate the role of HIV-1 genes in the modulation of apoE expression, conditionally immortalized mouse podocytes (CIMPs) were transduced with individual HIV-1 gene constructs. Only nef-transduced CIMPs showed a decrease in apoE expression. To confirm this effect of nef in CIHPs, microarray analysis was performed in stable colonies of nef/CIHPs and EV/CIHPs. nef/CIHPs showed a 60% decrease in apoE and a 90% reduction in heparan sulfate mRNA expression. Moreover, nef transgenic mice showed a decrease in renal tissue expression of both apoE and perlecan. Both Tg26 and nef transgenic mice also showed areas of mesangial cell proliferation. These findings suggest that HIV-1-induced reduction in podocyte apoE expression and associated downregulation of podocyte perlecan might be contributing to mesangial cell (MC) phenotype in HIVAN.
Collapse
Affiliation(s)
- Shitij Arora
- Immunology Center, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Medical Center, Manhasset, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Zuberi RI, Ge XN, Jiang S, Bahaie NS, Kang BN, Hosseinkhani RM, Frenzel EM, Fuster MM, Esko JD, Rao SP, Sriramarao P. Deficiency of endothelial heparan sulfates attenuates allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:3971-9. [PMID: 19710461 DOI: 10.4049/jimmunol.0901604] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of targeted inactivation of the gene encoding N-deacetylase/N-sulfotransferase-1 (Ndst1), a key enzyme involved in the biosynthesis of heparan sulfate (HS) chains, on the inflammatory response associated with allergic inflammation in a murine model of OVA-induced acute airway inflammation was investigated. OVA-exposed Ndst1(f/f)TekCre(+) (mutant) mice deficient in endothelial and leukocyte Ndst1 demonstrated significantly decreased allergen-induced airway hyperresponsiveness and inflammation characterized by a significant reduction in airway recruitment of inflammatory cells (eosinophils, macrophages, neutrophils, and lymphocytes), diminished IL-5, IL-2, TGF-beta1, and eotaxin levels, as well as decreased expression of TGF-beta1 and the angiogenic protein FIZZ1 (found in inflammatory zone 1) in lung tissue compared with OVA-exposed Ndst1(f/f)TekCre(-) wild-type littermates. Furthermore, murine eosinophils demonstrated significantly decreased rolling on lung endothelial cells (ECs) from mutant mice compared with wild-type ECs under conditions of flow in vitro. Treatment of wild-type ECs, but not eosinophils, with anti-HS Abs significantly inhibited eosinophil rolling, mimicking that observed with Ndst1-deficient ECs. In vivo, trafficking of circulating leukocytes in lung microvessels of allergen-challenged Ndst1-deficient mice was significantly lower than that observed in corresponding WT littermates. Endothelial-expressed HS plays an important role in allergic airway inflammation through the regulation of recruitment of inflammatory cells to the airways by mediating interaction of leukocytes with the vascular endothelium. Furthermore, HS may also participate by sequestering and modulating the activity of allergic asthma-relevant mediators such as IL-5, IL-2, and TGF-beta1.
