51
|
Tanifuji G, Cenci U, Moog D, Dean S, Nakayama T, David V, Fiala I, Curtis BA, Sibbald SJ, Onodera NT, Colp M, Flegontov P, Johnson-MacKinnon J, McPhee M, Inagaki Y, Hashimoto T, Kelly S, Gull K, Lukeš J, Archibald JM. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci Rep 2017; 7:11688. [PMID: 28916813 PMCID: PMC5601477 DOI: 10.1038/s41598-017-11866-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive ‘cross-talk’ between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.
Collapse
Affiliation(s)
- Goro Tanifuji
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Ugo Cenci
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Laboratory for Cell Biology, Philipps University, Marburg, Germany
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Takuro Nakayama
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life Sciences, Tohoku University, Tohoku, Japan
| | - Vojtěch David
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Bruce A Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Naoko T Onodera
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Morgan Colp
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jessica Johnson-MacKinnon
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Marine and Antarctic Sciences, University of Tasmania, Launceston, Australia
| | - Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada.
| |
Collapse
|
52
|
tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes. Proc Natl Acad Sci U S A 2017; 114:E7679-E7687. [PMID: 28847952 DOI: 10.1073/pnas.1711430114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial tRNA import is widespread, but the mechanism by which tRNAs are imported remains largely unknown. The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes, and thus imports all tRNAs from the cytosol. Here we show that in T. brucei in vivo import of tRNAs requires four subunits of the mitochondrial outer membrane protein translocase but not the two receptor subunits, one of which is essential for protein import. The latter shows that it is possible to uncouple mitochondrial tRNA import from protein import. Ablation of the intermembrane space domain of the translocase subunit, archaic translocase of the outer membrane (ATOM)14, on the other hand, while not affecting the architecture of the translocase, impedes both protein and tRNA import. A protein import intermediate arrested in the translocation channel prevents both protein and tRNA import. In the presence of tRNA, blocking events of single-channel currents through the pore formed by recombinant ATOM40 were detected in electrophysiological recordings. These results indicate that both types of macromolecules use the same import channel across the outer membrane. However, while tRNA import depends on the core subunits of the protein import translocase, it does not require the protein import receptors, indicating that the two processes are not mechanistically linked.
Collapse
|
53
|
Wenger C, Oeljeklaus S, Warscheid B, Schneider A, Harsman A. A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PLoS Pathog 2017; 13:e1006550. [PMID: 28827831 PMCID: PMC5584982 DOI: 10.1371/journal.ppat.1006550] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/05/2017] [Accepted: 07/24/2017] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial protein import is essential for Trypanosoma brucei across its life cycle and mediated by membrane-embedded heterooligomeric protein complexes, which mainly consist of trypanosomatid-specific subunits. However, trypanosomes contain orthologues of small Tim chaperones that escort hydrophobic proteins across the intermembrane space. Here we have experimentally analyzed three novel trypanosomal small Tim proteins, one of which contains only an incomplete Cx3C motif. RNAi-mediated ablation of TbERV1 shows that their import, as in other organisms, depends on the MIA pathway. Submitochondrial fractionation combined with immunoprecipitation and BN-PAGE reveals two pools of small Tim proteins: a soluble fraction forming 70 kDa complexes, consistent with hexamers and a second fraction that is tightly associated with the single trypanosomal TIM complex. RNAi-mediated ablation of the three proteins leads to a growth arrest and inhibits the formation of the TIM complex. In line with these findings, the changes in the mitochondrial proteome induced by ablation of one small Tim phenocopy the effects observed after ablation of TbTim17. Thus, the trypanosomal small Tims play an unexpected and essential role in the biogenesis of the single TIM complex, which for one of them is not linked to import of TbTim17.
Collapse
Affiliation(s)
- Christoph Wenger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, Freiburg, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, Freiburg, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, Switzerland
- * E-mail:
| | - Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, Switzerland
| |
Collapse
|
54
|
Abstract
The mitochondrial proteome comprises ~1000 (yeast)-1500 (human) different proteins, which are distributed into four different subcompartments. The sublocalization of these proteins within the organelle in most cases remains poorly defined. Here we describe an integrated approach combining stable isotope labeling, various protein enrichment and extraction strategies and quantitative mass spectrometry to produce a quantitative map of submitochondrial protein distribution in S. cerevisiae. This quantitative landscape enables a proteome-wide classification of 986 proteins into soluble, peripheral, and integral mitochondrial membrane proteins, and the assignment of 818 proteins into the four subcompartments: outer membrane, inner membrane, intermembrane space, or matrix. We also identified 206 proteins that were not previously annotated as localized to mitochondria. Furthermore, the protease Prd1, misannotated as intermembrane space protein, could be re-assigned and characterized as a presequence peptide degrading enzyme in the matrix.Protein localization plays an important role in the regulation of cellular physiology. Here the authors use an integrated proteomics approach to localize proteins to the mitochondria and provide a detailed map of their specific localization within the organelle.
Collapse
|
55
|
Charting organellar importomes by quantitative mass spectrometry. Nat Commun 2017; 8:15272. [PMID: 28485388 PMCID: PMC5436138 DOI: 10.1038/ncomms15272] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/15/2017] [Indexed: 11/08/2022] Open
Abstract
Protein import into organelles is essential for all eukaryotes and facilitated by multi-protein translocation machineries. Analysing whether a protein is transported into an organelle is largely restricted to single constituents. This renders knowledge about imported proteins incomplete, limiting our understanding of organellar biogenesis and function. Here we introduce a method that enables charting an organelle's importome. The approach relies on inducible RNAi-mediated knockdown of an essential subunit of a translocase to impair import and quantitative mass spectrometry. To highlight its potential, we established the mitochondrial importome of Trypanosoma brucei, comprising 1,120 proteins including 331 new candidates. Furthermore, the method allows for the identification of proteins with dual or multiple locations and the substrates of distinct protein import pathways. We demonstrate the specificity and versatility of this ImportOmics method by targeting import factors in mitochondria and glycosomes, which demonstrates its potential for globally studying protein import and inventories of organelles. Knowing the specific protein content of individual organelles is necessary for an integrated understanding of cellular physiology. Here the authors describe a mass spectrometry-based approach to identify the substrates of distinct protein import pathways and define organellar proteomes.
Collapse
|
56
|
Hung V, Lam SS, Udeshi ND, Svinkina T, Guzman G, Mootha VK, Carr SA, Ting AY. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife 2017; 6:24463. [PMID: 28441135 PMCID: PMC5404927 DOI: 10.7554/elife.24463] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/14/2017] [Indexed: 12/24/2022] Open
Abstract
The cytosol-facing membranes of cellular organelles contain proteins that enable signal transduction, regulation of morphology and trafficking, protein import and export, and other specialized processes. Discovery of these proteins by traditional biochemical fractionation can be plagued with contaminants and loss of key components. Using peroxidase-mediated proximity biotinylation, we captured and identified endogenous proteins on the outer mitochondrial membrane (OMM) and endoplasmic reticulum membrane (ERM) of living human fibroblasts. The proteomes of 137 and 634 proteins, respectively, are highly specific and highlight 94 potentially novel mitochondrial or ER proteins. Dataset intersection identified protein candidates potentially localized to mitochondria-ER contact sites. We found that one candidate, the tail-anchored, PDZ-domain-containing OMM protein SYNJ2BP, dramatically increases mitochondrial contacts with rough ER when overexpressed. Immunoprecipitation-mass spectrometry identified ribosome-binding protein 1 (RRBP1) as SYNJ2BP's ERM binding partner. Our results highlight the power of proximity biotinylation to yield insights into the molecular composition and function of intracellular membranes.
