51
|
Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 2013; 12:3444-52. [PMID: 24187339 PMCID: PMC3861698 DOI: 10.1074/mcp.o113.034181] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cellular function can be controlled through the gene expression program, but often protein post-translational modifications (PTMs) provide a more precise and elegant mechanism. Key functional roles of specific modification events—for instance, during the cell cycle—have been known for decades, but only in the past 10 years has mass-spectrometry-(MS)-based proteomics begun to reveal the true extent of the PTM universe. In this overview for the special PTM issue of Molecular and Cellular Proteomics, we take stock of where MS-based proteomics stands in the large-scale analysis of protein modifications. For many PTMs, including phosphorylation, ubiquitination, glycosylation, and acetylation, tens of thousands of sites can now be confidently identified and localized in the sequence of the protein. The quantification of PTM levels between different cellular states is likewise established, with label-free methods showing particular promise. It is also becoming possible to determine the absolute occupancy or stoichiometry of PTM sites on a large scale. Powerful software for the bioinformatic analysis of thousands of PTM sites has been developed. However, a complete inventory of sites has not been established for any PTM, and this situation will persist into the foreseeable future. Furthermore, although PTM coverage by MS-based methods is impressive, it still needs to be improved, especially in tissues and in clinically relevant systems. The central challenge for the field is to develop streamlined methods for determining biological functions for the myriad of modifications now known to exist.
Collapse
Affiliation(s)
- Jesper V Olsen
- Department of Proteomics, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
52
|
Peng M, Scholten A, Heck AJR, van Breukelen B. Identification of enriched PTM crosstalk motifs from large-scale experimental data sets. J Proteome Res 2013; 13:249-59. [PMID: 24087892 DOI: 10.1021/pr4005579] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Post-translational modifications (PTMs) play an important role in the regulation of protein function. Mass spectrometry based proteomics experiments nowadays identify tens of thousands of PTMs in a single experiment. A wealth of data has therefore become publically available. Evidently the biological function of each PTM is the key question to be addressed; however, such analyses focus primarily on single PTM events. This ignores the fact that PTMs may act in concert in the regulation of protein function, a process termed PTM crosstalk. Relatively little is known on the frequency and functional relevance of crosstalk between PTM sites. In a bioinformatics approach, we extracted PTMs occurring in proximity in the protein sequence from publically available databases. These PTMs and their flanking sequences were subjected to stringent motif searches, including a scoring for evolutionary conservation. Our unprejudiced approach was able to detect a respectable set of motifs, of which about half were described previously. Among these we could add many new proteins harboring these motifs. We extracted also several novel motifs, which through their widespread appearance and high conservation may pinpoint at previously nonannotated concerted PTM actions. By employing network analyses on these proteins, we propose putative functional roles for these novel motifs with two PTM sites in close proximity.
Collapse
Affiliation(s)
- Mao Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
53
|
Meijer LAT, Zhou H, Chan OYA, Altelaar AFM, Hennrich ML, Mohammed S, Bos JL, Heck AJR. Quantitative global phosphoproteomics of human umbilical vein endothelial cells after activation of the Rap signaling pathway. MOLECULAR BIOSYSTEMS 2013; 9:732-49. [PMID: 23403867 DOI: 10.1039/c3mb25524g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The small GTPase Rap1 is required for proper cell-cell junction formation and also plays a key role in mediating cAMP-induced tightening of adherens junctions and subsequent increased barrier function of endothelial cells. To further study how Rap1 controls barrier function, we performed quantitative global phosphoproteomics in human umbilical vein endothelial cells (HUVECs) prior to and after Rap1 activation by the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP-AM (007-AM). Tryptic digests were labeled using stable isotope dimethyl labeling, enriched with phosphopeptides by strong cation exchange (SCX), followed by titanium(iv) immobilized metal affinity chromatography (Ti(4+)-IMAC) and analyzed by high resolution mass spectrometry. We identified 19 859 unique phosphopeptides containing 17 278 unique phosphosites on 4594 phosphoproteins, providing the largest HUVEC phosphoproteome to date. Of all identified phosphosites, 220 (∼1%) were more than 1.5-fold up- or downregulated upon Rap activation, in two independent experiments. Compatible with the function of Rap1, these alterations were found predominantly in proteins regulating the actin cytoskeleton, cell-cell junctions and cell adhesion.
Collapse
Affiliation(s)
- Lars A T Meijer
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Scholten A, Preisinger C, Corradini E, Bourgonje VJ, Hennrich ML, van Veen TAB, Swaminathan PD, Joiner ML, Vos MA, Anderson ME, Heck AJR. Phosphoproteomics study based on in vivo inhibition reveals sites of calmodulin-dependent protein kinase II regulation in the heart. J Am Heart Assoc 2013; 2:e000318. [PMID: 23926118 PMCID: PMC3828808 DOI: 10.1161/jaha.113.000318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is a crucial mediator of cardiac physiology and pathology. Increased expression and activation of CaMKII has been linked to elevated risk for arrhythmic events and is a hallmark of human heart failure. A useful approach to determining CaMKII's role therein is large-scale analysis of phosphorylation events by mass spectrometry. However, current large-scale phosphoproteomics approaches have proved inadequate for high-fidelity identification of kinase-specific roles. The purpose of this study was to develop a phosphoproteomics approach to specifically identify CaMKII's downstream effects in cardiac tissue. METHODS AND RESULTS To identify putative downstream CaMKII targets in cardiac tissue, animals with myocardial-delimited expression of the specific peptide inhibitor of CaMKII (AC3-I) or an inactive control (AC3-C) were compared using quantitative phosphoproteomics. The hearts were isolated after isoproterenol injection to induce CaMKII activation downstream of β-adrenergic receptor agonist stimulation. Enriched phosphopeptides from AC3-I and AC3-C mice were differentially quantified using stable isotope dimethyl labeling, strong cation exchange chromatography and high-resolution LC-MS/MS. Phosphorylation levels of several hundred sites could be profiled, including 39 phosphoproteins noticeably affected by AC3-I-mediated CaMKII inhibition. CONCLUSIONS Our data set included known CaMKII substrates, as well as several new candidate proteins involved in functions not previously implicated in CaMKII signaling.
Collapse
Affiliation(s)
- Arjen Scholten
- Biomolecular Mass Spectrometry & Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Giansanti P, Stokes MP, Silva JC, Scholten A, Heck AJR. Interrogating cAMP-dependent kinase signaling in Jurkat T cells via a protein kinase A targeted immune-precipitation phosphoproteomics approach. Mol Cell Proteomics 2013; 12:3350-9. [PMID: 23882029 DOI: 10.1074/mcp.o113.028456] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time. Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase. Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.
Collapse
Affiliation(s)
- Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
56
|
Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat Commun 2013; 4:1408. [PMID: 23360999 DOI: 10.1038/ncomms2424] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023] Open
Abstract
Genome sequencing of arguably the simplest known animal, Trichoplax adhaerens, uncovered a rich array of transcription factor and signalling pathway genes. Although the existence of such genes allows speculation about the presence of complex regulatory events, it does not reveal the level of actual protein expression and functionalization through posttranslational modifications. Using high-resolution mass spectrometry, we here semi-quantify 6,516 predicted proteins, revealing evidence of horizontal gene transfer and the presence at the protein level of nodes important in animal signalling pathways. Moreover, our data demonstrate a remarkably high activity of tyrosine phosphorylation, in line with the hypothesized burst of tyrosine-regulated signalling at the instance of animal multicellularity. Together, this Trichoplax proteomics data set offers significant new insight into the mechanisms underlying the emergence of metazoan multicellularity and provides a resource for interested researchers.