Collapse
Affiliation(s)
- Riaz I Zuberi
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Prodoehl MJ, Irving-Rodgers HF, Bonner WM, Sullivan TM, Micke GC, Gibson MA, Perry VE, Rodgers RJ. Fibrillins and latent TGFbeta binding proteins in bovine ovaries of offspring following high or low protein diets during pregnancy of dams. Mol Cell Endocrinol 2009; 307:133-41. [PMID: 19524133 DOI: 10.1016/j.mce.2009.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 02/03/2009] [Accepted: 03/03/2009] [Indexed: 01/02/2023]
Abstract
The microsatellite D19S884, located in intron 55 of fibrillin-3 (FBN3) gene, associates with polycystic ovary syndrome (PCOS) in familial studies. The family of fibrillin proteins (FBN1-3), which includes latent TGF-beta binding proteins (LTBP-1 to -4), are extracellular matrix proteins. We localized and examined the expression of these proteins in the adult bovine ovaries (n=7-10 per group, average age 681 days) born to mothers fed high (13% protein per total dry weight) or a low protein diet (5%) in each of the first and second trimesters of pregnancy (n=4 groups). FBN1 and LTBP-1 and -2 were the major members expressed in the mature ovary. Each protein had a unique localization pattern but all were associated with stromal tissue including the tunica albuginea (FBN1 and LTBP-2 near surface, and FBN1 and LTBP-1 deeper in the tunica), cortical stroma (FBN1 and LTBP-1) and follicular thecal layers (FBN1 in theca interna, LTBP-1 in the inner regions of the theca externa, and LTBP-2 in the outer regions of the theca externa). No significant (P>0.05) effects of maternal diet were observed on either the localization or the levels of mRNA of any of these proteins in the tunica. Expression levels of all three FBNs were positively correlated with each other, and FBN1 and 2 were positively correlated with LTBP-2, suggesting some level of co-ordinate regulation. This is the first study to investigate the expression and localization of these genes affecting TGFbeta bioavailability in the ovary.
Collapse
Affiliation(s)
- Mark J Prodoehl
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Jiang HD, Guan HS. MS80, a novel sulfated oligosaccharide, inhibits pulmonary fibrosis by targeting TGF-beta1 both in vitro and in vivo. Acta Pharmacol Sin 2009; 30:973-9. [PMID: 19543300 DOI: 10.1038/aps.2009.86] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM The pro-fibrogenic cytokine transforming growth factor-beta 1 (TGF-beta1) has attracted much attention for its potential role in the etiology of idiopathic pulmonary fibrosis (IPF). Here, we demonstrate that MS80, a novel sulfated oligosaccharide extracted from seaweed, can bind TGF-beta1. The aim of the present study was to determine whether MS80 is capable of combating TGF-beta1-mediated pulmonary fibrotic events both in vitro and in vivo, and to investigate the possible underlying mechanisms. METHODS Surface plasmon resonance was used to uncover the binding profiles between the compound and TGF-beta. MTT assay, flow cytometry, Western blot analysis, BCA protein assay and SDS-PAGE gelatin zymography were used to probe the antifibrotic mechanisms of MS80. The in vivo fibrotic efficacy was evaluated in a bleomycin instillation-induced rat model. RESULTS We report that MS80, a new kind of sulfated oligosaccharide extracted from seaweed, inhibits TGF-beta1-induced pulmonary fibrosis in vitro and bleomycin-induced pulmonary fibrosis in vivo. Our results indicated that MS80 competitively inhibited heparin/HS-TGF-beta1 interaction through its high binding affinity for TGF-beta1. Moreover, MS80 arrested TGF-beta1-induced human embryo pulmonary fibroblast (HEPF) cell proliferation, collagen deposition and matrix metalloproteinase (MMP) activity. Intriguingly, MS80 deactivated both the ERK and p38 signaling pathways. MS80 was also a potent suppressor of bleomycin-induced rat pulmonary fibrosis in vivo, as evidenced by improved pathological settings and decreased lung collagen contents. CONCLUSION MS80 in particular, and perhaps oligosaccharide in general, offer better pharmacological profiles with appreciably few side effects and represent a promising class of drug candidates for IPF therapy.Acta Pharmacologica Sinica (2009) 30: 973-979; doi: 10.1038/aps.2009.86; published online 22 June 2009.
