51
|
Biological colloids: Unique properties of membranelles organelles in the cell. Adv Colloid Interface Sci 2022; 310:102777. [DOI: 10.1016/j.cis.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
|
52
|
Temporal and spatial characterisation of protein liquid-liquid phase separation using NMR spectroscopy. Nat Commun 2022; 13:1767. [PMID: 35365630 PMCID: PMC8976059 DOI: 10.1038/s41467-022-29408-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of protein solutions is increasingly recognised as an important phenomenon in cell biology and biotechnology. However, opalescence and concentration fluctuations render LLPS difficult to study, particularly when characterising the kinetics of the phase transition and layer separation. Here, we demonstrate the use of a probe molecule trifluoroethanol (TFE) to characterise the kinetics of protein LLPS by NMR spectroscopy. The chemical shift and linewidth of the probe molecule are sensitive to local protein concentration, with this sensitivity resulting in different characteristic signals arising from the dense and lean phases. Monitoring of these probe signals by conventional bulk-detection 19F NMR reports on the formation and evolution of both phases throughout the sample, including their concentrations and volumes. Meanwhile, spatially-selective 19F NMR, in which spectra are recorded from smaller slices of the sample, was used to track the distribution of the different phases during layer separation. This experimental strategy enables comprehensive characterisation of the process and kinetics of LLPS, and may be useful to study phase separation in protein systems as a function of their environment.
Collapse
|
53
|
Najbauer EE, Ng SC, Griesinger C, Görlich D, Andreas LB. Atomic resolution dynamics of cohesive interactions in phase-separated Nup98 FG domains. Nat Commun 2022; 13:1494. [PMID: 35314668 PMCID: PMC8938434 DOI: 10.1038/s41467-022-28821-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/09/2022] [Indexed: 01/02/2023] Open
Abstract
Cohesive FG domains assemble into a condensed phase forming the selective permeability barrier of nuclear pore complexes. Nanoscopic insight into fundamental cohesive interactions has long been hampered by the sequence heterogeneity of native FG domains. We overcome this challenge by utilizing an engineered perfectly repetitive sequence and a combination of solution and magic angle spinning NMR spectroscopy. We map the dynamics of cohesive interactions in both phase-separated and soluble states at atomic resolution using TROSY for rotational correlation time (TRACT) measurements. We find that FG repeats exhibit nanosecond-range rotational correlation times and remain disordered in both states, although FRAP measurements show slow translation of phase-separated FG domains. NOESY measurements enable the direct detection of contacts involved in cohesive interactions. Finally, increasing salt concentration and temperature enhance phase separation and decrease local mobility of FG repeats. This lower critical solution temperature (LCST) behaviour indicates that cohesive interactions are driven by entropy. The permeability barrier of nuclear pores is formed by disordered and yet self-interacting FG repeat domains, whose sequence heterogeneity is a challenge for mechanistic insights. Here the authors overcome this challenge and characterize the protein’s dynamics by applying NMR techniques to an FG phase system that has been simplified to its essentials.
Collapse
|
54
|
Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022; 122:6719-6748. [PMID: 35179885 PMCID: PMC8949871 DOI: 10.1021/acs.chemrev.1c00774] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Motions in biomolecules
are critical for biochemical reactions.
In cells, many biochemical reactions are executed inside of biomolecular
condensates formed by ultradynamic intrinsically disordered proteins.
A deep understanding of the conformational dynamics of intrinsically
disordered proteins in biomolecular condensates is therefore of utmost
importance but is complicated by diverse obstacles. Here we review
emerging data on the motions of intrinsically disordered proteins
inside of liquidlike condensates. We discuss how liquid–liquid
phase separation modulates internal motions across a wide range of
time and length scales. We further highlight the importance of intermolecular
interactions that not only drive liquid–liquid phase separation
but appear as key determinants for changes in biomolecular motions
and the aging of condensates in human diseases. The review provides
a framework for future studies to reveal the conformational dynamics
of intrinsically disordered proteins in the regulation of biomolecular
condensate chemistry.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin Blackledge
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble, France.,CEA, DSV, IBS, 38044 Grenoble, France.,CNRS, IBS, 38044 Grenoble, France
| | - Markus Zweckstetter
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
55
|
Scholl D, Deniz AA. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates. J Mol Biol 2022; 434:167348. [PMID: 34767801 PMCID: PMC8748313 DOI: 10.1016/j.jmb.2021.167348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023]
Abstract
The emergence of biomolecular condensation and liquid-liquid phase separation (LLPS) introduces a new layer of complexity into our understanding of cell and molecular biology. Evidence steadily grows indicating that condensates are not only implicated in physiology but also human disease. Macro- and mesoscale characterization of condensates as a whole have been instrumental in understanding their biological functions and dysfunctions. By contrast, the molecular level characterization of condensates and how condensates modify the properties of the molecules that constitute them thus far remain comparably scarce. In this minireview we summarize and discuss the findings of several recent studies that have focused on structure, dynamics, and interactions of proteins undergoing condensation. The mechanistic insights they provide help us identify the relevant properties nature and scientists can leverage to modulate the behavior of condensate systems. We also discuss the unique environment of the droplet surface and speculate on effects of topological constraints and physical exclusion on condensate properties.
Collapse
Affiliation(s)
- Daniel Scholl
- Department of Integrative and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States. https://twitter.com/@DanielScholl_be
| | - Ashok A Deniz
- Department of Integrative and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States.
| |
Collapse
|
56
|
Naudi-Fabra S, Blackledge M, Milles S. Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins. Biomolecules 2021; 12:biom12010027. [PMID: 35053175 PMCID: PMC8773649 DOI: 10.3390/biom12010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid–liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.
Collapse
|
57
|
Titus AR, Kooijman EE. Current methods for studying intracellular liquid-liquid phase separation. CURRENT TOPICS IN MEMBRANES 2021; 88:55-73. [PMID: 34862032 DOI: 10.1016/bs.ctm.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liquid-liquid phase separation (LLPS) is a ubiquitous process that drives the formation of membrane-less intracellular compartments. This compartmentalization contains vastly different protein/RNA/macromolecule concentrations compared to the surrounding cytosol despite the absence of a lipid boundary. Because of this, LLPS is important for many cellular signaling processes and may play a role in their dysregulation. This chapter highlights recent advances in the understanding of intracellular phase transitions along with current methods used to identify LLPS in vitro and model LLPS in situ.
Collapse
Affiliation(s)
- Amber R Titus
- Department of Biological Sciences, Kent State University, Kent, OH, United States.
| | - Edgar E Kooijman
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
58
|
Seal M, Jash C, Jacob RS, Feintuch A, Harel YS, Albeck S, Unger T, Goldfarb D. Evolution of CPEB4 Dynamics Across its Liquid-Liquid Phase Separation Transition. J Phys Chem B 2021; 125:12947-12957. [PMID: 34787433 PMCID: PMC8647080 DOI: 10.1021/acs.jpcb.1c06696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Indexed: 12/31/2022]
Abstract
Knowledge about the structural and dynamic properties of proteins that form membrane-less organelles in cells via liquid-liquid phase separation (LLPS) is required for understanding the process at a molecular level. We used spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the dynamic properties (rotational diffusion) of the low complexity N-terminal domain of cytoplasmic polyadenylation element binding-4 protein (CPEB4NTD) across its LLPS transition, which takes place with increasing temperature. We report the coexistence of three spin labeled CPEB4NTD (CPEB4*) populations with distinct dynamic properties representing different conformational spaces, both before and within the LLPS state. Monomeric CPEB4* exhibiting fast motion defines population I and shows low abundance prior to and following LLPS. Populations II and III are part of CPEB4* assemblies where II corresponds to loose conformations with intermediate range motions and population III represents compact conformations with strongly attenuated motions. As the temperature increased the population of component II increased reversibly at the expense of component III, indicating the existence of an III ⇌ II equilibrium. We correlated the macroscopic LLPS properties with the III ⇌ II exchange process upon varying temperature and CPEB4* and salt concentrations. We hypothesized that weak transient intermolecular interactions facilitated by component II lead to LLPS, with the small assemblies integrated within the droplets. The LLPS transition, however, was not associated with a clear discontinuity in the correlation times and populations of the three components. Importantly, CPEB4NTD exhibits LLPS properties where droplet formation occurs from a preformed microscopic assembly rather than the monomeric protein molecules.
Collapse
Affiliation(s)
- Manas Seal
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Chandrima Jash
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Reeba Susan Jacob
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Akiva Feintuch
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yair Shalom Harel
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shira Albeck
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tamar Unger
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
59
|
Murthy AC, Tang WS, Jovic N, Janke AM, Seo DH, Perdikari TM, Mittal J, Fawzi NL. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nat Struct Mol Biol 2021; 28:923-935. [PMID: 34759379 PMCID: PMC8654040 DOI: 10.1038/s41594-021-00677-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/28/2021] [Indexed: 01/23/2023]
Abstract
The RNA-binding protein FUS (Fused in Sarcoma) mediates phase separation in biomolecular condensates and functions in transcription by clustering with RNA polymerase II. Specific contact residues and interaction modes formed by FUS and the C-terminal heptad repeats of RNA polymerase II (CTD) have been suggested but not probed directly. Here we show how RGG domains contribute to phase separation with the FUS N-terminal low-complexity domain (SYGQ LC) and RNA polymerase II CTD. Using NMR spectroscopy and molecular simulations, we demonstrate that many residue types, not solely arginine-tyrosine pairs, form condensed-phase contacts via several interaction modes including, but not only sp2-π and cation-π interactions. In phases also containing RNA polymerase II CTD, many residue types form contacts, including both cation-π and hydrogen-bonding interactions formed by the conserved human CTD lysines. Hence, our data suggest a surprisingly broad array of residue types and modes explain co-phase separation of FUS and RNA polymerase II.
Collapse
Affiliation(s)
- Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Wai Shing Tang
- Graduate Program in Physics, Brown University, Providence, RI, USA
| | - Nina Jovic
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Abigail M Janke
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Da Hee Seo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | | | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
60
|
Fawzi NL, Parekh SH, Mittal J. Biophysical studies of phase separation integrating experimental and computational methods. Curr Opin Struct Biol 2021; 70:78-86. [PMID: 34144468 PMCID: PMC8530909 DOI: 10.1016/j.sbi.2021.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Biomolecular phase separation that contributes to the formation of membraneless organelles and biomolecular condensates has recently gained tremendous attention because of the importance of these assemblies in physiology, disease, and engineering applications. Understanding and directing biomolecular phase separation requires a multiscale view of the biophysical properties of these phases. Yet, many classic tools to characterize biomolecular properties do not apply in these condensed phases. Here, we discuss insights obtained from spectroscopic methods, in particular nuclear magnetic resonance and optical spectroscopy, in understanding the molecular and atomic interactions that underlie the formation of protein-rich condensates. We also review approaches closely coupling nuclear magnetic resonance data with computational methods especially coarse-grained and all-atom molecular simulations, which provide insight into molecular features of phase separation. Finally, we point to future methodolical developments, particularly visualizing biophysical properties of condensates in cells.
Collapse
Affiliation(s)
- Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, United States.
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, United States
| |
Collapse
|
61
|
Tsegaye S, Dedefo G, Mehdi M. Biophysical applications in structural and molecular biology. Biol Chem 2021; 402:1155-1177. [PMID: 34218543 DOI: 10.1515/hsz-2021-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022]
Abstract
The main objective of structural biology is to model proteins and other biological macromolecules and link the structural information to function and dynamics. The biological functions of protein molecules and nucleic acids are inherently dependent on their conformational dynamics. Imaging of individual molecules and their dynamic characteristics is an ample source of knowledge that brings new insights about mechanisms of action. The atomic-resolution structural information on most of the biomolecules has been solved by biophysical techniques; either by X-ray diffraction in single crystals or by nuclear magnetic resonance (NMR) spectroscopy in solution. Cryo-electron microscopy (cryo-EM) is emerging as a new tool for analysis of a larger macromolecule that couldn't be solved by X-ray crystallography or NMR. Now a day's low-resolution Cryo-EM is used in combination with either X-ray crystallography or NMR. The present review intends to provide updated information on applications like X-ray crystallography, cryo-EM and NMR which can be used independently and/or together in solving structures of biological macromolecules for our full comprehension of their biological mechanisms.
Collapse
Affiliation(s)
- Solomon Tsegaye
- Department of Biochemistry, College of Health Sciences, Arsi University, Oromia, Ethiopia
| | - Gobena Dedefo
- Department of Medical Laboratory Technology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
62
|
Hazawa M, Amemori S, Nishiyama Y, Iga Y, Iwashima Y, Kobayashi A, Nagatani H, Mizuno M, Takahashi K, Wong RW. A light-switching pyrene probe to detect phase-separated biomolecules. iScience 2021; 24:102865. [PMID: 34386728 PMCID: PMC8346672 DOI: 10.1016/j.isci.2021.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/04/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Biomolecules may undergo liquid-liquid phase separation (LLPS) to spatiotemporally compartmentalize and regulate diverse biological processes. Because the number of tools to directly probe LLPS is limited (ie. FRAP, FRET, fluorescence microscopy, fluorescence anisotropy, circular dichroism, etc.), the physicochemical traits of phase-separated condensates remain largely elusive. Here, we introduce a light-switching dipyrene probe (Pyr-A) that forms monomers in either hydrophobic or viscous environments, and intramolecular excimers in aqueous solutions. By exploiting their distinct fluorescence emission spectra, we used fluorescent microscopic imaging to study phase-separated condensates formed by in vitro protein droplets and membraneless intracellular organelles (centrosomes). Ratiometric measurement of excimer and monomer fluorescence intensities showed that protein droplets became hydrophobic and viscous as their size increased. Moreover, centrosomes became hydrophobic and viscous during maturation. Our results show that Pyr-A is a valuable tool to characterize LLPS and enhance our understanding of phase separation underlying biological functions.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shogo Amemori
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshio Nishiyama
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshihiro Iga
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Iwashima
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akiko Kobayashi
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hirohisa Nagatani
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Motohiro Mizuno
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kenji Takahashi
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Richard W. Wong
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
63
|
Dinic J, Marciel AB, Tirrell MV. Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
64
|
Aneskievich BJ, Shamilov R, Vinogradova O. Intrinsic disorder in integral membrane proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:101-134. [PMID: 34656327 DOI: 10.1016/bs.pmbts.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The well-defined roles and specific protein-protein interactions of many integral membrane proteins (IMPs), such as those functioning as receptors for extracellular matrix proteins and soluble growth factors, easily align with considering IMP structure as a classical "lock-and-key" concept. Nevertheless, continued advances in understanding protein conformation, such as those which established the widespread existence of intrinsically disordered proteins (IDPs) and especially intrinsically disordered regions (IDRs) in otherwise three-dimensionally organized proteins, call for ongoing reevaluation of transmembrane proteins. Here, we present basic traits of IDPs and IDRs, and, for some select single-span IMPs, consider the potential functional advantages intrinsic disorder might provide and the possible conformational impact of disease-associated mutations. For transmembrane proteins in general, we highlight several investigational approaches, such as biophysical and computational methods, stressing the importance of integrating them to produce a more-complete mechanistic model of disorder-containing IMPs. These procedures, when synergized with in-cell assessments, will likely be key in translating in silico and in vitro results to improved understanding of IMP conformational flexibility in normal cell physiology as well as disease, and will help to extend their potential as therapeutic targets.