Collapse
|
57
|
A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics. Nat Biotechnol 2013; 31:557-64. [DOI: 10.1038/nbt.2585] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 04/15/2013] [Indexed: 01/24/2023]
|
58
|
Taylor NMI, Glatt S, Hennrich ML, von Scheven G, Grötsch H, Fernández-Tornero C, Rybin V, Gavin AC, Kolb P, Müller CW. Structural and functional characterization of a phosphatase domain within yeast general transcription factor IIIC. J Biol Chem 2013; 288:15110-20. [PMID: 23569204 DOI: 10.1074/jbc.m112.427856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces cerevisiae τ55, a subunit of the RNA polymerase III-specific general transcription factor TFIIIC, comprises an N-terminal histidine phosphatase domain (τ55-HPD) whose catalytic activity and cellular function is poorly understood. We solved the crystal structures of τ55-HPD and its closely related paralogue Huf and used in silico docking methods to identify phosphoserine- and phosphotyrosine-containing peptides as possible substrates that were subsequently validated using in vitro phosphatase assays. A comparative phosphoproteomic study identified additional phosphopeptides as possible targets that show the involvement of these two phosphatases in the regulation of a variety of cellular functions. Our results identify τ55-HPD and Huf as bona fide protein phosphatases, characterize their substrate specificities, and provide a small set of regulated phosphosite targets in vivo.
Collapse
Affiliation(s)
- Nicholas M I Taylor
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Zhu J, Wang F, Cheng K, Dong J, Sun D, Chen R, Wang L, Ye M, Zou H. A simple integrated system for rapid analysis of sialic-acid-containing N-glycopeptides from human serum. Proteomics 2013; 13:1306-13. [PMID: 23335361 DOI: 10.1002/pmic.201200367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/08/2012] [Accepted: 11/11/2012] [Indexed: 12/25/2022]
Abstract
Terminal sialylation is very important in cancer biology and has been extensively investigated for the discovery of potential clinical biomarkers of cancers. In this study, we presented a novel approach, by using of Ti(IV)-IMAC, to enrich sialic-acid-containing N-glycopeptides for the analysis of terminal sialylation. Compared with conventional method using TiO2 , this approach obtained 2.5 times more glycopeptides and glycosylation sites. Then, a simple integrated system combining filter-aided sample preparation, ACN-improved digestion, and Ti(IV)-IMAC enrichment was established for efficient analysis. In this system, protein digestion, glycopeptide enrichment, and deglycosylation were integrated and were performed sequentially in a single filter unit without any need for desalting, lyophilization, or sample transfer procedures. As a result, the number of identifications was improved by 1.5-fold and the total processing time was drastically reduced to only 7-8 h. By using this system, fast and efficient analysis of human serum sialylated N-glycoproteome was achieved. From only 1 μL of human serum, 217 unique glycopeptides and 194 glycosylation sites were successfully identified.
Collapse
Affiliation(s)
- Jun Zhu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Frese CK, Zhou H, Taus T, Altelaar AFM, Mechtler K, Heck AJR, Mohammed S. Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD). J Proteome Res 2013; 12:1520-5. [PMID: 23347405 PMCID: PMC3588588 DOI: 10.1021/pr301130k] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We recently introduced a novel scheme combining electron-transfer
and higher-energy collision dissociation (termed EThcD), for improved
peptide ion fragmentation and identification. We reasoned that phosphosite
localization, one of the major hurdles in high-throughput phosphoproteomics,
could also highly benefit from the generation of such EThcD spectra.
Here, we systematically assessed the impact on phosphosite localization
utilizing EThcD in comparison to methods employing either ETD or HCD,
respectively, using a defined synthetic phosphopeptide mixture and
also using a larger data set of Ti4+-IMAC enriched phosphopeptides
from a tryptic human cell line digest. In combination with a modified
version of phosphoRS, we observed that in the majority of cases EThcD
generated richer and more confidently identified spectra, resulting
in superior phosphosite localization scores. Our data demonstrates
the distinctive potential of EThcD for PTM localization, also beyond
protein phosphorylation.
Collapse
Affiliation(s)
- Christian K Frese
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
61
|
Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck AJR, Zou H, Mohammed S. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc 2013; 8:461-80. [PMID: 23391890 DOI: 10.1038/nprot.2013.010] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mass spectrometry (MS)-based proteomics has become the preferred tool for the analysis of protein phosphorylation. To be successful at such an endeavor, there is a requirement for an efficient enrichment of phosphopeptides. This is necessary because of the substoichiometric nature of phosphorylation at a given site and the complexity of the cell. Recently, new alternative materials have emerged that allow excellent and robust enrichment of phosphopeptides. These monodisperse microsphere-based immobilized metal ion affinity chromatography (IMAC) resins incorporate a flexible linker terminated with phosphonate groups that chelate either zirconium or titanium ions. The chelated zirconium or titanium ions bind specifically to phosphopeptides, with an affinity that is similar to that of other widely used metal oxide affinity chromatography materials (typically TiO(2)). Here we present a detailed protocol for the preparation of monodisperse microsphere-based Ti(4+)-IMAC adsorbents and the subsequent enrichment process. Furthermore, we discuss general pitfalls and crucial steps in the preparation of phosphoproteomics samples before enrichment and, just as importantly, in the subsequent mass spectrometric analysis. Key points such as lysis, preparation of the chromatographic system for analysis and the most appropriate methods for sequencing phosphopeptides are discussed. Bioinformatics analysis specifically relating to site localization is also addressed. Finally, we demonstrate how the protocols provided are appropriate for both single-protein analysis and the screening of entire phosphoproteomes. It takes ∼2 weeks to complete the protocol: 1 week to prepare the Ti(4+)-IMAC material, 2 d for sample preparation, 3 d for MS analysis of the enriched sample and 2 d for data analysis.
Collapse
Affiliation(s)
- Houjiang Zhou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Zhang H, Zhou H, Berke L, Heck AJR, Mohammed S, Scheres B, Menke FLH. Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Mol Cell Proteomics 2013; 12:1158-69. [PMID: 23328941 DOI: 10.1074/mcp.m112.021220] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is instrumental to early signaling events. Studying system-wide phosphorylation in relation to processes under investigation requires a quantitative proteomics approach. In Arabidopsis, auxin application can induce pericycle cell divisions and lateral root formation. Initiation of lateral root formation requires transcriptional reprogramming following auxin-mediated degradation of transcriptional repressors. The immediate early signaling events prior to this derepression are virtually uncharacterized. To identify the signal molecules responding to auxin application, we used a lateral root-inducible system that was previously developed to trigger synchronous division of pericycle cells. To identify and quantify the early signaling events following this induction, we combined (15)N-based metabolic labeling and phosphopeptide enrichment and applied a mass spectrometry-based approach. In total, 3068 phosphopeptides were identified from auxin-treated root tissue. This root proteome dataset contains largely phosphopeptides not previously reported and represents one of the largest quantitative phosphoprotein datasets from Arabidopsis to date. Key proteins responding to auxin treatment included the multidrug resistance-like and PIN2 auxin carriers, auxin response factor2 (ARF2), suppressor of auxin resistance 3 (SAR3), and sorting nexin1 (SNX1). Mutational analysis of serine 16 of SNX1 showed that overexpression of the mutated forms of SNX1 led to retarded growth and reduction of lateral root formation due to the reduced outgrowth of the primordium, showing proof of principle for our approach.
