51
|
Ginsburg DS, Anlembom TE, Wang J, Patel SR, Li B, Hinnebusch AG. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3. J Biol Chem 2014; 289:32656-70. [PMID: 25301943 DOI: 10.1074/jbc.m114.585588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cotranscriptional methylation of histone H3 lysines 4 and 36 by Set1 and Set2, respectively, stimulates interaction between nucleosomes and histone deacetylase complexes to block cryptic transcription in budding yeast. We previously showed that loss of all H3K4 and H3K36 methylation in a set1Δset2Δ mutant reduces interaction between native nucleosomes and the NuA4 lysine acetyltransferase (KAT) complex. We now provide evidence that NuA4 preferentially binds H3 tails mono- and dimethylated on H3K4 and di- and trimethylated on H3K36, an H3 methylation pattern distinct from that recognized by the RPD3C(S) and Hos2/Set3 histone deacetylase complexes (HDACs). Loss of H3K4 or H3K36 methylation in set1Δ or set2Δ mutants reduces NuA4 interaction with bulk nucleosomes in vitro and in vivo, and reduces NuA4 occupancy of transcribed coding sequences at particular genes. We also provide evidence that NuA4 acetylation of lysine residues in the histone H4 tail stimulates SAGA interaction with nucleosomes and its recruitment to coding sequences and attendant acetylation of histone H3 in vivo. Thus, H3 methylation exerts opposing effects of enhancing nucleosome acetylation by both NuA4 and SAGA as well as stimulating nucleosome deacetylation by multiple HDACs to maintain the proper level of histone acetylation in transcribed coding sequences.
Collapse
Affiliation(s)
- Daniel S Ginsburg
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548,
| | | | - Jianing Wang
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548
| | - Sanket R Patel
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548
| | - Bing Li
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Alan G Hinnebusch
- the Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
52
|
Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM, Wolberger C, Tackett AJ, Taverna SD. The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cell Proteomics 2014; 13:2896-910. [PMID: 25106422 DOI: 10.1074/mcp.m114.038174] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In yeast, the conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain "reader" function and enzymatic HAT activity that might ultimately affect gene expression. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential "histone/epigenetic code." MS data are available via ProteomeXchange with identifier PXD001167.
Collapse
Affiliation(s)
- Anne M Cieniewicz
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Linley Moreland
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Alison E Ringel
- ‖Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; **Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Samuel G Mackintosh
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ana Raman
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tonya M Gilbert
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Cynthia Wolberger
- §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; **Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan J Tackett
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205;
| | - Sean D Taverna
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
53
|
Nguyen UTT, Bittova L, Müller MM, Fierz B, David Y, Houck-Loomis B, Feng V, Dann GP, Muir TW. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods 2014; 11:834-40. [PMID: 24997861 PMCID: PMC4130351 DOI: 10.1038/nmeth.3022] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/01/2014] [Indexed: 12/11/2022]
Abstract
Elucidating the molecular details of how chromatin-associated factors deposit, remove and recognize histone post-translational modification (PTM) signatures remains a daunting task in the epigenetics field. We introduce a versatile platform that greatly accelerates biochemical investigations into chromatin recognition and signaling. This technology is based on the streamlined semisynthesis of DNA-barcoded nucleosome libraries with distinct combinations of PTMs. Chromatin immunoprecipitation of these libraries, once they have been treated with purified chromatin effectors or the combined chromatin recognizing and modifying activities of the nuclear proteome, is followed by multiplexed DNA-barcode sequencing. This ultrasensitive workflow allowed us to collect thousands of biochemical data points revealing the binding preferences of various nuclear factors for PTM patterns and how preexisting PTMs, alone or synergistically, affect further PTM deposition via cross-talk mechanisms. We anticipate that the high throughput and sensitivity of the technology will help accelerate the decryption of the diverse molecular controls that operate at the level of chromatin.