Collapse
Affiliation(s)
- Victoria Hung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Stephanie S Lam
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | | | - Tanya Svinkina
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Gaelen Guzman
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Alice Y Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
57
|
Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol 2017; 15:27. [PMID: 28372543 DOI: 10.1186/s12915-017-0361-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria of opisthokonts undergo permanent fission and fusion throughout the cell cycle. Here, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, in the anaerobic protist parasite Giardia intestinalis, a member of the Excavata supergroup of eukaryotes. The mitosomes have abandoned typical mitochondrial traits such as the mitochondrial genome and aerobic respiration and their single role known to date is the formation of iron-sulfur clusters. RESULTS In live experiments, no fusion events were observed between the mitosomes in G. intestinalis. Moreover, the organelles were highly prone to becoming heterogeneous. This suggests that fusion is either much less frequent or even absent in mitosome dynamics. Unlike in mitochondria, division of the mitosomes was absolutely synchronized and limited to mitosis. The association of the nuclear and the mitosomal division persisted during the encystation of the parasite. During the segregation of the divided mitosomes, the subset of the organelles between two G. intestinalis nuclei had a prominent role. Surprisingly, the sole dynamin-related protein of the parasite seemed not to be involved in mitosomal division. However, throughout the cell cycle, mitosomes associated with the endoplasmic reticulum (ER), although none of the known ER-tethering complexes was present. Instead, the ER-mitosome interface was occupied by the lipid metabolism enzyme long-chain acyl-CoA synthetase 4. CONCLUSIONS This study provides the first report on the dynamics of mitosomes. We show that together with the loss of metabolic complexity of mitochondria, mitosomes of G. intestinalis have uniquely streamlined their dynamics by harmonizing their division with mitosis. We propose that this might be a strategy of G. intestinalis to maintain a stable number of organelles during cell propagation. The lack of mitosomal fusion may also be related to the secondary reduction of the organelles. However, as there are currently no reports on mitochondrial fusion in the whole Excavata supergroup, it is possible that the absence of mitochondrial fusion is an ancestral trait common to all excavates.
Collapse
|
58
|
de Lima Stein ML, Icimoto MY, de Castro Levatti EV, Oliveira V, Straus AH, Schenkman S. Characterization and role of the 3-methylglutaconyl coenzyme A hidratase in Trypanosoma brucei. Mol Biochem Parasitol 2017; 214:36-46. [PMID: 28366667 DOI: 10.1016/j.molbiopara.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 01/30/2023]
Abstract
Trypanosoma brucei, the agent of African Trypanosomiasis, is a flagellated protozoan parasite that develops in tsetse flies and in the blood of various mammals. The parasite acquires nutrients such as sugars, lipids and amino acids from their hosts. Amino acids are used to generate energy and for protein and lipid synthesis. However, it is still unknown how T. brucei catabolizes most of the acquired amino acids. Here we explored the role of an enzyme of the leucine catabolism, the 3-methylglutaconyl-Coenzyme A hydratase (3-MGCoA-H). It catalyzes the hydration of 3-methylglutaconyl-Coenzyme A (3-MGCoA) into 3-hydroxymethylglutaryl-Coenzyme A (3-HMGCoA). We found that 3-MGCoA-H localizes in the mitochondrial matrix and is expressed in both insect and mammalian bloodstream forms of the parasite. The depletion of 3-MGCoA-H by RNA interference affected minimally the proliferation of both forms. However, an excess of leucine in the culture medium caused growth defects in cells depleted of 3-MGCoA-H, which could be reestablished by mevalonate, a precursor of isoprenoids and steroids. Indeed, procyclics depleted of the 3-MGCoA-H presented reduced levels of synthesized steroids relative to cholesterol that is scavenged by the parasite, and these levels were also reestablished by mevalonate. These results suggest that accumulation of leucine catabolites could affect the level of mevalonate and consequently inhibit the sterol biosynthesis, required for T. brucei growth.
Collapse
Affiliation(s)
- Mariana Leão de Lima Stein
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anita Hilda Straus
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
59
|
Bruggisser J, Käser S, Mani J, Schneider A. Biogenesis of a Mitochondrial Outer Membrane Protein in Trypanosoma brucei: TARGETING SIGNAL AND DEPENDENCE ON A UNIQUE BIOGENESIS FACTOR. J Biol Chem 2017; 292:3400-3410. [PMID: 28100781 DOI: 10.1074/jbc.m116.755983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei, is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not.