Collapse
Affiliation(s)
- Hongtao Zhang
- Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
63
|
Analysis of human serum phosphopeptidome by a focused database searching strategy. J Proteomics 2013; 78:389-97. [DOI: 10.1016/j.jprot.2012.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/17/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
|
64
|
Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJR, Mohammed S. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 2012. [PMID: 23186163 DOI: 10.1021/pr300630k] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS)-based phosphoproteomics has achieved extraordinary success in qualitative and quantitative analysis of cellular protein phosphorylation. Considering that an estimated level of phosphorylation in a cell is placed at well above 100,000 sites, there is still much room for improvement. Here, we attempt to extend the depth of phosphoproteome coverage while maintaining realistic aspirations in terms of available material, robustness, and instrument running time. We developed three strategies, where each provided a different balance between these three key parameters. The first strategy simply used enrichment by Ti(4+)-IMAC followed by reversed chromatography LC-MS (termed 1D). The second strategy incorporated an additional fractionation step through the use of HILIC (2D). Finally, a third strategy was designed employing first an SCX fractionation, followed by Ti(4+)-IMAC enrichment and additional fractionation by HILIC (3D). A preliminary evaluation was performed on the HeLa cell line. Detecting 3700 phosphopeptides in about 2 h, the 1D strategy was found to be the most sensitive but limited in comprehensivity, mainly due to issues with complexity and dynamic range. Overall, the best balance was achieved using the 2D based strategy, identifying close to 17,000 phosphopeptides with less than 1 mg of material in about 48 h. Subsequently, we confirmed the findings with the K562 cell sample. When sufficient material was available, the 3D strategy increased phosphoproteome allowing over 22,000 unique phosphopeptides to be identified. Unfortunately, the 3D strategy required more time and over 1 mg of material before it started to outperform 2D. Ultimately, combining all strategies, we were able to identify over 16,000 and nearly 24,000 unique phosphorylation sites from the cancer cell lines HeLa and K562, respectively. In summary, we demonstrate the need to carry out extensive fractionation for deep mining of the phosphoproteome and provide a guide for appropriate strategies depending on sample amount and/or analysis time.
Collapse
Affiliation(s)
- Houjiang Zhou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
65
|
Altelaar AFM, Munoz J, Heck AJR. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 2012. [PMID: 23207911 DOI: 10.1038/nrg3356] [Citation(s) in RCA: 537] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing allows the analysis of genomes, including those representing disease states. However, the causes of most disorders are multifactorial, and systems-level approaches, including the analysis of proteomes, are required for a more comprehensive understanding. The proteome is extremely multifaceted owing to splicing and protein modifications, and this is further amplified by the interconnectivity of proteins into complexes and signalling networks that are highly divergent in time and space. Proteome analysis heavily relies on mass spectrometry (MS). MS-based proteomics is starting to mature and to deliver through a combination of developments in instrumentation, sample preparation and computational analysis. Here we describe this emerging next generation of proteomics and highlight recent applications.
Collapse
Affiliation(s)
- A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
66
|
Matheron L, Clavier S, Diebate O, Karoyan P, Bolbach G, Guianvarc'h D, Sachon E. Improving the selectivity of the phosphoric acid β-elimination on a biotinylated phosphopeptide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1981-1990. [PMID: 22956181 DOI: 10.1007/s13361-012-0467-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/16/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
This study aims at improving the MALDI-TOF detection of a phosphorylated peptide containing a cysteine residue by β-elimination of H(3)PO(4) hardly enriched by classical methods. The experimental conditions were optimized on this phosphopeptide (biot-pAdd) and its nonphosphorylated counterpart (biot-Add). The major side-reactions were H(2)S elimination on the cysteine residues and H(2)O elimination on the non phosphorylated serine residue of biot-Add. The former dilutes the MALDI-TOF signal for the desired species. The latter gives a product similar to what is obtained by H(3)PO(4) elimination and should prompt to caution when working with a mixture between phosphorylated and non phosphorylated peptides. Modifications on the solvent, the reaction temperature and time, the nature, and concentration of the base were made. Major improvement of the selectivity of the reaction was observed in 30 % ACN, at room temperature for 4 h. However, these optimizations are specific to these sequences and should be performed anew for different peptides. The selectivity of the reaction towards H(3)PO(4) elimination is improved, but the persistence of side-reactions renders a previous sample fractionation necessary. In these optimized conditions, the ionization enhancement is 3-fold and the detection limits for biot-pAdd are similar to biot-Add (100 fmol).
