51
|
Mendes M, Peláez-García A, López-Lucendo M, Bartolomé RA, Calviño E, Barderas R, Casal JI. Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/28/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Marta Mendes
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Alberto Peláez-García
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - María López-Lucendo
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Rubén A. Bartolomé
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Eva Calviño
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Rodrigo Barderas
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
- Instituto de Salud Carlos III.; Majadahonda Spain
| | - J. Ignacio Casal
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| |
Collapse
|
52
|
Raz V, Raz Y, Paniagua-Soriano G, Roorda JC, Olie C, Riaz M, Florea BI. Proteasomal activity-based probes mark protein homeostasis in muscles. J Cachexia Sarcopenia Muscle 2017; 8:798-807. [PMID: 28675601 PMCID: PMC5659047 DOI: 10.1002/jcsm.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Protein homeostasis, primarily regulated by the ubiquitin-proteasome system is crucial for proper function of cells. In tissues of post-mitotic cells, the impaired ubiquitin-proteasome system is found in a wide range of neuromuscular disorders. Activity-based probes (ABPs) measure proteasomal proteolytic subunits and can be used to report protein homeostasis. Despite the crucial role of the proteasome in neuromuscular pathologies, ABPs were not employed in muscle cells and tissues, and measurement of proteasomal activity was carried out in vitro using low-throughput procedures. METHODS We screened six ABPs for specific application in muscle cell culture using high throughput call-based imaging procedures. We then determined an in situ proteasomal activity in myofibers of muscle cryosections. RESULTS We demonstrate that LWA300, a pan-reactive proteasomal probe, is most suitable to report proteasomal activity in muscle cells using cell-based bio-imaging. We found that proteasomal activity is two-fold and three-fold enhanced in fused muscle cell culture compared with non-fused cells. Moreover, we found that proteasomal activity can discriminate between muscles. Across muscles, a relative higher proteasomal activity was found in hybrid myofibers whereas fast-twitch myofibers displayed lower activity. CONCLUSIONS Our study demonstrates that proteasomal activity differ between muscles and between myofiber types. We suggest that ABPs can be used to report disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Yotam Raz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | | | | | - Cyriel Olie
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Muhammad Riaz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Bogdan I Florea
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
53
|
Solomon H, Bräuning B, Fainer I, Ben-Nissan G, Rabani S, Goldfinger N, Moscovitz O, Shakked Z, Rotter V, Sharon M. Post-translational regulation of p53 function through 20S proteasome-mediated cleavage. Cell Death Differ 2017; 24:2187-2198. [PMID: 28885617 DOI: 10.1038/cdd.2017.139] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of a range of target genes in response to cellular stress. Adding to the complexity of understanding its cellular function is that in addition to the full-length protein, several p53 isoforms are produced in humans, harboring diverse expression patterns and functionalities. One isoform, Δ40p53, which lacks the first transactivation domain including the binding region for the negative regulator MDM2, was shown to be a product of alternative translation initiation. Here we report the discovery of an alternative cellular mechanism for Δ40p53 formation. We show that the 20S proteasome specifically cleaves the full-length protein (FLp53) to generate the Δ40p53 isoform. Moreover, we demonstrate that a dimer of FLp53 interacts with a Δ40p53 dimer, creating a functional hetero-tetramer. Consequently, the co-expression of both isoforms attenuates the transcriptional activity of FLp53 in a dominant negative manner. Finally, we demonstrate that following oxidative stress, at the time when the 20S proteasome becomes the major degradation machinery and FLp53 is activated, the formation of Δ40p53 is enhanced, creating a negative feedback loop that balances FLp53 activation. Overall, our results suggest that Δ40p53 can be generated by a 20S proteasome-mediated post-translational mechanism so as to control p53 function. More generally, the discovery of a specific cleavage function for the 20S proteasome may represent a more general cellular regulatory mechanism to produce proteins with distinct functional properties.
Collapse
Affiliation(s)
- Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bastian Bräuning
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stav Rabani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Moscovitz
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zippora Shakked
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
54
|
Tundo GR, Sbardella D, Ciaccio C, Grasso G, Gioia M, Coletta A, Polticelli F, Di Pierro D, Milardi D, Van Endert P, Marini S, Coletta M. Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit Rev Biochem Mol Biol 2017. [PMID: 28635330 DOI: 10.1080/10409238.2017.1337707] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as β-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the "aggregopathies" and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin-proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the "quality control" machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.
Collapse
Affiliation(s)
- Grazia R Tundo
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Diego Sbardella
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| | - Chiara Ciaccio
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Giuseppe Grasso
- d Department of Chemistry , University of Catania , Catania , Italy.,e CNR IBB , Catania , Italy
| | - Magda Gioia
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Andrea Coletta
- f Department of Chemistry , University of Aarhus , Aarhus , Denmark
| | | | - Donato Di Pierro
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | | | - Peter Van Endert
- h Université Paris Descartes, INSERM, U1151, CNRS , Paris , France
| | - Stefano Marini
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| | - Massimo Coletta
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| |
Collapse
|
55
|
Matondo M, Marcellin M, Chaoui K, Bousquet-Dubouch MP, Gonzalez-de-Peredo A, Monsarrat B, Burlet-Schiltz O. Determination of differentially regulated proteins upon proteasome inhibition in AML cell lines by the combination of large-scale and targeted quantitative proteomics. Proteomics 2017; 17:1600089. [PMID: 27709814 PMCID: PMC5396343 DOI: 10.1002/pmic.201600089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/05/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) plays a critical role in the degradation of proteins implicated in cell cycle control, signal transduction, DNA damage response, apoptosis and immune response. Proteasome inhibitors can inhibit the growth of a broad spectrum of human cancer cells by altering the balance of intracellular proteins. However, the targets of these compounds in acute myeloid leukemia (AML) cells have not been fully characterized. Herein, we combined large-scale quantitative analysis by SILAC-MS and targeted quantitative proteomic analysis in order to identify proteins regulated upon proteasome inhibition in two AML cell lines displaying different stages of maturation: immature KG1a cells and mature U937 cells. In-depth data analysis enabled accurate quantification of more than 7000 proteins in these two cell lines. Several candidates were validated by selected reaction monitoring (SRM) measurements in a large number of samples. Despite the broad range of proteins known to be affected by proteasome inhibition, such as heat shock (HSP) and cell cycle proteins, our analysis identified new differentially regulated proteins, including IL-32, MORF family mortality factors and apoptosis inducing factor SIVA, a target of p53. It could explain why proteasome inhibitors induce stronger apoptotic responses in immature AML cells.
Collapse
Affiliation(s)
- Mariette Matondo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | | | - Anne Gonzalez-de-Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | - Bernard Monsarrat
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
56
|
Shi Y, Long MJ, Rosenberg MM, Li S, Kobjack A, Lessans P, Coffey RT, Hedstrom L. Boc 3Arg-Linked Ligands Induce Degradation by Localizing Target Proteins to the 20S Proteasome. ACS Chem Biol 2016; 11:3328-3337. [PMID: 27704767 DOI: 10.1021/acschembio.6b00656] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted protein degradation is a promising strategy for drug design and functional assessment. Several small molecule approaches have been developed that localize target proteins to ubiquitin ligases, inducing ubiquitination and subsequent degradation by the 26S proteasome. We discovered that the degradation of a target protein can also be induced by a recognition ligand linked to tert-butyl carbamate (Boc3)-protected arginine (B3A). Here, we show that this process requires the proteasome but does not involve ubiquitination of the target protein. B3A does not perturb the structure of the target protein; instead, a B3A-ligand stabilizes its target protein. B3A ligands stimulate activity of purified 20S proteasome, demonstrating that the tag binds directly to the 20S proteasome. Moreover, purified 20S proteasome is sufficient to degrade target proteins in the presence of their respective B3A-linked recognition ligands. These observations suggest a simple model for B3A-mediated degradation wherein the B3A tag localizes target proteins directly to the 20S proteasome. Thus, B3A ligands are the first example of a ubiquitin-free strategy for targeted protein degradation.
Collapse
Affiliation(s)
- Yuntao Shi
- Graduate Program in Chemistry, ‡Graduate Program
in Biochemistry and Biophysics, §Department of Biology, ∥Graduate Program
in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, United States
- Department of Biochemistry, #Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States
| | - Marcus J.C. Long
- Graduate Program in Chemistry, ‡Graduate Program
in Biochemistry and Biophysics, §Department of Biology, ∥Graduate Program
in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, United States
- Department of Biochemistry, #Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States
| | - Masha M. Rosenberg
- Graduate Program in Chemistry, ‡Graduate Program
in Biochemistry and Biophysics, §Department of Biology, ∥Graduate Program
in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, United States
- Department of Biochemistry, #Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States
| | - Shican Li
- Graduate Program in Chemistry, ‡Graduate Program
in Biochemistry and Biophysics, §Department of Biology, ∥Graduate Program
in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, United States
- Department of Biochemistry, #Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States
| | - Aimee Kobjack
- Graduate Program in Chemistry, ‡Graduate Program
in Biochemistry and Biophysics, §Department of Biology, ∥Graduate Program
in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, United States
- Department of Biochemistry, #Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States
| | - Philip Lessans
- Graduate Program in Chemistry, ‡Graduate Program
in Biochemistry and Biophysics, §Department of Biology, ∥Graduate Program
in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, United States
- Department of Biochemistry, #Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States
| | - Rory T. Coffey
- Graduate Program in Chemistry, ‡Graduate Program
in Biochemistry and Biophysics, §Department of Biology, ∥Graduate Program
in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, United States
- Department of Biochemistry, #Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States
| | - Lizbeth Hedstrom
- Graduate Program in Chemistry, ‡Graduate Program
in Biochemistry and Biophysics, §Department of Biology, ∥Graduate Program
in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, United States
- Department of Biochemistry, #Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
57
|
Abstract
Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems.
Collapse
|
58
|
Mayor T, Sharon M, Glickman MH. Tuning the proteasome to brighten the end of the journey. Am J Physiol Cell Physiol 2016; 311:C793-C804. [PMID: 27605452 DOI: 10.1152/ajpcell.00198.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Degradation by the proteasome is the fate for a large portion of cellular proteins, and it plays a major role in maintaining protein homeostasis, as well as in regulating many cellular processes like cell cycle progression. A decrease in proteasome activity has been linked to aging and several age-related neurodegenerative pathologies and highlights the importance of the ubiquitin proteasome system regulation. While the proteasome has been traditionally viewed as a constitutive element of proteolysis, major studies have highlighted how different regulatory mechanisms can impact its activity. Importantly, alterations of proteasomal activity may have major impacts for its function and in therapeutics. On one hand, increasing proteasome activity could be beneficial to prevent the age-related downfall of protein homeostasis, whereas inhibiting or reducing its activity can prevent the proliferation of cancer cells.
Collapse
Affiliation(s)
- Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada;
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; and
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
59
|
Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochem J 2016; 473:961-1000. [PMID: 27060105 DOI: 10.1042/bj20151182] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
Abstract
The consensuscis-regulatory AP-1 (activator protein-1)-like AREs (antioxidant-response elements) and/or EpREs (electrophile-response elements) allow for differential recruitment of Nrf1 [NF-E2 (nuclear factor-erythroid 2)-related factor 1], Nrf2 and Nrf3, together with each of their heterodimeric partners (e.g. sMaf, c-Jun, JunD or c-Fos), to regulate different sets of cognate genes. Among them, NF-E2 p45 and Nrf3 are subject to tissue-specific expression in haemopoietic and placental cell lineages respectively. By contrast, Nrf1 and Nrf2 are two important transcription factors expressed ubiquitously in various vertebrate tissues and hence may elicit putative combinational or competitive functions. Nevertheless, they have de facto distinct biological activities because knockout of their genes in mice leads to distinguishable phenotypes. Of note, Nrf2 is dispensable during development and growth, albeit it is accepted as a master regulator of antioxidant, detoxification and cytoprotective genes against cellular stress. Relative to the water-soluble Nrf2, less attention has hitherto been drawn to the membrane-bound Nrf1, even though it has been shown to be indispensable for embryonic development and organ integrity. The biological discrepancy between Nrf1 and Nrf2 is determined by differences in both their primary structures and topovectorial subcellular locations, in which they are subjected to distinct post-translational processing so as to mediate differential expression of ARE-driven cytoprotective genes. In the present review, we focus on the molecular and cellular basis for Nrf1 and its isoforms, which together exert its essential functions for maintaining cellular homoeostasis, normal organ development and growth during life processes. Conversely, dysfunction of Nrf1 results in spontaneous development of non-alcoholic steatohepatitis, hepatoma, diabetes and neurodegenerative diseases in animal models.
Collapse
|
60
|
Fabre B, Korona D, Groen A, Vowinckel J, Gatto L, Deery MJ, Ralser M, Russell S, Lilley KS. Analysis of Drosophila melanogaster proteome dynamics during embryonic development by a combination of label-free proteomics approaches. Proteomics 2016; 16:2068-80. [PMID: 27029218 PMCID: PMC5737838 DOI: 10.1002/pmic.201500482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022]
Abstract
During embryogenesis, organisms undergo considerable cellular remodelling requiring the combined action of thousands of proteins. In case of the well-studied model Drosophila melanogaster, transcriptomic studies, most notably from the modENCODE project, have described in detail changes in gene expression at the mRNA level across development. Although such data are clearly very useful to understand how the genome is regulated during embryogenesis, it is important to understand how changes in gene expression are reflected at the level of the proteome. In this study, we describe a combination of two quantitative label-free approaches, SWATH and data-dependent acquisition, to monitor changes in protein expression across a timecourse of D. melanogaster embryonic development. We demonstrate that both approaches provide robust and reproducible methods for the analysis of proteome changes. In a preliminary analysis of Drosophila embryogenesis, we identified several pathways, including the heat-shock response, nuclear protein import and energy production that are regulated during embryo development. In some cases changes in protein expression mirrored transcript levels across development, whereas other proteins showed signatures of post-transcriptional regulation. Taken together, our pilot study provides a solid platform for a more detailed exploration of the embryonic proteome.
Collapse
Affiliation(s)
- Bertrand Fabre
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Arnoud Groen
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Jakob Vowinckel
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Laurent Gatto
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Computational Proteomics Unit, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, UK
| | - Steven Russell
- Department of Genetics, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, UK
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
61
|
Yang G, Huang L, Zhang J, Yu H, Li Z, Guan F. Global Identification and Differential Distribution Analysis of Glycans in Subcellular Fractions of Bladder Cells. Int J Biol Sci 2016; 12:799-811. [PMID: 27313494 PMCID: PMC4910599 DOI: 10.7150/ijbs.13310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles.
Collapse
Affiliation(s)
- Ganglong Yang
- 1. The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Luyu Huang
- 2. The Key Laboratory of Biological Pesticide and Chemical Biology, Ministry of Education; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxu Zhang
- 1. The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hanjie Yu
- 3. Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- 3. Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- 1. The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
62
|
Yu C, Yang Y, Wang X, Guan S, Fang L, Liu F, Walters KJ, Kaiser P, Huang L. Characterization of Dynamic UbR-Proteasome Subcomplexes by In vivo Cross-linking (X) Assisted Bimolecular Tandem Affinity Purification (XBAP) and Label-free Quantitation. Mol Cell Proteomics 2016; 15:2279-92. [PMID: 27114451 DOI: 10.1074/mcp.m116.058271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Proteasomes are protein degradation machines that exist in cells as heterogeneous and dynamic populations. A group of proteins function as ubiquitin receptors (UbRs) that can recognize and deliver ubiquitinated substrates to proteasome complexes for degradation. Defining composition of proteasome complexes engaged with UbRs is critical to understand proteasome function. However, because of the dynamic nature of UbR interactions with the proteasome, it remains technically challenging to capture and isolate UbR-proteasome subcomplexes using conventional purification strategies. As a result, distinguishing the molecular differences among these subcomplexes remains elusive. We have developed a novel affinity purification strategy, in vivo cross-linking (X) assisted bimolecular tandem affinity purification strategy (XBAP), to effectively isolate dynamic UbR-proteasome subcomplexes and define their subunit compositions using label-free quantitative mass spectrometry. In this work, we have analyzed seven distinctive UbR-proteasome complexes and found that all of them contain the same type of the 26S holocomplex. However, selected UbRs interact with a group of proteasome interacting proteins that may link each UbR to specific cellular pathways. The compositional similarities and differences among the seven UbR-proteasome subcomplexes have provided new insights on functional entities of proteasomal degradation machineries. The strategy described here represents a general and useful proteomic tool for isolating and studying dynamic and heterogeneous protein subcomplexes in cells that have not been fully characterized.
Collapse
Affiliation(s)
- Clinton Yu
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Yingying Yang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Xiaorong Wang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Shenheng Guan
- §Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Lei Fang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Fen Liu
- ¶Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Kylie J Walters
- ¶Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Peter Kaiser
- ‖Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Lan Huang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697;
| |
Collapse
|
63
|
Pereira-Neves A, Menna-Barreto RFS, Benchimol M. The fungal metabolite gliotoxin inhibits proteasome proteolytic activity and induces an irreversible pseudocystic transformation and cell death in Tritrichomonas foetus. Parasitol Res 2016; 115:3057-69. [DOI: 10.1007/s00436-016-5061-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
64
|
Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2015; 591:132-40. [PMID: 26724758 DOI: 10.1016/j.abb.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.
Collapse
|
65
|
Pereira-Neves A, Gonzaga L, Menna-Barreto RFS, Benchimol M. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form. PLoS One 2015; 10:e0129165. [PMID: 26047503 PMCID: PMC4457923 DOI: 10.1371/journal.pone.0129165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in an accumulation of ubiquitinated proteins and caused increase in the amount of endoplasmic reticulum membranes in the parasite. