51
|
van den Berg BHJ, Tholey A. Mass spectrometry-based proteomics strategies for protease cleavage site identification. Proteomics 2012; 12:516-29. [PMID: 22246699 DOI: 10.1002/pmic.201100379] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/14/2011] [Accepted: 09/17/2011] [Indexed: 01/22/2023]
Abstract
Protease-catalyzed hydrolysis of peptide bonds is one of the most pivotal post-translational modifications fulfilling manifold functions in the regulation of cellular processes. Therefore, dysregulation of proteolytic reactions plays a central role in many pathophysiological events. For this reason, understanding the molecular mechanisms in proteolytic reactions, in particular the knowledge of proteases involved in complex processes, expression levels and activity of protease and knowledge of the targeted substrates are an indispensable prerequisite for targeted drug development. The present review focuses on mass spectrometry-based proteomic methods for the analysis of protease cleavage sites, including the identification of the hydrolyzed bonds as well as of the surrounding sequence. Peptide- and protein-centric approaches and bioinformatic tools for experimental data interpretation will be presented and the major advantages and drawbacks of the different approaches will be addressed. The recent applications of these approaches for the analysis of biological function of different protease classes and potential future directions will be discussed.
Collapse
Affiliation(s)
- Bart H J van den Berg
- AG Systematische Proteomforschung, Institut für Experimentelle Medizin, Christian-Albrechts-Universität, Kiel, Germany.
| | | |
Collapse
|
52
|
Deu E, Verdoes M, Bogyo M. New approaches for dissecting protease functions to improve probe development and drug discovery. Nat Struct Mol Biol 2012; 19:9-16. [PMID: 22218294 DOI: 10.1038/nsmb.2203] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteases are well-established targets for pharmaceutical development because of their known enzymatic mechanism and their regulatory roles in many pathologies. However, many potent clinical lead compounds have been unsuccessful either because of a lack of specificity or because of our limited understanding of the biological roles of the targeted protease. In order to successfully develop protease inhibitors as drugs, it is necessary to understand protease functions and to expand the platform of inhibitor development beyond active site-directed design and in vitro optimization. Several newly developed technologies will enhance assessment of drug selectivity in living cells and animal models, allowing researchers to focus on compounds with high specificity and minimal side effects in vivo. In this review, we highlight advances in the development of chemical probes, proteomic methods and screening tools that we feel will help facilitate this paradigm shift in drug discovery.
Collapse
Affiliation(s)
- Edgar Deu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
53
|
Lange PF, Huesgen PF, Overall CM. TopFIND 2.0--linking protein termini with proteolytic processing and modifications altering protein function. Nucleic Acids Res 2011; 40:D351-61. [PMID: 22102574 PMCID: PMC3244998 DOI: 10.1093/nar/gkr1025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Protein termini provide critical insights into the functional state of individual proteins. With recent advances in specific proteomics approaches to enrich for N- and C-terminomes, the global analysis of whole terminomes at a proteome-wide scale is now possible. Information on the actual N- and C-termini of proteins in vivo and any post-translational modifications, including their generation by proteolytic processing, is rapidly accumulating. To access this information we present version 2.0 of TopFIND (http://clipserve.clip.ubc.ca/topfind), a knowledgebase for protein termini, terminus modifications and underlying proteolytic processing. Built on a protein-centric framework TopFIND covers five species: Homo sapiens, Mus musculus, Arabidopsis thaliana, Saccharomyces cerevisiae and Escherichia coli and incorporates information from curated community submissions, publications, UniProtKB and MEROPS. Emphasis is placed on the detailed description and classification of evidence supporting the reported identification of each cleavage site, terminus and modification. A suite of filters can be applied to select supporting evidence. A dynamic network representation of the relationship between proteases, their substrates and inhibitors as well as visualization of protease cleavage site specificities complements the information displayed. Hence, TopFIND supports in depth investigation of protein termini information to spark new hypotheses on protein function by correlating cleavage events and termini with protein domains and mutations.
Collapse
Affiliation(s)
- Philipp F Lange
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | | | |
Collapse
|
54
|
Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 2011; 6:1578-611. [PMID: 21959240 DOI: 10.1038/nprot.2011.382] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.
Collapse
|
55
|
Beaudette P, Rossi NAA, Huesgen PF, Yu X, Shenoi RA, Doucet A, Overall CM, Kizhakkedathu JN. Development of Soluble Ester-Linked Aldehyde Polymers for Proteomics. Anal Chem 2011; 83:6500-10. [DOI: 10.1021/ac200419p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Alain Doucet
- Institute of Systems Biology, The University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | | | | |
Collapse
|
56
|
Jefferson T, Čaušević M, auf dem Keller U, Schilling O, Isbert S, Geyer R, Maier W, Tschickardt S, Jumpertz T, Weggen S, Bond JS, Overall CM, Pietrzik CU, Becker-Pauly C. Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J Biol Chem 2011; 286:27741-50. [PMID: 21646356 PMCID: PMC3149364 DOI: 10.1074/jbc.m111.252718] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/02/2011] [Indexed: 01/07/2023] Open
Abstract
Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin β is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin β and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin β. Processing of APP by meprin β was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin β(-/-) mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin β is a physiologically relevant enzyme in APP processing.
Collapse
Affiliation(s)
- Tamara Jefferson
- From Cell and Matrix Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Mirsada Čaušević
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Ulrich auf dem Keller
- the Institute of Cell Biology, Swiss Federal Institute of Technology Zurich, ETH Hoenggerberg, HPM D24, CH-8093 Zurich, Switzerland
| | - Oliver Schilling
- the Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Simone Isbert
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Rebecca Geyer
- From Cell and Matrix Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Wladislaw Maier
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Sabrina Tschickardt
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Thorsten Jumpertz
- the Department of Neuropathology, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Sascha Weggen
- the Department of Neuropathology, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Judith S. Bond
- the Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Christopher M. Overall
- the Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Claus U. Pietrzik
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | | |
Collapse
|
57
|
Becker-Pauly C, Barré O, Schilling O, Auf dem Keller U, Ohler A, Broder C, Schütte A, Kappelhoff R, Stöcker W, Overall CM. Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol Cell Proteomics 2011; 10:M111.009233. [PMID: 21693781 PMCID: PMC3186203 DOI: 10.1074/mcp.m111.009233] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Astacins are secreted and membrane-bound metalloproteases with clear associations to many important pathological and physiological processes. Yet with only a few substrates described their biological roles are enigmatic. Moreover, the lack of knowledge of astacin cleavage site specificities hampers assay and drug development. Using PICS (proteomic identification of protease cleavage site specificity) and TAILS (terminal amine isotopic labeling of substrates) degradomics approaches >3000 cleavage sites were proteomically identified for five different astacins. Such broad coverage enables family-wide determination of specificities N- and C-terminal to the scissile peptide bond. Remarkably, meprin α, meprin β, and LAST_MAM proteases exhibit a strong preference for aspartate in the peptide (P)1′ position because of a conserved positively charged residue in the active cleft subsite (S)1′. This unparalleled specificity has not been found for other families of extracellular proteases. Interestingly, cleavage specificity is also strongly influenced by proline in P2′ or P3′ leading to a rare example of subsite cooperativity. This specificity characterizes the astacins as unique contributors to extracellular proteolysis that is corroborated by known cleavage sites in procollagen I+III, VEGF (vascular endothelial growth factor)-A, IL (interleukin)-1β, and pro-kallikrein 7. Indeed, cleavage sites in VEGF-A and pro-kallikrein 7 identified by terminal amine isotopic labeling of substrates matched those reported by Edman degradation. Moreover, the novel substrate FGF-19 was validated biochemically and shown to exhibit altered biological activity after meprin processing.