Collapse
Affiliation(s)
- Brian J Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Rambon Shamilov
- Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States.
| |
Collapse
|
65
|
Rai SK, Savastano A, Singh P, Mukhopadhyay S, Zweckstetter M. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Sci 2021; 30:1294-1314. [PMID: 33930220 PMCID: PMC8197432 DOI: 10.1002/pro.4093] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Biomolecular condensation via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins/regions (IDPs/IDRs), with and without nucleic acids, has drawn widespread interest due to the rapidly unfolding role of phase-separated condensates in a diverse range of cellular functions and human diseases. Biomolecular condensates form via transient and multivalent intermolecular forces that sequester proteins and nucleic acids into liquid-like membrane-less compartments. However, aberrant phase transitions into gel-like or solid-like aggregates might play an important role in neurodegenerative and other diseases. Tau, a microtubule-associated neuronal IDP, is involved in microtubule stabilization, regulates axonal outgrowth and transport in neurons. A growing body of evidence indicates that tau can accomplish some of its cellular activities via LLPS. However, liquid-to-solid transition resulting in the abnormal aggregation of tau is associated with neurodegenerative diseases. The physical chemistry of tau is crucial for governing its propensity for biomolecular condensation which is governed by various intermolecular and intramolecular interactions leading to simple one-component and complex multi-component condensates. In this review, we aim at capturing the current scientific state in unveiling the intriguing molecular mechanism of phase separation of tau. We particularly focus on the amalgamation of existing and emerging biophysical tools that offer unique spatiotemporal resolutions on a wide range of length- and time-scales. We also discuss the link between quantitative biophysical measurements and novel biological insights into biomolecular condensation of tau. We believe that this account will provide a broad and multidisciplinary view of phase separation of tau and its association with physiology and disease.
Collapse
Affiliation(s)
- Sandeep K. Rai
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Adriana Savastano
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Priyanka Singh
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Markus Zweckstetter
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department for NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
66
|
On the specificity of protein-protein interactions in the context of disorder. Biochem J 2021; 478:2035-2050. [PMID: 34101805 PMCID: PMC8203207 DOI: 10.1042/bcj20200828] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
With the increased focus on intrinsically disordered proteins (IDPs) and their large interactomes, the question about their specificity — or more so on their multispecificity — arise. Here we recapitulate how specificity and multispecificity are quantified and address through examples if IDPs in this respect differ from globular proteins. The conclusion is that quantitatively, globular proteins and IDPs are similar when it comes to specificity. However, compared with globular proteins, IDPs have larger interactome sizes, a phenomenon that is further enabled by their flexibility, repetitive binding motifs and propensity to adapt to different binding partners. For IDPs, this adaptability, interactome size and a higher degree of multivalency opens for new interaction mechanisms such as facilitated exchange through trimer formation and ultra-sensitivity via threshold effects and ensemble redistribution. IDPs and their interactions, thus, do not compromise the definition of specificity. Instead, it is the sheer size of their interactomes that complicates its calculation. More importantly, it is this size that challenges how we conceptually envision, interpret and speak about their specificity.
Collapse
|
67
|
Posey AE, Ruff KM, Lalmansingh JM, Kandola TS, Lange JJ, Halfmann R, Pappu RV. Mechanistic Inferences From Analysis of Measurements of Protein Phase Transitions in Live Cells. J Mol Biol 2021; 433:166848. [PMID: 33539877 PMCID: PMC8561728 DOI: 10.1016/j.jmb.2021.166848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The combination of phase separation and disorder-to-order transitions can give rise to ordered, semi-crystalline fibrillar assemblies that underlie prion phenomena namely, the non-Mendelian transfer of information across cells. Recently, a method known as Distributed Amphifluoric Förster Resonance Energy Transfer (DAmFRET) was developed to study the convolution of phase separation and disorder-to-order transitions in live cells. In this assay, a protein of interest is expressed to a broad range of concentrations and the acquisition of local density and order, measured by changes in FRET, is used to map phase transitions for different proteins. The high-throughput nature of this assay affords the promise of uncovering sequence-to-phase behavior relationships in live cells. Here, we report the development of a supervised method to obtain automated and accurate classifications of phase transitions quantified using the DAmFRET assay. Systems that we classify as undergoing two-state discontinuous transitions are consistent with prion-like behaviors, although the converse is not always true. We uncover well-established and surprising new sequence features that contribute to two-state phase behavior of prion-like domains. Additionally, our method enables quantitative, comparative assessments of sequence-specific driving forces for phase transitions in live cells. Finally, we demonstrate that a modest augmentation of DAmFRET measurements, specifically time-dependent protein expression profiles, can allow one to apply classical nucleation theory to extract sequence-specific lower bounds on the probability of nucleating ordered assemblies. Taken together, our approaches lead to a useful analysis pipeline that enables the extraction of mechanistic inferences regarding phase transitions in live cells.
Collapse
Affiliation(s)
- Ammon E Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tejbir S Kandola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
68
|
Workman RJ, Pettitt BM. Thermodynamic Compensation in Peptides Following Liquid-Liquid Phase Separation. J Phys Chem B 2021; 125:6431-6439. [PMID: 34110175 DOI: 10.1021/acs.jpcb.1c02093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid-liquid phase separation of proteins often incorporates intrinsically disordered proteins or those with disordered regions. Examining these processes via the entropy change is desirable for establishing a quantitative foundation with which to probe and understand these phase transitions. Of interest is the effect of residue sequence on the entropy of the peptide backbone. In this work we model these systems via all atom simulations of liquid-liquid phase separation of peptides. Systems of supersaturated pentapeptides separate into a peptide-dense liquid droplet phase as well as a dilute (saturated) aqueous phase. An analysis of the change in backbone conformational entropy associated with the phase transition was performed. We examined systems of four different pentapeptides (GGGGG, GGQGG, GGNGG, and GGVGG) in order to explore the effect of sequence variation on the conformational entropy, as well as the effect of side chain variation on the physical characteristics of the droplet phases. We find that the loss of conformational entropy that accompanies aqueous → droplet transitions is more than compensated by a decrease in interaction enthalpy as contributions to the free energy change for the process.