Collapse
Affiliation(s)
- Julia Bruggisser
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Sandro Käser
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
60
|
Mani J, Rout S, Desy S, Schneider A. Mitochondrial protein import - Functional analysis of the highly diverged Tom22 orthologue of Trypanosoma brucei. Sci Rep 2017; 7:40738. [PMID: 28094338 PMCID: PMC5240110 DOI: 10.1038/srep40738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/09/2016] [Indexed: 11/09/2022] Open
Abstract
The β-barrel protein Tom40 and the α-helically anchored membrane protein Tom22 are the only universally conserved subunits of the protein translocase of the mitochondrial outer membrane (TOM). Tom22 has an N-terminal cytosolic and a C-terminal intermembrane space domain. It occurs in two variants: one typified by the yeast protein which has a cytosolic domain containing a cluster of acidic residues, and a shorter variant typified by the plant protein that lacks this domain. Yeast-type Tom22 functions as a secondary protein import receptor and is also required for the stability of the TOM complex. Much less is known about the more widespread short variant of Tom22, which is also found in the parasitic protozoan Trypanosoma brucei. Here we show that the intermembrane space domain of trypanosomal Tom22 binds mitochondrial precursor proteins and that it is essential for normal growth and mitochondrial protein import. Moreover, complementation experiments indicate that the intermembrane space domain cannot be replaced by the corresponding regions of the yeast or plant Tom22 orthologues. Lack or replacement of the short cytosolic domain, however, does not interfere with protein function. Finally, we show that only the membrane-spanning domain of trypanosomal Tom22 is essential for assembly of the trypanosomal TOM complex analogue.
Collapse
Affiliation(s)
- Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Samuel Rout
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Silvia Desy
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
61
|
Harsman A, Schneider A. Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic 2017; 18:96-109. [PMID: 27976830 DOI: 10.1111/tra.12463] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero-oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence-containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
62
|
Harsman A, Oeljeklaus S, Wenger C, Huot JL, Warscheid B, Schneider A. The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nat Commun 2016; 7:13707. [PMID: 27991487 PMCID: PMC5187411 DOI: 10.1038/ncomms13707] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial protein import is essential for all eukaryotes. Here we show that the early diverging eukaryote Trypanosoma brucei has a non-canonical inner membrane (IM) protein translocation machinery. Besides TbTim17, the single member of the Tim17/22/23 family in trypanosomes, the presequence translocase contains nine subunits that co-purify in reciprocal immunoprecipitations and with a presequence-containing substrate that is trapped in the translocation channel. Two of the newly discovered subunits are rhomboid-like proteins, which are essential for growth and mitochondrial protein import. Rhomboid-like proteins were proposed to form the protein translocation pore of the ER-associated degradation system, suggesting that they may contribute to pore formation in the presequence translocase of T. brucei. Pulldown of import-arrested mitochondrial carrier protein shows that the carrier translocase shares eight subunits with the presequence translocase. This indicates that T. brucei may have a single IM translocase that with compositional variations mediates import of presequence-containing and carrier proteins.
The mitochondrial protein import machinery is crucial for eukaryotes but little is known about its evolutionary origin. Here, the authors characterize the translocase of the inner membrane (TIM) in trypanosomes, showing that it contains two rhomboid-like proteins essential for protein import.
Collapse
Affiliation(s)
- Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 18, Freiburg 79104, Germany
| | - Christoph Wenger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Jonathan L Huot
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 18, Freiburg 79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg 79104, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| |
Collapse
|
63
|
Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria. Proc Natl Acad Sci U S A 2016; 113:E4467-75. [PMID: 27436903 DOI: 10.1073/pnas.1605497113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance.
Collapse
|
64
|
TAC102 Is a Novel Component of the Mitochondrial Genome Segregation Machinery in Trypanosomes. PLoS Pathog 2016; 12:e1005586. [PMID: 27168148 PMCID: PMC4864229 DOI: 10.1371/journal.ppat.1005586] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization. Proper segregation of the mitochondrial genome during cell division is a prerequisite of healthy eukaryotic cells. However, the mechanism underlying the segregation process is only poorly understood. We use the single celled parasite Trypanosoma brucei, which, unlike most model organisms, harbors a single large mitochondrion with a single mitochondrial genome, also called kinetoplast DNA (kDNA), to study this question. In trypanosomes, kDNA replication and segregation are tightly integrated into the cell cycle and thus can be studied alongside cell cycle markers. Furthermore, previous studies using electron microscopy have characterized the tripartite attachment complex (TAC) as a structural element of the mitochondrial genome segregation machinery. Here, we characterize TAC102, a novel trypanosome protein localized to the TAC. The protein is essential for proper kDNA segregation and cell growth. We analyze the presence of this protein using super resolution microscopy and show that TAC102 is a mitochondrial protein localized between the kDNA and the basal body of the cell’s flagellum. In addition, we characterize different parts of the protein and show that the C-terminus of TAC102 is important for its proper localization. The data and resources presented will allow a more detailed characterization of the dynamics and hierarchy of the TAC in the future and might open new avenues for drug discovery targeting this structure.