Collapse
Affiliation(s)
- Uyen T. T. Nguyen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Lenka Bittova
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Manuel M. Müller
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Beat Fierz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Yael David
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Brian Houck-Loomis
- The Rockefeller University, New York, NY 10065, United States; current address: New York Genome Center, New York, NY 10013, United States
| | - Vanessa Feng
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Geoffrey P. Dann
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
54
|
Li S, Kong L, Yu X, Zheng Y. Host-virus interactions: from the perspectives of epigenetics. Rev Med Virol 2014; 24:223-41. [PMID: 24677359 DOI: 10.1002/rmv.1783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
Abstract
Chromatin structure and histone modifications play key roles in gene regulation. Some virus genomes are organized into chromatin-like structure, which undergoes different histone modifications facilitating complex functions in virus life cycles including replication. Here, we present a comprehensive summary of recent research in this field regarding the interaction between viruses and host epigenetic factors with emphasis on how chromatin modifications affect viral gene expression and virus infection. We also describe the strategies employed by viruses to manipulate the host epigenetic program to facilitate virus replication as well as the underlying mechanisms. Together, knowledge from this field not only generates novel insights into virus life cycles but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA, USA
| | | | | | | |
Collapse
|
55
|
Fierz B. Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 2014; 9:495-504. [PMID: 24497444 DOI: 10.1002/cmdc.201300487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/18/2014] [Indexed: 11/11/2022]
Abstract
Posttranslational modifications (PTMs) of chromatin are involved in gene regulation, thereby contributing to cell differentiation, lineage determination, and organism development. Discrete chromatin states are established by the action of a large set of enzymes that catalyze the deposition, propagation, and removal of histone PTMs, thereby modulating gene expression. Given their central role in determining and maintaining cellular phenotype, as well as in controlling chromatin processes such as DNA repair, the dysregulation of these enzymes can have serious consequences, and can result in cancer and neurodegenerative diseases. Thus, such chromatin regulator proteins are promising drug targets. However, they are often present in large, modular protein complexes that specifically recognize target chromatin regions and exhibit intricate regulation through preexisting histone marks. This renders the study of their enzymatic mechanisms complex. Recent developments in the chemical production of defined chromatin substrates show great promise for improving our understanding of the activity of chromatin regulator complexes at the molecular level. Herein I discuss examples highlighting the application of synthetic chromatin to study the enzymatic mechanisms and regulatory pathways of these crucial protein complexes in detail, with potential implications for assay development in pharmacological research.
Collapse
Affiliation(s)
- Beat Fierz
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| |
Collapse
|
56
|
Modak R, Basha J, Bharathy N, Maity K, Mizar P, Bhat AV, Vasudevan M, Rao VK, Kok WK, Natesh N, Taneja R, Kundu TK. Probing p300/CBP associated factor (PCAF)-dependent pathways with a small molecule inhibitor. ACS Chem Biol 2013; 8:1311-23. [PMID: 23570531 DOI: 10.1021/cb4000597] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PCAF (KAT2B) belongs to the GNAT family of lysine acetyltransferases (KAT) and specifically acetylates the histone H3K9 residue and several nonhistone proteins. PCAF is also a transcriptional coactivator. Due to the lack of a PCAF KAT-specific small molecule inhibitor, the exclusive role of the acetyltransferase activity of PCAF is not well understood. Here, we report that a natural compound of the hydroxybenzoquinone class, embelin, specifically inhibits H3Lys9 acetylation in mice and inhibits recombinant PCAF-mediated acetylation with near complete specificity in vitro. Furthermore, using embelin, we have identified the gene networks that are regulated by PCAF during muscle differentiation, further highlighting the broader regulatory functions of PCAF in muscle differentiation in addition to the regulation via MyoD acetylation.