Collapse
|
75
|
Ramirez F, Sakai LY. Biogenesis and function of fibrillin assemblies. Cell Tissue Res 2009. [DOI: 10.1007/s00441-009-0822-x doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
76
|
Jurjus RA, Liu Y, Pal-Ghosh S, Tadvalkar G, Stepp MA. Primary dermal fibroblasts derived from sdc-1 deficient mice migrate faster and have altered alphav integrin function. Wound Repair Regen 2009; 16:649-60. [PMID: 19128260 DOI: 10.1111/j.1524-475x.2008.00423.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT The goal of this study is to determine whether dermal fibroblasts lacking syndecan-1 (sdc1) show differences in integrin expression and function that could contribute to the delayed skin and corneal wound healing phenotypes seen in sdc-1 null mice. Using primary dermal fibroblasts, we show that after 3 days in culture no differences in alpha-smooth muscle actin were detected but sdc-1 null cells expressed significantly more alphav and beta1 integrin than wildtype (wt) cells. Transforming growth factor beta1 (TGFbeta1) treatment at day 3 increased alphav- and beta1-integrin expression in sdc-1 null cells at day 5 whereas wt cells showed increased expression only of alphav-integrin. Using time-lapse studies, we showed that the sdc-1 null fibroblasts migrate faster than wt fibroblasts, treatment with TGFbeta1 increased these migration differences, and treatment with a TGFbeta1 antagonist caused sdc-1 null fibroblasts to slow down and migrate at the same rate as untreated wt cells. Cell spreading studies on replated fibroblasts showed altered cell spreading and focal adhesion formation on vitronectin and fibronectin-coated surfaces. Additional time lapse studies with beta1- and alphav-integrin antibody antagonists, showed that wt fibroblasts expressing sdc-1 had activated integrins on their surface that impeded their migration whereas the null cells expressed alphav-containing integrins which were less adhesive and enhanced cell migration. Surface expression studies showed increased surface expression of alpha2beta1 and alpha3beta1 on the sdc-1 null fibroblasts compared with wt fibroblasts but no significant differences in surface expression of alpha5beta1, alphavbeta3, or alphavbeta5. Taken together, our data indicates that sdc-1 functions in the activation of alphav-containing integrins and support the hypothesis that impaired wound healing phenotypes seen in sdc-1 null mice could be due to integrin-mediated defects in fibroblast migration after injury.
Collapse
Affiliation(s)
- Rosalyn A Jurjus
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, 2300 I Street NW, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
77
|
Abstract
Blood vessel maturation and stability require recruitment of mural cells (MCs) to the nascent vessel. Loss or detachment of MCs causes vascular dysfunction in diseases. N-sulfation of heparan sulfate (HS) is required for platelet-derived growth factor B (PDGF-B) retention and platelet-derived growth factor receptor-beta (PDGFR-beta) signaling during MC recruitment. To analyze the specific role of MC-derived HS in this process, we inactivated HS synthesis in MCs. MC-specific loss of HS causes embryonic lethality associated with vascular patterning defects, edema, and hemorrhages during late gestation. MC recruitment in the skin is impaired, correlating with defective PDGFR-beta and transforming growth factor-beta (TGF-beta)-SMAD signaling. Accumulation of rounded cells positive for MC markers close to the vessels indicates defective polarization and migration of local MC progenitors. In contrast, MC recruitment and signaling in the central nervous system (CNS) are unaffected by MC HS loss. Our results suggest that HS is selectively required in a cell-autonomous manner, acting in cis with PDGFR-beta and TGF-beta receptors during induction/polarization and migration of local progenitor cells to the nascent vessel. Once MCs are in contact with the vessel, as during CNS vascularization, endothelial HS appears sufficient to facilitate PDGFR-beta activation in trans.
Collapse
|
78
|
Borawski J, Dubowski M, Pawlak K, Mysliwiec M. Effect of Sulodexide on Plasma Transforming Growth Factor-β1 in Healthy Volunteers. Clin Appl Thromb Hemost 2008; 16:60-5. [DOI: 10.1177/1076029608326170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is unknown whether the glycosaminoglycan drug sulodexide interferes with transforming growth factorβ1—a member of heparin-binding family and a potent regulator of human biology and diseases. Hence, a 2-week pilot study was performed in 11 healthy men. Sulodexide was initially administered intravenously in a single dose, then—orally for 12 days and—again intravenously on study completion. Initial injection had no effect on activated form of the growth factor measured in plasma after 10 and 120 min; no change was also observed after 120 min from drug ingestion on day 7. On final intravenous administration, the growth factor levels increased by almost 60% after 10 min and remained elevated; the 120-min levels directly correlated with sulodexide dosage. Baseline cytokine levels decreased during the 2-week trial by more than 50%. In conclusion, transforming growth factor-β1 release and likely downregulation of its expression may constitute novel pharmacological effects of sulodexide.