Collapse
|
65
|
Hannemann L, Suppanz I, Ba Q, MacInnes K, Drepper F, Warscheid B, Koch HG. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1. Antioxid Redox Signal 2016; 24:141-56. [PMID: 26160547 PMCID: PMC4742990 DOI: 10.1089/ars.2015.6272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. RESULTS Our data identify a redox-regulated monomer-dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. INNOVATION YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. CONCLUSION Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response.
Collapse
Affiliation(s)
- Liya Hannemann
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Ida Suppanz
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Qiaorui Ba
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Katherine MacInnes
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Friedel Drepper
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Bettina Warscheid
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Hans-Georg Koch
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| |
Collapse
|
66
|
Novo P, Dell'Aica M, Janasek D, Zahedi RP. High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst 2016; 141:1888-905. [DOI: 10.1039/c6an00027d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reviewing latest developments on lab on chips for enhanced control of cells’ experiments.
Collapse
Affiliation(s)
- Pedro Novo
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - Margherita Dell'Aica
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - Dirk Janasek
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - René P. Zahedi
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| |
Collapse
|
67
|
Farine L, Niemann M, Schneider A, Bütikofer P. Phosphatidylethanolamine and phosphatidylcholine biosynthesis by the Kennedy pathway occurs at different sites in Trypanosoma brucei. Sci Rep 2015; 5:16787. [PMID: 26577437 PMCID: PMC4649479 DOI: 10.1038/srep16787] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023] Open
Abstract
Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are among the most abundant phospholipids in biological membranes. In many eukaryotes, the CDP-ethanolamine and CDP-choline branches of the Kennedy pathway represent major and often essential routes for the production of PE and PC, with ethanolamine and choline/ethanolamine phosphotransferases (EPT and CEPT, respectively) catalysing the last reactions in the respective pathways. Although the site of PE and PC synthesis is commonly known to be the endoplasmic reticulum (ER), detailed information on the localization of the different phosphotransferases is lacking. In the unicellular parasite, Trypanosoma brucei, both branches of the Kennedy pathway are essential for cell growth in culture. We have previously reported that T. brucei EPT (TbEPT) catalyses the production of ether-type PE molecular species while T. brucei CEPT (TbCEPT) synthesizes diacyl-type PE and PC molecular species. We now show that the two enzymes localize to different sub-compartments of the ER. By expressing a series of tagged forms of the two enzymes in T. brucei parasites, in combination with sub-cellular fractionation and enzyme activity measurements, TbEPT was found exclusively in the perinuclear ER, a distinct area located close to but distinct from the nuclear membrane. In contrast, TbCEPT was detected in the bulk ER.
Collapse
Affiliation(s)
- Luce Farine
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
68
|
Mani J, Meisinger C, Schneider A. Peeping at TOMs-Diverse Entry Gates to Mitochondria Provide Insights into the Evolution of Eukaryotes. Mol Biol Evol 2015; 33:337-51. [PMID: 26474847 DOI: 10.1093/molbev/msv219] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential for eukaryotic life and more than 95% of their proteins are imported as precursors from the cytosol. The targeting signals for this posttranslational import are conserved in all eukaryotes. However, this conservation does not hold true for the protein translocase of the mitochondrial outer membrane that serves as entry gate for essentially all precursor proteins. Only two of its subunits, Tom40 and Tom22, are conserved and thus likely were present in the last eukaryotic common ancestor. Tom7 is found in representatives of all supergroups except the Excavates. This suggests that it was added to the core of the translocase after the Excavates segregated from all other eukaryotes. A comparative analysis of the biochemically and functionally characterized outer membrane translocases of yeast, plants, and trypanosomes, which represent three eukaryotic supergroups, shows that the receptors that recognize the conserved import signals differ strongly between the different systems. They present a remarkable example of convergent evolution at the molecular level. The structural diversity of the functionally conserved import receptors therefore provides insight into the early evolutionary history of mitochondria.