Collapse
Affiliation(s)
- Rahul Modak
- Transcription
and Disease Laboratory,
Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,
India 560064
| | - Jeelan Basha
- Transcription
and Disease Laboratory,
Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,
India 560064
| | - Narendra Bharathy
- Department
of Physiology, Yong
Loo Lin School of Medicine, Block MD9, 2 Medical Drive, National University of Singapore, Singapore 117597
| | - Koustav Maity
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Pushpak Mizar
- Transcription
and Disease Laboratory,
Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,
India 560064
| | - Akshay V. Bhat
- Transcription
and Disease Laboratory,
Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,
India 560064
| | - Madavan Vasudevan
- Bionivid Technology [P] Ltd, 401 - 4 AB Cross, 1st Main, Kasturi Nagar,
East of NGEF, Bangalore, India 560043
| | - Vinay Kumar Rao
- Department
of Physiology, Yong
Loo Lin School of Medicine, Block MD9, 2 Medical Drive, National University of Singapore, Singapore 117597
| | - Wai Kay Kok
- Department
of Physiology, Yong
Loo Lin School of Medicine, Block MD9, 2 Medical Drive, National University of Singapore, Singapore 117597
| | - Nagashayana Natesh
- Central Government Health Scheme
Dispensary Number 3, Basavanagudi, Bangalore, India
| | - Reshma Taneja
- Department
of Physiology, Yong
Loo Lin School of Medicine, Block MD9, 2 Medical Drive, National University of Singapore, Singapore 117597
| | - Tapas K. Kundu
- Transcription
and Disease Laboratory,
Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,
India 560064
| |
Collapse
|
57
|
Chen L, Wei T, Si X, Wang Q, Li Y, Leng Y, Deng A, Chen J, Wang G, Zhu S, Kang J. Lysine acetyltransferase GCN5 potentiates the growth of non-small cell lung cancer via promotion of E2F1, cyclin D1, and cyclin E1 expression. J Biol Chem 2013; 288:14510-14521. [PMID: 23543735 DOI: 10.1074/jbc.m113.458737] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The lysine acetyltransferases play crucial but complex roles in cancer development. GCN5 is a lysine acetyltransferase that generally regulates gene expression, but its role in cancer development remains largely unknown. In this study, we report that GCN5 is highly expressed in non-small cell lung cancer tissues and that its expression correlates with tumor size. We found that the expression of GCN5 promotes cell growth and the G1/S phase transition in multiple lung cancer cell lines. Further study revealed that GCN5 regulates the expression of E2F1, cyclin D1, and cyclin E1. Our reporter assays indicated that the expression of GCN5 enhances the activities of the E2F1, cyclin D1, and cyclin E1 promoters. ChIP experiments suggested that GCN5 binds directly to these promoters and increases the extent of histone acetylation within these regions. Mechanistic studies suggested that GCN5 interacts with E2F1 and is recruited by E2F1 to the E2F1, cyclin D1, and cyclin E1 promoters. The function of GCN5 in lung cancer cells is abrogated by the knockdown of E2F1. Finally, we confirmed that GCN5 regulates the expression of E2F1, cyclin D1, and cyclin E1 and potentiates lung cancer cell growth in a mouse tumor model. Taken together, our results demonstrate that GCN5 specifically potentiates lung cancer growth by directly promoting the expression of E2F1, cyclin D1, and cyclin E1 in an E2F1-dependent manner. Our study identifies a specific and novel function of GCN5 in lung cancer development and suggests that the GCN5-E2F1 interaction represents a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Long Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092
| | - Tingyi Wei
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092
| | - Xiaoxing Si
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092
| | - Qianqian Wang
- Department of Hematology and Laboratory Medicine, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092
| | - Ye Leng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092
| | - Anmei Deng
- Department of Hematology and Laboratory Medicine, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jie Chen
- Department of Hematology and Laboratory Medicine, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092.
| |
Collapse
|
58
|
Chromatin regulators in mammalian epidermis. Semin Cell Dev Biol 2012; 23:897-905. [DOI: 10.1016/j.semcdb.2012.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/09/2012] [Accepted: 08/24/2012] [Indexed: 12/17/2022]
|
59
|
Abstract
Chromatin is extensively chemically modified and thereby acts as a dynamic signaling platform controlling gene function. Chromatin regulation is integral to cell differentiation, lineage commitment and organism development, whereas chromatin dysregulation can lead to age-related and neurodegenerative disorders as well as cancer. Investigating chromatin biology presents a unique challenge, as the issue spans many disciplines, including cell and systems biology, biochemistry and molecular biophysics. In recent years, the application of chemical biology methods for investigating chromatin processes has gained considerable traction. Indeed, chemical biologists now have at their disposal powerful chemical tools that allow chromatin biology to be scrutinized at the level of the cell all the way down to the single chromatin fiber. Here we present recent examples of how this rapidly expanding palette of chemical tools is being used to paint a detailed picture of chromatin function in organism development and disease.