Collapse
Affiliation(s)
- Riley J Workman
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
69
|
Regy RM, Thompson J, Kim YC, Mittal J. Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci 2021; 30:1371-1379. [PMID: 33934416 DOI: 10.1002/pro.4094] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022]
Abstract
We present improvements to the hydropathy scale (HPS) coarse-grained (CG) model for simulating sequence-specific behavior of intrinsically disordered proteins (IDPs), including their liquid-liquid phase separation (LLPS). The previous model based on an atomistic hydropathy scale by Kapcha and Rossky (KR scale) is not able to capture some well-known LLPS trends such as reduced phase separation propensity upon mutations (R-to-K and Y-to-F). Here, we propose to use the Urry hydropathy scale instead, which was derived from the inverse temperature transitions in a model polypeptide with guest residues X. We introduce two free parameters to shift (Δ) and scale (µ) the overall interaction strengths for the new model (HPS-Urry) and use the experimental radius of gyration for a diverse group of IDPs to find their optimal values. Interestingly, many possible (Δ, µ) combinations can be used for typical IDPs, but the phase behavior of a low-complexity (LC) sequence FUS is only well described by one of these models, which highlights the need for a careful validation strategy based on multiple proteins. The CG HPS-Urry model should enable accurate simulations of protein LLPS and provide a microscopically detailed view of molecular interactions.
Collapse
Affiliation(s)
- Roshan Mammen Regy
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Jacob Thompson
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, District of Columbia, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
70
|
Phạm TTT, Rainey JK. On-cell nuclear magnetic resonance spectroscopy to probe cell surface interactions. Biochem Cell Biol 2021; 99:683-692. [PMID: 33945753 DOI: 10.1139/bcb-2021-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy allows determination of atomic-level information about intermolecular interactions, molecular structure, and molecular dynamics in the cellular environment. This may be broadly divided into studies focused on obtaining detailed molecular information in the intracellular context ("in-cell") or those focused on characterizing molecules or events at the cell surface ("on-cell"). In this review, we outline some key NMR techniques applied for on-cell NMR studies through both solution-state and solid-state NMR and survey studies that have used these techniques to uncover key information. We particularly focus on application of on-cell NMR spectroscopy to characterize ligand interactions with cell surface membrane proteins such as G-protein coupled receptors (GPCRs), receptor tyrosine kinases, etc. These techniques allow for quantification of binding affinities, competitive binding assays, delineation of portions of ligands involved in binding, ligand bound-state conformational determination, evaluation of receptor structuring and dynamics, and inference of distance constraints characteristic of the ligand-receptor bound state. Excitingly, it is possible to avoid the barriers of production and purification of membrane proteins while obtaining directly physiologically-relevant information through on-cell NMR. We also provide a briefer survey of the applicability of on-cell NMR approaches to other classes of cell surface molecule.
Collapse
Affiliation(s)
- Trần Thanh Tâm Phạm
- Dalhousie University, 3688, Department of Biochemistry & Molecular Biology, Halifax, Nova Scotia, Canada;
| | - Jan K Rainey
- Dalhousie University, 3688, Department of Biochemistry & Molecular Biology, Halifax, Canada;
| |
Collapse
|
71
|
Dyson HJ, Wright PE. NMR illuminates intrinsic disorder. Curr Opin Struct Biol 2021; 70:44-52. [PMID: 33951592 DOI: 10.1016/j.sbi.2021.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Nuclear magnetic resonance (NMR) has long been instrumental in the characterization of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). This method continues to offer rich insights into the nature of IDPs in solution, especially in combination with other biophysical methods such as small-angle scattering, single-molecule fluorescence, electron paramagnetic resonance (EPR), and mass spectrometry. Substantial advances have been made in recent years in studies of proteins containing both ordered and disordered domains and in the characterization of problematic sequences containing repeated tracts of a single or a few amino acids. These sequences are relevant to disease states such as Alzheimer's, Parkinson's, and Huntington's diseases, where disordered proteins misfold into harmful amyloid. Innovative applications of NMR are providing novel insights into mechanisms of protein aggregation and the complexity of IDP interactions with their targets. As a basis for understanding the solution structural ensembles, dynamic behavior, and functional mechanisms of IDPs and IDRs, NMR continues to prove invaluable.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, California, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, California, USA.
| |
Collapse
|
72
|
Emmanouilidis L, Esteban-Hofer L, Damberger FF, de Vries T, Nguyen CKX, Ibáñez LF, Mergenthal S, Klotzsch E, Yulikov M, Jeschke G, Allain FHT. NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation. Nat Chem Biol 2021; 17:608-614. [PMID: 33686294 PMCID: PMC7617049 DOI: 10.1038/s41589-021-00752-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023]
Abstract
Many RNA-binding proteins undergo liquid-liquid phase separation, which underlies the formation of membraneless organelles, such as stress granules and P-bodies. Studies of the molecular mechanism of phase separation in vitro are hampered by the coalescence and sedimentation of organelle-sized droplets interacting with glass surfaces. Here, we demonstrate that liquid droplets of fused in sarcoma (FUS)-a protein found in cytoplasmic aggregates of amyotrophic lateral sclerosis and frontotemporal dementia patients-can be stabilized in vitro using an agarose hydrogel that acts as a cytoskeleton mimic. This allows their spectroscopic characterization by liquid-phase NMR and electron paramagnetic resonance spectroscopy. Protein signals from both dispersed and condensed phases can be observed simultaneously, and their respective proportions can be quantified precisely. Furthermore, the agarose hydrogel acts as a cryoprotectant during shock-freezing, which facilitates pulsed electron paramagnetic resonance measurements at cryogenic temperatures. Surprisingly, double electron-electron resonance measurements revealed a compaction of FUS in the condensed phase.