Collapse
Affiliation(s)
- Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
69
|
Parsons M, Ramasamy G, Vasconcelos EJR, Jensen BC, Myler PJ. Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping. Mol Biochem Parasitol 2015; 202:1-10. [PMID: 26393539 DOI: 10.1016/j.molbiopara.2015.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
Since the initial publication of the trypanosomatid genomes, curation has been ongoing. Here we make use of existing Trypanosoma brucei ribosome profiling data to provide evidence of ribosome occupancy (and likely translation) of mRNAs from 225 currently unannotated coding sequences (CDSs). A small number of these putative genes correspond to extra copies of previously annotated genes, but 85% are novel. The median size of these novels CDSs is small (81 aa), indicating that past annotation work has excelled at detecting large CDSs. Of the unique CDSs confirmed here, over half have candidate orthologues in other trypanosomatid genomes, most of which were not yet annotated as protein-coding genes. Nonetheless, approximately one-third of the new CDSs were found only in T. brucei subspecies. Using ribosome footprints, RNA-Seq and spliced leader mapping data, we updated previous work to definitively revise the start sites for 414 CDSs as compared to the current gene models. The data pointed to several regions of the genome that had sequence errors that altered coding region boundaries. Finally, we consolidated this data with our previous work to propose elimination of 683 putative genes as protein-coding and arrive at a view of the translatome of slender bloodstream and procyclic culture form T. brucei.
Collapse
Affiliation(s)
- Marilyn Parsons
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA; Dept of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Gowthaman Ramasamy
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Elton J R Vasconcelos
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Bryan C Jensen
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Peter J Myler
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA; Dept of Global Health, University of Washington, Seattle, WA 98195, USA; Dept of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
70
|
Swann J, Jamshidi N, Lewis NE, Winzeler EA. Systems analysis of host-parasite interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:381-400. [PMID: 26306749 PMCID: PMC4679367 DOI: 10.1002/wsbm.1311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022]
Abstract
Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug‐resistant parasites necessitates that the research community take an active role in understanding host–parasite infection biology in order to develop improved therapeutics. Recent advances in next‐generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host–parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high‐throughput ‐omic data will undoubtedly generate extraordinary insight into host–parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host–parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies. WIREs Syst Biol Med 2015, 7:381–400. doi: 10.1002/wsbm.1311 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Justine Swann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, USA.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics and Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
71
|
Albisetti A, Wiese S, Schneider A, Niemann M. A component of the mitochondrial outer membrane proteome of T. brucei probably contains covalent bound fatty acids. Exp Parasitol 2015; 155:49-57. [PMID: 25982029 DOI: 10.1016/j.exppara.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
Abstract
A subclass of eukaryotic proteins is subject to modification with fatty acids, the most common of which are palmitic and myristic acid. Protein acylation allows association with cellular membranes in the absence of transmembrane domains. Here we examine POMP39, a protein previously described to be present in the outer mitochondrial membrane proteome (POMP) of the protozoan parasite Trypanosoma brucei. POMP39 lacks canonical transmembrane domains, but is likely both myristoylated and palmitoylated on its N-terminus. Interestingly, the protein is also dually localized on the surface of the mitochondrion as well as in the flagellum of both insect-stage and the bloodstream form of the parasites. Upon abolishing of global protein acylation or mutation of the myristoylation site, POMP39 relocates to the cytosol. RNAi-mediated ablation of the protein neither causes a growth phenotype in insect-stage nor bloodstream form trypanosomes.
Collapse
Affiliation(s)
- Anna Albisetti
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
| |
Collapse
|
72
|
Mani J, Desy S, Niemann M, Chanfon A, Oeljeklaus S, Pusnik M, Schmidt O, Gerbeth C, Meisinger C, Warscheid B, Schneider A. Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat Commun 2015; 6:6646. [PMID: 25808593 PMCID: PMC4389251 DOI: 10.1038/ncomms7646] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/13/2015] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial protein import is essential for all eukaryotes and mediated by hetero-oligomeric protein translocases thought to be conserved within all eukaryotes. We have identified and analysed the function and architecture of the non-conventional outer membrane (OM) protein translocase in the early diverging eukaryote Trypanosoma brucei. It consists of six subunits that show no obvious homology to translocase components of other species. Two subunits are import receptors that have a unique topology and unique protein domains and thus evolved independently of the prototype receptors Tom20 and Tom70. Our study suggests that protein import receptors were recruited to the core of the OM translocase after the divergence of the major eukaryotic supergroups. Moreover, it links the evolutionary history of mitochondrial protein import receptors to the origin of the eukaryotic supergroups.