Collapse
Affiliation(s)
- Lucrèce Matheron
- Laboratoire des Biomolécules, Université P et M Curie, UMR 7203 UPMC-CNRS-ENS, Paris, France
| | | | | | | | | | | | | |
Collapse
|
67
|
Wang X, Bian Y, Cheng K, Gu LF, Ye M, Zou H, Sun SSM, He JX. A large-scale protein phosphorylation analysis reveals novel phosphorylation motifs and phosphoregulatory networks in Arabidopsis. J Proteomics 2012; 78:486-98. [PMID: 23111157 DOI: 10.1016/j.jprot.2012.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 01/08/2023]
Abstract
Large-scale protein phosphorylation analysis by MS is emerging as a powerful tool in plant signal transduction research. However, our current understanding of the phosphorylation regulatory network in plants is still very limited. Here, we report on a proteome-wide profiling of phosphopeptides in nine-day-old Arabidopsis (Arabidopsis thaliana) seedlings by using an enrichment method combining the titanium (Ti(4+))-based IMAC and the RP-strong cation exchange (RP-SCX) biphasic trap column-based online RPLC. Through the duplicated RPLC-MS/MS analyses, we identified 5348 unique phosphopeptides for 2552 unique proteins. Among the phosphoproteins identified, 41% of them were first-time identified. Further evolutionary conservation and phosphorylation motif analyses of the phosphorylation sites discovered 100 highly conserved phosphorylation residues and identified 17 known and 14 novel motifs specific for Ser/Thr protein kinases. Gene ontology and pathway analyses revealed that many of the new identified phosphoproteins are important regulatory proteins that are involved in diverse biological processes, particularly in central metabolisms and cell signaling. Taken together, our results provided not only new insights into the complex phosphoregulatory network in plants but also important resources for future functional studies of protein phosphorylation in plant growth and development.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Lai ACY, Tsai CF, Hsu CC, Sun YN, Chen YJ. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2186-94. [PMID: 22886815 DOI: 10.1002/rcm.6327] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
RATIONALE Despite advances in mass spectrometry (MS)-based identification, effective phosphopeptide enrichment is a prerequisite towards comprehensive phosphoproteomic analysis. Based on the different binding affinities and coordination geometries of the Ti(4+) and Fe(3+) ions with the phosphate group, we report a complementary metal-directed immobilized metal ion affinity chromatography (IMAC) method to increase the identification coverage of a phosphoproteome. METHODS Phosphopeptides from standard phosphoproteins and Raji B cells were enriched from Ti(4+)-IMAC and Fe(3+)-IMAC methods, followed by matrix-assisted laser desorption/ionization (MALDI) MS and Orbitrap MS analysis. Optimal enrichment specificity was achieved by selection of acid structure/concentration and organic solvent to compete with non-phosphopeptides. The effect of the metal ion and the chelating compound was evaluated by the comparison of the characteristics of enriched phosphopeptides between Ti(4+)-IMAC, Fe(3+)-IMAC and TiO(2) methods. RESULTS To address the low enrichment specificity of the Ti(4+)-IMAC method, a simple one-step acid/solvent controlled IMAC method was developed with significantly improved specificity (88%) and recovery (93%). The most striking discovery is that the optimal Ti(4+)-IMAC and Fe(3+)-IMAC methods have low overlapping percentage (10%) among the 2905 enriched phosphopeptides from Raji cells, comprised of the distinct characteristics including hydrophobicity, amino acid compositions, and frequency of multiple phosphorylation of the phosphopeptides. CONCLUSIONS The reported Fe(3+)-IMAC and Ti(4+)-IMAC methods can complementarily enrich acidic and basic phosphopeptides to effectively increase the identification coverage of an heterogeneous phosphoproteome (twice than the single approach). Given the reproducibility and low sample loss, the combination of our enrichment strategy with a quantitative technique could be feasible for quantitative phosphoproteomics.