Collapse
Affiliation(s)
| | - Laura Esteban-Hofer
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Fred F Damberger
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Cristina K X Nguyen
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Luis Fábregas Ibáñez
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Simon Mergenthal
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt University of Berlin, Berlin, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt University of Berlin, Berlin, Germany
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland.
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
73
|
Ahlers J, Adams EM, Bader V, Pezzotti S, Winklhofer KF, Tatzelt J, Havenith M. The key role of solvent in condensation: Mapping water in liquid-liquid phase-separated FUS. Biophys J 2021; 120:1266-1275. [PMID: 33515602 PMCID: PMC8059208 DOI: 10.1016/j.bpj.2021.01.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
Formation of biomolecular condensates through liquid-liquid phase separation (LLPS) has emerged as a pervasive principle in cell biology, allowing compartmentalization and spatiotemporal regulation of dynamic cellular processes. Proteins that form condensates under physiological conditions often contain intrinsically disordered regions with low-complexity domains. Among them, the RNA-binding proteins FUS and TDP-43 have been a focus of intense investigation because aberrant condensation and aggregation of these proteins is linked to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. LLPS occurs when protein-rich condensates form surrounded by a dilute aqueous solution. LLPS is per se entropically unfavorable. Energetically favorable multivalent protein-protein interactions are one important aspect to offset entropic costs. Another proposed aspect is the release of entropically unfavorable preordered hydration water into the bulk. We used attenuated total reflection spectroscopy in the terahertz frequency range to characterize the changes in the hydrogen bonding network accompanying the FUS enrichment in liquid-liquid phase-separated droplets to provide experimental evidence for the key role of the solvent as a thermodynamic driving force. The FUS concentration inside LLPS droplets was determined to be increased to 2.0 mM independent of the initial protein concentration (5 or 10 μM solutions) by fluorescence measurements. With terahertz spectroscopy, we revealed a dewetting of hydrophobic side chains in phase-separated FUS. Thus, the release of entropically unfavorable water populations into the bulk goes hand in hand with enthalpically favorable protein-protein interaction. Both changes are energetically favorable, and our study shows that both contribute to the thermodynamic driving force in phase separation.
Collapse
Affiliation(s)
- Jonas Ahlers
- Department Physical Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Ellen M Adams
- Department Physical Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Simone Pezzotti
- Department Physical Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Martina Havenith
- Department Physical Chemistry, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
74
|
Goetz SK, Mahamid J. Visualizing Molecular Architectures of Cellular Condensates: Hints of Complex Coacervation Scenarios. Dev Cell 2021; 55:97-107. [PMID: 33049214 DOI: 10.1016/j.devcel.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/15/2020] [Accepted: 09/05/2020] [Indexed: 02/09/2023]
Abstract
In the last decade, liquid-liquid phase separation has emerged as a fundamental principle in the organization of crowded cellular environments into functionally distinct membraneless compartments. It is now established that biomolecules can condense into various physical phases, traditionally defined for simple polymer systems, and more recently elucidated by techniques employed in life sciences. We review pioneering cryo-electron tomography studies that have begun to unravel a wide spectrum of molecular architectures, ranging from amorphous to crystalline assemblies, that underlie cellular condensates. These observations bring into question current interpretations of microscopic phase behavior. Furthermore, by examining emerging concepts of non-classical phase separation pathways in small-molecule crystallization, we draw parallels with biomolecular condensation that highlight aspects not yet fully explored. In particular, transient and metastable intermediates that might be challenging to capture experimentally inside cells could be probed through computational simulations and enable a multi-scale understanding of the subcellular organization governed by distinct phases.
Collapse
Affiliation(s)
- Sara Kathrin Goetz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
75
|
Abstract
Recent advancements in detection methods have made protein condensates, also called granules, a major area of study, but tools to characterize these assemblies need continued development to keep up with evolving paradigms. We have optimized a protocol to separate condensates from cells using chemical cross-linking followed by size-exclusion chromatography (SEC). After SEC fractionation, the samples can be characterized by a variety of approaches including enzyme-linked immunosorbent assay, dynamic light scattering, electron microscopy, and mass spectrometry. The protocol described here has been optimized for cultured mammalian cells and E. coli expressing recombinant proteins. Since the lysates are fractionated by size, this protocol can be modified to study other large protein assemblies, including the nuclear pore complex, and for other tissues or organisms. © 2021 Wiley Periodicals LLC. Basic Protocol 1: SEC separation of cross-linked mammalian cell lysates Alternate Protocol: Preparation of non-crosslinked mammalian cells Basic Protocol 2: SEC separation of E. coli lysate Support Protocol 1: Detecting protein of interest by ELISA Support Protocol 2: TCA precipitation of SEC fractions.