Collapse
|
60
|
Sarkies P, Sale JE. Cellular epigenetic stability and cancer. Trends Genet 2012; 28:118-27. [PMID: 22226176 DOI: 10.1016/j.tig.2011.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
When a cell divides, it must not only accurately duplicate its genome, but also restore its previous levels of gene expression. The information determining gene expression is often not directly encoded in the DNA and is hence termed 'epigenetic'. The molecular basis of epigenetic memory remains a subject of intense debate, but is likely to arise from the collaboration of several mechanisms, including histone post-translational modifications, transcription factors, DNA methylation and noncoding RNAs. In this article, we look at how these mechanisms interact to generate robust epigenetic states. We then consider recent observations that mitotic inheritance of stable gene expression can be compromised by interruption of DNA replication. We discuss how these data may provide direct evidence for a central role for histone modifications in transcriptional memory and how they could potentially provide an explanation for the some of the widespread alterations in transcription seen in cancer cells.
Collapse
Affiliation(s)
- Peter Sarkies
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
61
|
Abstract
The reversible acetylation of specific lysine residues on core histones regulates gene transcription in eukaryotes. Since the discovery of GCN5 as the first transcription-regulating histone acetyltransferase (HAT), a variety of HATs have now been identified and shown to acetylate different sites on histones as well as on non-histone proteins, including transcription regulators. In general, purified recombinant HATs expressed in bacteria or in insect cells are able to acetylate free histones and sometimes other substrates in vitro. However, such activity is often restricted to certain substrates and/or is very weak on physiological substrates, such as nucleosomes. Moreover, it does not reflect the actual scenario inside the cell, where HATs generally associate with other proteins to form stable multisubunit complexes. Importantly, these peripheral proteins significantly influence the functions of the catalytic HAT subunit by regulating its intrinsic catalytic activity and/or by modulating its target substrate selectivity. In this chapter, we describe detailed methods for the rapid (two step) and efficient purification of large, multiprotein HAT complexes from nuclear extracts of mammalian epitope-tagged cell lines, including protocols for the generation and large-scale suspension culture of these cell lines. These methods have been used to purify and characterize different human GCN5 HAT complexes that retain activity toward their physiological substrates in vitro.
Collapse
|
62
|
Cohen I, Poręba E, Kamieniarz K, Schneider R. Histone modifiers in cancer: friends or foes? Genes Cancer 2011; 2:631-47. [PMID: 21941619 DOI: 10.1177/1947601911417176] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Covalent modifications of histones can regulate all DNA-dependent processes. In the last few years, it has become more and more evident that histone modifications are key players in the regulation of chromatin states and dynamics as well as in gene expression. Therefore, histone modifications and the enzymatic machineries that set them are crucial regulators that can control cellular proliferation, differentiation, plasticity, and malignancy processes. This review discusses the biology and biochemistry of covalent histone posttranslational modifications (PTMs) and evaluates the dual role of their modifiers in cancer: as oncogenes that can initiate and amplify tumorigenesis or as tumor suppressors.