Collapse
Affiliation(s)
- Christoph Becker-Pauly
- Cell and Matrix Biology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, D-55128 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Song J, Tan H, Boyd SE, Shen H, Mahmood K, Webb GI, Akutsu T, Whisstock JC, Pike RN. Bioinformatic approaches for predicting substrates of proteases. J Bioinform Comput Biol 2011; 9:149-78. [PMID: 21328711 DOI: 10.1142/s0219720011005288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 11/18/2022]
Abstract
Proteases have central roles in "life and death" processes due to their important ability to catalytically hydrolyze protein substrates, usually altering the function and/or activity of the target in the process. Knowledge of the substrate specificity of a protease should, in theory, dramatically improve the ability to predict target protein substrates. However, experimental identification and characterization of protease substrates is often difficult and time-consuming. Thus solving the "substrate identification" problem is fundamental to both understanding protease biology and the development of therapeutics that target specific protease-regulated pathways. In this context, bioinformatic prediction of protease substrates may provide useful and experimentally testable information about novel potential cleavage sites in candidate substrates. In this article, we provide an overview of recent advances in developing bioinformatic approaches for predicting protease substrate cleavage sites and identifying novel putative substrates. We discuss the advantages and drawbacks of the current methods and detail how more accurate models can be built by deriving multiple sequence and structural features of substrates. We also provide some suggestions about how future studies might further improve the accuracy of protease substrate specificity prediction.
Collapse
Affiliation(s)
- Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Mischerikow N, Heck AJR. Targeted large-scale analysis of protein acetylation. Proteomics 2011; 11:571-89. [DOI: 10.1002/pmic.201000397] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/10/2010] [Accepted: 09/27/2010] [Indexed: 11/06/2022]
|
60
|
Mason SD, Joyce JA. Proteolytic networks in cancer. Trends Cell Biol 2011; 21:228-37. [PMID: 21232958 DOI: 10.1016/j.tcb.2010.12.002] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/17/2010] [Accepted: 12/02/2010] [Indexed: 12/11/2022]
Abstract
Proteases are important for multiple processes during malignant progression, including tumor angiogenesis, invasion and metastasis. Recent evidence reveals that tumor-promoting proteases function as part of an extensive multidirectional network of proteolytic interactions, in contrast to the unidirectional caspase cascade. These networks involve different constituents of the tumor microenvironment and key proteases, such as cathepsin B, urokinase-type plasminogen activator and several matrix metalloproteinases, occupy central nodes for amplifying proteolytic signals passing through the network. The proteolytic network interacts with other important signaling pathways in tumor biology, involving chemokines, cytokines, and kinases. Viewing these proteolytic interactions as a system of activating and inhibiting reactions provides insight into tumor biology and reveals relevant pharmaceutical targets. This review examines recent advances in understanding proteases in cancer and summarizes how the network of activity is co-opted to promote tumor progression.
Collapse
Affiliation(s)
- Steven D Mason
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
61
|
Schilling O, Huesgen PF, Barré O, Overall CM. Identification and relative quantification of native and proteolytically generated protein C-termini from complex proteomes: C-terminome analysis. Methods Mol Biol 2011; 781:59-69. [PMID: 21877277 DOI: 10.1007/978-1-61779-276-2_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Proteome-wide analysis of protein C-termini has long been inaccessible, but is now enabled by a newly developed negative selection strategy we term C-terminomics. In this procedure, amine- and carboxyl groups of full-length proteins are chemically protected. After trypsin digestion, N-terminal and internal tryptic peptides - but not C-terminal peptides - posses newly formed, unprotected C-termini that are removed by coupling to the high-molecular-weight polymer poly-allylamine. Ultrafiltration separates the uncoupled, blocked C-terminal peptides that are subsequently analyzed by liquid chromatography-tandem mass spectrometry. On a proteome-wide scale, this strategy profiles native protein C-termini together with neo C-termini generated by endoproteolytic cleavage or processive C-terminal truncations ("ragging"). In bacterial proteomes, hundreds of protein C-termini were identified. Stable isotope labeling enables -quantitative comparison of protein C-termini and C-terminal processing in different samples. Using formaldehyde-based chemical labeling, this quantitative approach termed "carboxy-terminal amine-based isotope labeling of substrates (C-TAILS)" identified >100 cleavage sites of exogenously applied GluC protease in an Escherichia coli proteome. C-TAILS complements recently developed N-terminomic techniques for endoprotease substrate discovery and is essential for the characterization of carboxyprotease processing.