Collapse
Affiliation(s)
- Rachel A. Victor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85745, USA
| | - Valery F. Thompson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85745, USA
| | - Jacob C. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85745, USA
| |
Collapse
|
76
|
Bari KJ, Prakashchand DD. Fundamental Challenges and Outlook in Simulating Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins. J Phys Chem Lett 2021; 12:1644-1656. [PMID: 33555894 DOI: 10.1021/acs.jpclett.0c03404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intrinsically disordered proteins (IDPs) populate an ensemble of dynamic conformations, making their structural characterization by experiments challenging. Many IDPs undergo liquid-liquid phase separation into dense membraneless organelles with myriad cellular functions. Multivalent interactions in low-complexity IDPs promote the formation of these subcellular coacervates. While solution NMR, Förster resonance energy transfer (FRET), and small-angle X-ray scattering (SAXS) studies on IDPs have their own challenges, recent computational methods draw a rational trade-off to characterize the driving forces underlying phase separation. In this Perspective, we critically evaluate the scope of approximation-free field theoretic simulations, well-tempered ensemble methods, enhanced sampling techniques, coarse-grained force fields, and slab simulation approaches to offer an improved understanding of phase separation. A synergy between simulation length scale and model resolution would reduce the existing caveats and enable theories of polymer physics to elucidate finer details of liquid-liquid phase separation (LLPS). These computational advances offer promise for rigorous characterization of the IDP proteome and designing peptides with tunable material and self-assembly properties.
Collapse
Affiliation(s)
- Khandekar Jishan Bari
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, Odisha 760010, India
| | - Dube Dheeraj Prakashchand
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
| |
Collapse
|
77
|
Alberti S, Hyman AA. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol 2021; 22:196-213. [PMID: 33510441 DOI: 10.1038/s41580-020-00326-6] [Citation(s) in RCA: 613] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Biomolecular condensates are membraneless intracellular assemblies that often form via liquid-liquid phase separation and have the ability to concentrate biopolymers. Research over the past 10 years has revealed that condensates play fundamental roles in cellular organization and physiology, and our understanding of the molecular principles, components and forces underlying their formation has substantially increased. Condensate assembly is tightly regulated in the intracellular environment, and failure to control condensate properties, formation and dissolution can lead to protein misfolding and aggregation, which are often the cause of ageing-associated diseases. In this Review, we describe the mechanisms and regulation of condensate assembly and dissolution, highlight recent advances in understanding the role of biomolecular condensates in ageing and disease, and discuss how cellular stress, ageing-related loss of homeostasis and a decline in protein quality control may contribute to the formation of aberrant, disease-causing condensates. Our improved understanding of condensate pathology provides a promising path for the treatment of protein aggregation diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
78
|
Lazar T, Martínez-Pérez E, Quaglia F, Hatos A, Chemes L, Iserte JA, Méndez NA, Garrone NA, Saldaño T, Marchetti J, Rueda A, Bernadó P, Blackledge M, Cordeiro TN, Fagerberg E, Forman-Kay JD, Fornasari M, Gibson TJ, Gomes GNW, Gradinaru C, Head-Gordon T, Jensen MR, Lemke E, Longhi S, Marino-Buslje C, Minervini G, Mittag T, Monzon A, Pappu RV, Parisi G, Ricard-Blum S, Ruff KM, Salladini E, Skepö M, Svergun D, Vallet S, Varadi M, Tompa P, Tosatto SCE, Piovesan D. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res 2021; 49:D404-D411. [PMID: 33305318 PMCID: PMC7778965 DOI: 10.1093/nar/gkaa1021] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.
Collapse
Affiliation(s)
- Tamas Lazar
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology, Brussels 1050, Belgium
- Structural Biology Brussels, Bioengineering Sciences Department, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Elizabeth Martínez-Pérez
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Federica Quaglia
- Dept. of Biomedical Sciences, University of Padua, Padova 35131, Italy
| | - András Hatos
- Dept. of Biomedical Sciences, University of Padua, Padova 35131, Italy
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde’’, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de SanMartín, CP1650 San Martín, Buenos Aires, Argentina
| | - Javier A Iserte
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina
| | - Nicolás A Méndez
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde’’, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de SanMartín, CP1650 San Martín, Buenos Aires, Argentina
| | - Nicolás A Garrone
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde’’, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de SanMartín, CP1650 San Martín, Buenos Aires, Argentina
| | - Tadeo E Saldaño
- Laboratorio de Química y Biología Computacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Julia Marchetti
- Laboratorio de Química y Biología Computacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Ana Julia Velez Rueda
- Laboratorio de Química y Biología Computacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, University of Montpellier, Montpellier 34090, France
| | | | - Tiago N Cordeiro
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, University of Montpellier, Montpellier 34090, France
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Eric Fagerberg
- Theoretical Chemistry, Lund University, Lund, POB 124, SE-221 00, Sweden
| | - Julie D Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, M5G 1X8, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Ontario, Canada
| | - Maria S Fornasari
- Laboratorio de Química y Biología Computacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, M5S 1A7, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, L5L 1C6, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, M5S 1A7, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, L5L 1C6, Ontario, Canada
| | - Teresa Head-Gordon