Collapse
Affiliation(s)
- Jacek Borawski
- Department of Nephrology and Transplantation with Dialysis Unit, Medical University, Bialystok, Poland,
| | - Miroslaw Dubowski
- Department of Anesthesiology and Intensive Care, Medical University, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Nephrology and Transplantation with Dialysis Unit, Medical University, Bialystok, Poland
| | - Michal Mysliwiec
- Department of Nephrology and Transplantation with Dialysis Unit, Medical University, Bialystok, Poland
| |
Collapse
|
79
|
Vertemati M, Minola E, Dolci C, Stabellini G, Pezzetti F, Moscheni C, Calastrini C, Bramerio M, Palmieri A, Vizzotto L. Gene expression, cytoskeletal changes and extracellular matrix synthesis in human osteoblasts treated with cyclosporin A. Biomed Pharmacother 2008; 63:619-26. [PMID: 19157774 DOI: 10.1016/j.biopha.2008.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 12/06/2008] [Indexed: 01/19/2023] Open
Abstract
Cyclosporin A (CyA) is an immunosuppressive agent used to prevent allograft rejection, but unfortunately it causes adverse effects such as bone diseases, osteoporosis and osteomalacia. These pathologies involve an imbalance between synthesis, degradation and mineralization of extracellular matrix. CyA can modify extracellular matrix components such as glycosaminoglycans (GAG) and collagen fibers. In addition, normal cell activity is dependent on cell morphology and substrate cell attachment. We treated normal human osteoblasts with CyA and analyzed: (i) gene expression by a microarray method; (ii) extracellular GAG and collagen after (3)H-glucosamine and Western blot analysis; and (iii) cytoskeletal changes, using actin and tubulin fluorescent antibodies. CyA increased intra- and extracellular GAG and extracellular GAG classes such as hyaluronic acid, chondroitin sulphate, and dermatan sulphate; there was no noteworthy effect on heparan sulphate and the ratio of non-sulphated to sulphated GAG. In osteoblast cultures the drug reduced cytoskeletal actin, while tubulin did not change. In vivo the osteoblasts showed morphological changes with different extracellular matrix synthesis. Microarray analysis indicated the inhibition of gene pathways related to Wnt signaling molecules, and the cytoskeletal and focal adhesion cascade. In in vitro human osteoblasts CyA modified gene expression related to cytoskeletal pattern organization and cell morphology. Since in bone pathologies osteoblasts show different morphology related to cell size, these data suggest that in vivo osteoblast different functions could be dependent on alteration of osteoblast differentiation.