Collapse
Affiliation(s)
- Alan Chuan-Ying Lai
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
69
|
Dong M, Ye M, Cheng K, Song C, Pan Y, Wang C, Bian Y, Zou H. Depletion of Acidic Phosphopeptides by SAX To Improve the Coverage for the Detection of Basophilic Kinase Substrates. J Proteome Res 2012; 11:4673-81. [DOI: 10.1021/pr300503z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingming Dong
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Cheng
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Song
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbo Pan
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Wang
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- CAS Key Lab
of Separation Sciences
for Analytical Chemistry, National Chromatographic Research and Analysis
Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
70
|
Di Palma S, Hennrich ML, Heck AJ, Mohammed S. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J Proteomics 2012; 75:3791-813. [DOI: 10.1016/j.jprot.2012.04.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|
71
|
Kovanich D, Cappadona S, Raijmakers R, Mohammed S, Scholten A, Heck AJR. Applications of stable isotope dimethyl labeling in quantitative proteomics. Anal Bioanal Chem 2012; 404:991-1009. [DOI: 10.1007/s00216-012-6070-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/13/2012] [Accepted: 04/23/2012] [Indexed: 01/03/2023]
|
72
|
Altelaar AFM, Heck AJR. Trends in ultrasensitive proteomics. Curr Opin Chem Biol 2012; 16:206-13. [DOI: 10.1016/j.cbpa.2011.12.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 11/27/2022]
|
73
|
Hennrich ML, van den Toorn HWP, Groenewold V, Heck AJR, Mohammed S. Ultra Acidic Strong Cation Exchange Enabling the Efficient Enrichment of Basic Phosphopeptides. Anal Chem 2012; 84:1804-8. [DOI: 10.1021/ac203303t] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Marco L. Hennrich
- Biomolecular Mass Spectrometry and Proteomics
Group, Bijvoet Center for Biomolecular Research and Utrecht Institute
for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Henk W. P. van den Toorn
- Biomolecular Mass Spectrometry and Proteomics
Group, Bijvoet Center for Biomolecular Research and Utrecht Institute
for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Bioinformatics Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Vincent Groenewold
- Molecular Cancer Research and Cancer
Genomics Centre, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics
Group, Bijvoet Center for Biomolecular Research and Utrecht Institute
for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics
Group, Bijvoet Center for Biomolecular Research and Utrecht Institute
for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
74
|
Ficarro SB, Zhang Y, Carrasco-Alfonso MJ, Garg B, Adelmant G, Webber JT, Luckey CJ, Marto JA. Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Mol Cell Proteomics 2011; 10:O111.011064. [PMID: 21788404 PMCID: PMC3226414 DOI: 10.1074/mcp.o111.011064] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/22/2011] [Indexed: 02/01/2023] Open
Abstract
Despite intense, continued interest in global analyses of signaling cascades through mass spectrometry-based studies, the large-scale, systematic production of phosphoproteomics data has been hampered in-part by inefficient fractionation strategies subsequent to phosphopeptide enrichment. Here we explore two novel multidimensional fractionation strategies for analysis of phosphopeptides. In the first technique we utilize aliphatic ion pairing agents to improve retention of phosphopeptides at high pH in the first dimension of a two-dimensional RP-RP. The second approach is based on the addition of strong anion exchange as the second dimension in a three-dimensional reversed phase (RP)-strong anion exchange (SAX)-RP configuration. Both techniques provide for automated, online data acquisition, with the 3-D platform providing the highest performance both in terms of separation peak capacity and the number of unique phosphopeptide sequences identified per μg of cell lysate consumed. Our integrated RP-SAX-RP platform provides several analytical figures of merit, including: (1) orthogonal separation mechanisms in each dimension; (2) high separation peak capacity (3) efficient retention of singly- and multiply-phosphorylated peptides; (4) compatibility with automated, online LC-MS analysis. We demonstrate the reproducibility of RP-SAX-RP and apply it to the analysis of phosphopeptides derived from multiple biological contexts, including an in vitro model of acute myeloid leukemia in addition to primary polyclonal CD8(+) T-cells activated in vivo through bacterial infection and then purified from a single mouse.
Collapse
Affiliation(s)
- Scott B. Ficarro
- From the ‡Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute
- §Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School
| | - Yi Zhang
- From the ‡Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute
- §Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School
| | | | - Brijesh Garg
- From the ‡Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute
| | - Guillaume Adelmant
- From the ‡Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute
- §Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School
| | - James T. Webber
- From the ‡Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute
| | - C. John Luckey
- ¶Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6084
| | - Jarrod A. Marto
- From the ‡Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute
- §Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School
| |
Collapse
|