- Departments of Chemistry, Bioengineering, Chemical and Biomolecular Engineering University of California, Berkeley, CA 94720, USA
| | | | - Edward A Lemke
- Biocentre, Johannes Gutenberg-University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology, Mainz 55128, Germany
| | - Sonia Longhi
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille 13288, France
| | | | | | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, MO 63130, USA
| | - Gustavo Parisi
- Laboratorio de Química y Biología Computacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, Villeurbanne, 69629 Lyon Cedex 07, France
| | - Kiersten M Ruff
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, MO 63130, USA
| | - Edoardo Salladini
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille 13288, France
| | - Marie Skepö
- Theoretical Chemistry, Lund University, Lund, POB 124, SE-221 00, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Lund 223 70, Sweden
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, Villeurbanne, 69629 Lyon Cedex 07, France
| | - Mihaly Varadi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Peter Tompa
- To whom correspondence should be addressed. Tel +32 473 785386;
| | - Silvio C E Tosatto
- Correspondence may also be addressed to Silvio C. E. Tosatto. Tel: +39 049 827 6269;
| | - Damiano Piovesan
- Dept. of Biomedical Sciences, University of Padua, Padova 35131, Italy
| |
Collapse
|
79
|
Fuentes-Monteverde JC, Becker S, Rezaei-Ghaleh N. Biomolecular phase separation through the lens of sodium-23 NMR. Protein Sci 2020; 30:1315-1325. [PMID: 33314347 PMCID: PMC8197435 DOI: 10.1002/pro.4010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023]
Abstract
Phase separation is a fundamental physicochemical process underlying the spatial arrangement and coordination of cellular events. Detailed characterization of biomolecular phase separation requires experimental access to the internal environment of dilute and especially condensed phases at high resolution. In this study, we take advantage from the ubiquitous presence of sodium ions in biomolecular samples and present the potentials of 23Na NMR as a proxy to report the internal fluidity of biomolecular condensed phases. After establishing the temperature and viscosity dependence of 23Na NMR relaxation rates and translational diffusion coefficient, we demonstrate that 23Na NMR probes of rotational and translational mobility of sodium ions are capable of capturing the increasing levels of confinement in agarose gels in dependence of agarose concentration. The 23Na NMR approach is then applied to a gel‐forming phenylalanine‐glycine (FG)‐containing peptide, part of the nuclear pore complex involved in controlling the traffic between cytoplasm and cell nucleus. It is shown that the 23Na NMR together with the 17O NMR provide a detailed picture of the sodium ion and water mobility within the interior of the FG peptide hydrogel. As another example, we study phase separation in water‐triethylamine (TEA) mixture and provide evidence for the presence of multiple microscopic environments within the TEA‐rich phase. Our results highlight the potentials of 23Na NMR in combination with 17O NMR in studying biological phase separation, in particular with regards to the molecular properties of biomolecular condensates and their regulation through various physico‐ and biochemical factors.
Collapse
Affiliation(s)
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
80
|
Fritzsching KJ, Yang Y, Pogue EM, Rayman JB, Kandel ER, McDermott AE. Micellar TIA1 with folded RNA binding domains as a model for reversible stress granule formation. Proc Natl Acad Sci U S A 2020; 117:31832-31837. [PMID: 33257579 PMCID: PMC7749305 DOI: 10.1073/pnas.2007423117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
TIA1, a protein critical for eukaryotic stress response and stress granule formation, is structurally characterized in full-length form. TIA1 contains three RNA recognition motifs (RRMs) and a C-terminal low-complexity domain, sometimes referred to as a "prion-related domain" or associated with amyloid formation. Under mild conditions, full-length (fl) mouse TIA1 spontaneously oligomerizes to form a metastable colloid-like suspension. RRM2 and RRM3, known to be critical for function, are folded similarly in excised domains and this oligomeric form of apo fl TIA1, based on NMR chemical shifts. By contrast, the termini were not detected by NMR and are unlikely to be amyloid-like. We were able to assign the NMR shifts with the aid of previously assigned solution-state shifts for the RRM2,3 isolated domains and homology modeling. We present a micellar model of fl TIA1 wherein RRM2 and RRM3 are colocalized, ordered, hydrated, and available for nucleotide binding. At the same time, the termini are disordered and phase separated, reminiscent of stress granule substructure or nanoscale liquid droplets.
Collapse
Affiliation(s)
| | - Yizhuo Yang
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Emily M Pogue
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Joseph B Rayman
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- HHMI, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032
- Kavli Institute for Brain Science, Columbia University, New York, NY 10032
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027;
| |
Collapse
|
81
|
Jobe F, Simpson J, Hawes P, Guzman E, Bailey D. Respiratory Syncytial Virus Sequesters NF-κB Subunit p65 to Cytoplasmic Inclusion Bodies To Inhibit Innate Immune Signaling. J Virol 2020; 94:JVI.01380-20. [PMID: 32878896 PMCID: PMC7592213 DOI: 10.1128/jvi.01380-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.
Collapse
Affiliation(s)
| | | | - Philippa Hawes
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Efrain Guzman
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| |
Collapse
|
82
|
Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020; 477:3499-3525. [PMID: 32970141 PMCID: PMC7574821 DOI: 10.1042/bcj20200065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| |
Collapse
|
83
|
Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. SCIENCE CHINA. LIFE SCIENCES 2020; 63:953-985. [PMID: 32548680 DOI: 10.1007/s11427-020-1702-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
Collapse
|
84
|
Methods to Study Phase-Separated Condensates and the Underlying Molecular Interactions. Trends Biochem Sci 2020; 45:1004-1005. [PMID: 32561165 DOI: 10.1016/j.tibs.2020.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/23/2022]
|