Collapse
Affiliation(s)
- Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Silvia Desy
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Astrid Chanfon
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Mascha Pusnik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Oliver Schmidt
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg 79104, Germany
| | - Carolin Gerbeth
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg 79104, Germany
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg 79104, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| |
Collapse
|
73
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
74
|
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 2014; 109:400-16. [PMID: 25026440 DOI: 10.1016/j.jprot.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/09/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED We present a combined proteomic and bioinformatic investigation of mitochondrial proteins from the amoeboid protist Acanthamoeba castellanii, the first such comprehensive investigation in a free-living member of the supergroup Amoebozoa. This protist was chosen both for its phylogenetic position (as a sister to animals and fungi) and its ecological ubiquity and physiological flexibility. We report 1033 A. castellanii mitochondrial protein sequences, 709 supported by mass spectrometry data (676 nucleus-encoded and 33 mitochondrion-encoded), including two previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Other notable findings include duplicate proteins for all of the enzymes of the tricarboxylic acid (TCA) cycle-which, along with the identification of a mitochondrial malate synthase-isocitrate lyase fusion protein, suggests the interesting possibility that the glyoxylate cycle operates in A. castellanii mitochondria. Additionally, the A. castellanii genome encodes an unusually high number (at least 29) of mitochondrion-targeted pentatricopeptide repeat (PPR) proteins, organellar RNA metabolism factors in other organisms. We discuss several key mitochondrial pathways, including DNA replication, transcription and translation, protein degradation, protein import and Fe-S cluster biosynthesis, highlighting similarities and differences in these pathways in other eukaryotes. In compositional and functional complexity, the mitochondrial proteome of A. castellanii rivals that of multicellular eukaryotes. BIOLOGICAL SIGNIFICANCE Comprehensive proteomic surveys of mitochondria have been undertaken in a limited number of predominantly multicellular eukaryotes. This phylogenetically narrow perspective constrains and biases our insights into mitochondrial function and evolution, as it neglects protists, which account for most of the evolutionary and functional diversity within eukaryotes. We report here the first comprehensive investigation of the mitochondrial proteome in a member (A. castellanii) of the eukaryotic supergroup Amoebozoa. Through a combination of tandem mass spectrometry (MS/MS) and in silico data mining, we have retrieved 1033 candidate mitochondrial protein sequences, 709 having MS support. These data were used to reconstruct the metabolic pathways and protein complexes of A. castellanii mitochondria, and were integrated with data from other characterized mitochondrial proteomes to augment our understanding of mitochondrial proteome evolution. Our results demonstrate the power of combining direct proteomic and bioinformatic approaches in the discovery of novel mitochondrial proteins, both nucleus-encoded and mitochondrion-encoded, and highlight the compositional complexity of the A. castellanii mitochondrial proteome, which rivals that of animals, fungi and plants.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth A Chisholm
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Devanand M Pinto
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Michael W Gray
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
75
|
Trypanosomal TAC40 constitutes a novel subclass of mitochondrial β-barrel proteins specialized in mitochondrial genome inheritance. Proc Natl Acad Sci U S A 2014; 111:7624-9. [PMID: 24821793 DOI: 10.1073/pnas.1404854111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum-mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA-cytoskeleton linkage that is essential for mitochondrial DNA inheritance.
Collapse
|
76
|
The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:614014. [PMID: 24800243 PMCID: PMC3988864 DOI: 10.1155/2014/614014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
Abstract
The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids' life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.
Collapse
|
77
|
Characterization of two mitochondrial flavin adenine dinucleotide-dependent glycerol-3-phosphate dehydrogenases in Trypanosoma brucei. EUKARYOTIC CELL 2013; 12:1664-73. [PMID: 24142106 DOI: 10.1128/ec.00152-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD(+) reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei, while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion.