Collapse
Affiliation(s)
- Oliver Schilling
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
62
|
Impens F, Colaert N, Helsens K, Ghesquière B, Timmerman E, De Bock PJ, Chain BM, Vandekerckhove J, Gevaert K. A quantitative proteomics design for systematic identification of protease cleavage events. Mol Cell Proteomics 2010; 9:2327-33. [PMID: 20627866 PMCID: PMC2953924 DOI: 10.1074/mcp.m110.001271] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Indexed: 01/11/2023] Open
Abstract
We present here a novel proteomics design for systematic identification of protease cleavage events by quantitative N-terminal proteomics, circumventing the need for time-consuming manual validation. We bypass the singleton detection problem of protease-generated neo-N-terminal peptides by introducing differential isotopic proteome labeling such that these substrate reporter peptides are readily distinguished from all other N-terminal peptides. Our approach was validated using the canonical human caspase-3 protease and further applied to mouse cathepsin D and E substrate processing in a mouse dendritic cell proteome, identifying the largest set of protein protease substrates ever reported and gaining novel insight into substrate specificity differences of these cathepsins.
Collapse
Affiliation(s)
- Francis Impens
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and
| | - Niklaas Colaert
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and
| | - Kenny Helsens
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and
| | - Bart Ghesquière
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and
| | - Evy Timmerman
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and
| | - Pieter-Jan De Bock
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and
| | - Benjamin M. Chain
- **Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Joël Vandekerckhove
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and
| | - Kris Gevaert
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and
| |
Collapse
|
63
|
auf dem Keller U, Schilling O. Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie 2010; 92:1705-14. [PMID: 20493233 DOI: 10.1016/j.biochi.2010.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/29/2010] [Indexed: 11/17/2022]
Abstract
Proteolysis constitutes a major post-translational modification but specificity and substrate selectivity of numerous proteases have remained elusive. In this review, we highlight how advanced techniques in the areas of proteomics and activity-based probes can be used to investigate i) protease active site specificity; ii) protease in vivo substrates; iii) protease contribution to proteome homeostasis and composition; and iv) detection and localization of active proteases. Peptide libraries together with genetical or biochemical selection have traditionally been used for active site profiling of proteases. These are now complemented by proteome-derived peptide libraries that simultaneously determine prime and non-prime specificity and characterize subsite cooperativity. Cell-contextual discovery of protease substrates is rendered possible by techniques that isolate and quantitate protein termini. Here, a novel approach termed Terminal Amine Isotopic Labeling of Substrates (TAILS) provides an integrated platform for substrate discovery and appropriate statistical evaluation of terminal peptide identification and quantification. Proteolytically generated carboxy-termini can now also be analyzed on a proteome-wide level. Proteolytic regulation of proteome composition is monitored by quantitative proteomic approaches employing stable isotope coding or label free quantification. Activity-based probes specifically recognize active proteases. In proteomic screens, they can be used to detect and quantitate proteolytic activity while their application in cellular histology allows to locate proteolytic activity in situ. Activity-based probes - especially in conjunction with positron emission tomography - are also promising tools to monitor proteolytic activities on an organism-wide basis with a focus on in vivo tumor imaging. Together, this array of methodological possibilities enables unveiling physiological protease substrate repertoires and defining protease function in the cellular- and organism-wide context.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- ETH Zürich Institute of Cell Biology, Schafmattstrasse 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
64
|
Prudova A, auf dem Keller U, Butler GS, Overall CM. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics 2010; 9:894-911. [PMID: 20305284 PMCID: PMC2871422 DOI: 10.1074/mcp.m000050-mcp201] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases.
Collapse
Affiliation(s)
- Anna Prudova
- Department of Biochemistry and Molecular Biology, Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|