Collapse
|
80
|
Zhou Y, Koli K, Hagood JS, Miao M, Mavalli M, Rifkin DB, Murphy-Ullrich JE. Latent transforming growth factor-beta-binding protein-4 regulates transforming growth factor-beta1 bioavailability for activation by fibrogenic lung fibroblasts in response to bleomycin. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:21-33. [PMID: 19056849 DOI: 10.2353/ajpath.2009.080620] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent evidence suggests that subsets of lung fibroblasts differentially contribute to fibrogenic progression. We have previously shown that a subset of rat lung fibroblasts with fibrogenic characteristics [Thy-1 (-) fibroblasts] responds to stimuli (bleomycin, interleukin-4, etc) with increased latent transforming growth factor (TGF)-beta activation, whereas non-fibrogenic Thy-1-expressing [Thy-1 (+)] fibroblasts do not. Activation of latent TGF-beta1 by interstitial lung fibroblasts is critical for fibrogenic responses. To better understand the susceptibility of fibrogenic fibroblasts to the stimulation of TGF-beta activation, we examined the role of latent TGF-beta-binding proteins (LTBPs), key regulators of TGF-beta bioavailability and activation, in TGF-beta1 activation by these fibroblasts. Treatment of fibroblasts with bleomycin up-regulated LTBP-4 mRNA, protein, and soluble LTBP-4-bound large latent TGF-beta1 complexes in Thy-1 (-) fibroblasts to significantly higher levels than in Thy-1 (+) fibroblasts. Bleomycin-induced TGF-beta1 activation required LTBP-4, since lung fibroblasts deficient in LTBP-4 did not activate TGF-beta1. Expression of LTBP-4 restored TGF-beta1 activation in response to bleomycin, but expression either of LTBP-4 lacking the TGF-beta-binding site or only the TGF-beta-binding domain did not. Bleomycin treatment of mice increased LTBP-4 expression in the lung. Thy-1 knockout mice had increased levels of both LTBP-4 expression and TGF-beta activation, as well as enhanced Smad3 phosphorylation compared with wild-type mice. Together, these data identify a critical role for LTBP-4 in the regulation of latent TGF-beta1 activation in bleomycin-induced lung fibrosis.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Rodgers KD, San Antonio JD, Jacenko O. Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 2008; 237:2622-42. [PMID: 18629873 PMCID: PMC2651149 DOI: 10.1002/dvdy.21593] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current understanding of the presence and function of heparan sulfate proteoglycans (HSPGs) in skeletal development and hematopoiesis. Although proteoglycans (PGs) comprise a large and diverse group of cell surface and matrix molecules, we chose to focus on HSPGs owing to their many proposed functions in skeletogenesis and hematopoiesis. Specifically, we discuss how HSPGs play predominant roles in establishing and regulating niches during skeleto-hematopoietic development by participating in distinct developmental processes such as patterning, compartmentalization, growth, differentiation, and maintenance of tissues. Special emphasis is placed on our novel hypothesis that mechanistically links endochondral skeletogenesis to the establishment of the hematopoietic stem cell (HSC) niche in the marrow. HSPGs may contribute to these developmental processes through their unique abilities to establish and mediate morphogen, growth factor, and cytokine gradients; facilitate signaling; provide structural stability to tissues; and act as molecular filters and barriers.
Collapse
Affiliation(s)
- Kathryn D Rodgers
- Department of Animal Biology, Division of Biochemistry, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6046, USA.
| | | | | |
Collapse
|
82
|
Gomez-Duran A, Carvajal-Gonzalez JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernandez-Salguero PM. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Biochem Pharmacol 2008; 77:700-12. [PMID: 18812170 DOI: 10.1016/j.bcp.2008.08.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 02/06/2023]
Abstract
As our knowledge on the mechanisms that control cell function increases, more complex signaling pathways and quite intricate cross-talks among regulatory proteins are discovered. Establishing accurate interactions between cellular networks is essential for a healthy cell and different alterations in signaling are known to underline human disease. Transforming growth factor beta (TGFbeta) is an extracellular cytokine that regulates such critical cellular responses as proliferation, apoptosis, differentiation, angiogenesis and migration, and it is assumed that the latency-associated protein LTBP-1 plays a relevant role in TGFbeta targeting and activation in the extracellular matrix (ECM). The dioxin receptor (AhR) is a unique intracellular protein long studied because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Yet, a large set of studies performed in cellular systems and in vivo animal models have suggested important xenobiotic-independent functions for AhR in cell proliferation, differentiation and migration and in tissue homeostasis. Remarkably, AhR activity converges with TGFbeta-dependent signaling through LTBP-1 since cells lacking AhR expression have phenotypic alterations that can be explained, at least in part, by the coordinated regulation of both proteins. Here, we will discuss the existence of functional interactions between AhR and TGFbeta signaling. We will focus on regulatory and functional aspects by analyzing how AhR status determines TGFbeta activity and by proposing a mechanism through which LTBP-1, a novel AhR target gene, mediates such effects. We will integrate ECM proteases in the AhR-LTBP-1-TGFbeta axis and suggest a model that could help explain some in vivo phenotypes associated to AhR deficiency.