Collapse
|
78
|
Cristodero M, Mani J, Oeljeklaus S, Aeberhard L, Hashimi H, Ramrath DJF, Lukeš J, Warscheid B, Schneider A. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function. Mol Microbiol 2013; 90:744-55. [PMID: 24033548 DOI: 10.1111/mmi.12397] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2013] [Indexed: 11/28/2022]
Abstract
Mitochondrial translation in the parasitic protozoan Trypanosoma brucei relies on imported eukaryotic-type tRNAs as well as on bacterial-type ribosomes that have the shortest known rRNAs. Here we have identified the mitochondrial translation elongation factors EF-Tu, EF-Ts, EF-G1 and release factor RF1 of trypanosomatids and show that their ablation impairs growth and oxidative phosphorylation. In vivo labelling experiments and a SILAC-based analysis of the global proteomic changes induced by EF-Tu RNAi directly link EF-Tu to mitochondrial translation. Moreover, EF-Tu RNAi reveals downregulation of many nuclear encoded subunits of cytochrome oxidase as well as of components of the bc1-complex, whereas most cytosolic ribosomal proteins were upregulated. Interestingly, T. brucei EF-Tu has a 30-amino-acid-long, highly charged subdomain, which is unique to trypanosomatids. A combination of RNAi and complementation experiments shows that this subdomain is essential for EF-Tu function, but that it can be replaced by a similar sequence found in eukaryotic EF-1a, the cytosolic counterpart of EF-Tu. A recent cryo-electron microscopy study revealed that trypanosomatid mitochondrial ribosomes have a unique intersubunit space that likely harbours the EF-Tu binding site. These findings suggest that the trypanosomatid-specific EF-Tu subdomain serves as an adaption for binding to these unusual mitochondrial ribosomes.
Collapse
Affiliation(s)
- Marina Cristodero
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Böttinger L, Guiard B, Oeljeklaus S, Kulawiak B, Zufall N, Wiedemann N, Warscheid B, van der Laan M, Becker T. A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase. Mol Biol Cell 2013; 24:2609-19. [PMID: 23864706 PMCID: PMC3756914 DOI: 10.1091/mbc.e13-02-0106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biogenesis of Cox4 is unknown. Cox4, mtHsp70, and Mge1 form a complex that promotes the assembly of cytochrome c oxidase. In the absence of the mature cytochrome c oxidase, Cox4 arrests at the chaperone complex. This complex delivers Cox4 into the assembly line of complex IV when needed. The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed.
Collapse
Affiliation(s)
- Lena Böttinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res 2013; 52:488-512. [PMID: 23827884 DOI: 10.1016/j.plipres.2013.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.
Collapse
|
81
|
Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The Ancient and Widespread Nature of the ER–Mitochondria Encounter Structure. Mol Biol Evol 2013; 30:2044-9. [DOI: 10.1093/molbev/mst120] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
82
|
Sachelaru I, Petriman NA, Kudva R, Kuhn P, Welte T, Knapp B, Drepper F, Warscheid B, Koch HG. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J Biol Chem 2013; 288:16295-16307. [PMID: 23609445 DOI: 10.1074/jbc.m112.446583] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most membrane proteins are co-translationally inserted into the lipid bilayer via the universally conserved SecY complex and they access the lipid phase presumably via a lateral gate in SecY. In bacteria, the lipid transfer of membrane proteins from the SecY channel is assisted by the SecY-associated protein YidC, but details on the SecY-YidC interaction are unknown. By employing an in vivo and in vitro site-directed cross-linking approach, we have mapped the SecY-YidC interface and found YidC in contact with all four transmembrane domains of the lateral gate. This interaction did not require the SecDFYajC complex and was not influenced by SecA binding to SecY. In contrast, ribosomes dissociated the YidC contacts to lateral gate helices 2b and 8. The major contact between YidC and the lateral gate was lost in the presence of ribosome nascent chains and new SecY-YidC contacts appeared. These data demonstrate that the SecY-YidC interaction is influenced by nascent-membrane-induced lateral gate movements.
Collapse
Affiliation(s)
- Ilie Sachelaru
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, 79104 Freiburg, Germany
| | - Narcis Adrian Petriman
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, 79104 Freiburg, Germany
| | - Renuka Kudva
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
| | - Patrick Kuhn
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, 79104 Freiburg, Germany
| | - Thomas Welte
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany
| | | | - Friedel Drepper
- Fakultät für Biologie, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Zentrum für Biologische Signalstudien, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Fakultät für Biologie, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Zentrum für Biologische Signalstudien, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany.
| |
Collapse
|