Collapse
Affiliation(s)
- Idan Cohen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | | |
Collapse
|
63
|
Avvakumov N, Nourani A, Côté J. Histone chaperones: modulators of chromatin marks. Mol Cell 2011; 41:502-14. [PMID: 21362547 DOI: 10.1016/j.molcel.2011.02.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/26/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
The many factors that control chromatin biology play key roles in essential nuclear functions like transcription, DNA damage response and repair, recombination, and replication and are critical for proper cell-cycle progression, stem cell renewal, differentiation, and development. These players belong to four broad classes: histone modifiers, chromatin remodelers, histone variants, and histone chaperones. A large number of studies have established the existence of an intricate functional crosstalk between the different factors, not only within a single class but also between different classes. In light of this, while many recent reviews have focused on structure and functions of histone chaperones, the current text highlights novel and striking links that have been established between these proteins and posttranslational modifications of histones and discusses the functional consequences of this crosstalk. These findings feed a current hot question of how cell memory may be maintained through epigenetic mechanisms involving histone chaperones.
Collapse
Affiliation(s)
- Nikita Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Quebec G1R 2J6, Canada
| | | | | |
Collapse
|
64
|
Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell 2011; 144:16-26. [PMID: 21215366 PMCID: PMC3038581 DOI: 10.1016/j.cell.2010.11.056] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/07/2010] [Accepted: 11/13/2010] [Indexed: 12/11/2022]
Abstract
Alternative splicing plays critical roles in differentiation, development, and disease and is a major source for protein diversity in higher eukaryotes. Analysis of alternative splicing regulation has traditionally focused on RNA sequence elements and their associated splicing factors, but recent provocative studies point to a key function of chromatin structure and histone modifications in alternative splicing regulation. These insights suggest that epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced.
Collapse
Affiliation(s)
- Reini F Luco
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
65
|
Pu S, Turinsky AL, Vlasblom J, On T, Xiong X, Emili A, Zhang Z, Greenblatt J, Parkinson J, Wodak SJ. Expanding the landscape of chromatin modification (CM)-related functional domains and genes in human. PLoS One 2010; 5:e14122. [PMID: 21124763 PMCID: PMC2993927 DOI: 10.1371/journal.pone.0014122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/26/2010] [Indexed: 01/06/2023] Open
Abstract
Chromatin modification (CM) plays a key role in regulating transcription, DNA replication, repair and recombination. However, our knowledge of these processes in humans remains very limited. Here we use computational approaches to study proteins and functional domains involved in CM in humans. We analyze the abundance and the pair-wise domain-domain co-occurrences of 25 well-documented CM domains in 5 model organisms: yeast, worm, fly, mouse and human. Results show that domains involved in histone methylation, DNA methylation, and histone variants are remarkably expanded in metazoan, reflecting the increased demand for cell type-specific gene regulation. We find that CM domains tend to co-occur with a limited number of partner domains and are hence not promiscuous. This property is exploited to identify 47 potentially novel CM domains, including 24 DNA-binding domains, whose role in CM has received little attention so far. Lastly, we use a consensus Machine Learning approach to predict 379 novel CM genes (coding for 329 proteins) in humans based on domain compositions. Several of these predictions are supported by very recent experimental studies and others are slated for experimental verification. Identification of novel CM genes and domains in humans will aid our understanding of fundamental epigenetic processes that are important for stem cell differentiation and cancer biology. Information on all the candidate CM domains and genes reported here is publicly available.
Collapse
Affiliation(s)
- Shuye Pu
- Program in Molecular Structure & Function, Hospital for Sick Children, Toronto, Canada
| | - Andrei L. Turinsky
- Program in Molecular Structure & Function, Hospital for Sick Children, Toronto, Canada
| | - James Vlasblom
- Program in Molecular Structure & Function, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Tuan On
- Program in Molecular Structure & Function, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuejian Xiong
- Program in Molecular Structure & Function, Hospital for Sick Children, Toronto, Canada
| | - Andrew Emili
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
- Banting and Best Department of Medical Research, Toronto, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
- Banting and Best Department of Medical Research, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
- Banting and Best Department of Medical Research, Toronto, Canada
| | - John Parkinson
- Program in Molecular Structure & Function, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Shoshana J. Wodak
- Program in Molecular Structure & Function, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
66
|
Dowling DP, Gattis SG, Fierke CA, Christianson DW. Structures of metal-substituted human histone deacetylase 8 provide mechanistic inferences on biological function . Biochemistry 2010; 49:5048-56. [PMID: 20545365 PMCID: PMC2895166 DOI: 10.1021/bi1005046] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metal-dependent histone deacetylases (HDACs) adopt an alpha/beta protein fold first identified in rat liver arginase. Despite insignificant overall amino acid sequence identity, these enzymes share a strictly conserved metal binding site with divergent metal specificity and stoichiometry. HDAC8, originally thought to be a Zn(2+)-metallohydrolase, exhibits increased activity with Co(2+) and Fe(2+) cofactors based on k(cat)/K(M) (Gantt, S. L., Gattis, S. G., and Fierke, C. A. (2006) Biochemistry 45, 6170-6178). Here, we report the first X-ray crystal structures of metallo-substituted HDAC8, Co(2+)-HDAC8, D101L Co(2+)-HDAC8, D101L Mn(2+)-HDAC8, and D101L Fe(2+)-HDAC8, each complexed with the inhibitor M344. Metal content of protein samples in solution is confirmed by inductively coupled plasma mass spectrometry. For the crystalline enzymes, peaks in Bijvoet difference Fourier maps calculated from X-ray diffraction data collected near the respective elemental absorption edges confirm metal substitution. Additional solution studies confirm incorporation of Cu(2+); Fe(3+) and Ni(2+) do not bind under conditions tested. The metal dependence of the substrate K(M) values and the K(i) values of hydroxamate inhibitors that chelate the active site metal are consistent with substrate-metal coordination in the precatalytic Michaelis complex that enhances catalysis. Additionally, although HDAC8 binds Zn(2+) nearly 10(6)-fold more tightly than Fe(2+), the affinities for both metal ions are comparable to the readily exchangeable metal concentrations estimated in living cells, suggesting that HDAC8 could bind either or both Fe(2+) or Zn(2+) in vivo.
Collapse
Affiliation(s)
- Daniel P. Dowling
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Samuel G. Gattis
- Departments of Chemistry and Biological Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Carol A. Fierke
- Departments of Chemistry and Biological Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| |
Collapse
|
67
|
Koutelou E, Hirsch CL, Dent SYR. Multiple faces of the SAGA complex. Curr Opin Cell Biol 2010; 22:374-82. [PMID: 20363118 PMCID: PMC2900470 DOI: 10.1016/j.ceb.2010.03.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/26/2010] [Accepted: 03/03/2010] [Indexed: 02/07/2023]
Abstract
The SAGA complex provides a paradigm for multisubunit histone modifying complexes. Although first characterized as a histone acetyltransferase, because of the Gcn5 subunit, SAGA is now known to contain a second activity, a histone deubiquitinase, as well as subunits important for interactions with transcriptional activators and the general transcription machinery. The functions of SAGA in transcriptional activation are well-established in Saccharomyces cerevisiae. Recent studies in S. pombe, Drosophila, and mammalian systems reveal that SAGA also has important roles in transcript elongation, the regulation of protein stability, and telomere maintenance. These functions are essential for normal embryo development in flies and mice, and mutations or altered expression of SAGA subunits correlate with neurological disease and aggressive cancers in humans.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
68
|
Histone acetyl transferases as emerging drug targets. Drug Discov Today 2009; 14:942-8. [PMID: 19577000 DOI: 10.1016/j.drudis.2009.06.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/24/2009] [Accepted: 06/24/2009] [Indexed: 02/07/2023]
Abstract
Post-translational modifications, such as acetylation or phosphorylation, play a crucial role in the regulation of gene transcription in eukaryotes. Different subtypes of histone acetyl transferases (HATs) catalyze the acetylation of histones on specific lysine residues. A potential role of HATs in the pathology of cancer, asthma, COPD and viral infection has been described. This indicates that specific HAT inhibitors are potential tools for pharmacological research and might find therapeutic applications. This review focuses on the role of the HATs p300, CBP, PCAF and GCN5 in different diseases and the development of small-molecule inhibitors of these enzymes as potential drugs.
Collapse
|