Collapse
Affiliation(s)
- Aurea Gomez-Duran
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
83
|
Nolte F, Hofmann WK. Myelodysplastic syndromes: molecular pathogenesis and genomic changes. Ann Hematol 2008; 87:777-95. [PMID: 18516602 DOI: 10.1007/s00277-008-0502-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis presenting with peripheral cytopenias in combination with a hyperplastic bone marrow and an increased risk of evolution to acute myeloid leukemia. The classification systems such as the WHO classification mainly rely on morphological criteria and are supplemented by the International Prognostic Scoring System which takes cytogenetical changes into consideration when determining the prognosis of MDS but wide intra-subtype variations do exist. The pathomechanisms causing primary MDS require further work. Development and progression of MDS is suggested to be a multistep alteration to hematopoietic stem cells. Different molecular alterations have been described, affecting genes involved in cell-cycle control, mitotic checkpoints, and growth factor receptors. Secondary signal proteins and transcription factors, which gives the cell a growth advantage over its normal counterpart, may be affected as well. The accumulation of such defects may finally cause the leukemic transformation of MDS.
Collapse
Affiliation(s)
- Florian Nolte
- Department of Hematology and Oncology, University Hospital Benjamin Franklin, Charité, Hindenburgdamm 30, 12203, Berlin, Germany.
| | | |
Collapse
|
84
|
Albini A, Mirisola V, Pfeffer U. Metastasis signatures: genes regulating tumor-microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 2008; 27:75-83. [PMID: 18046511 DOI: 10.1007/s10555-007-9111-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The possibility of predicting clinical outcome of cancer patients through the analysis of gene expression profiles in the primary tumor is a kind of ideological revolution as the multistep carcinogenesis model postulates that the proportion of cells within the primary tumor that actually acquire metastasis driving mutation(s) is small; too small to leave its imprint on the gene expression profile. The data collected to date have brought a new paradigm to reality in the metastasis field: metastasis must at least in part rely on mutations and/or gene regulation events present in the majority of cells which constitute the primary tumor mass. By analyses of differential expression of primary tumors versus metastases or by functional analyses of putative metastasis genes in experimental metastasis, many metastasis-associated gene expression events have been identified that correlate with the development of metastases. Among genes "favoring" metastasis, we find many molecules that are expressed not by the tumor cell itself but by the cells of the microenvironment, as well as genes over-expressed in the primary tumor that have a principle role in mediating tumor-host interactions. Here we review these concepts and advance hypotheses on how gene expression of the primary tumor and the microenvironment can favor the spread of the metastasis seeds and how this knowledge can provide tools to secondary prevention.
Collapse
Affiliation(s)
- Adriana Albini
- IRCCS MultiMedica, Scientific and Technological Pole, Via Fantoli 16/15, 20138, Milan, Italy.
| | | | | |
Collapse
|
85
|
Abstract
Soluble growth factors are potent regulators of normal and pathological processes. Mechanical factors are emerging as similarly important, but there has been no obvious mechanism linking the different factors. A recent report now demonstrates that cell-generated mechanical tension results in release of active transforming growth factor-beta from stiff extracellular matrix, providing a mechanism for differentiation and maintenance of myofibroblasts in processes like fibrosis. More broadly, the work suggests that matrix stiffness could regulate the equilibrium between storage and release of a host of matrix-bound growth factors.
Collapse
Affiliation(s)
- Rebecca G. Wells
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
86
|
Melrose J, Hayes AJ, Whitelock JM, Little CB. Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 2008; 30:457-69. [DOI: 10.1002/bies.20748] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|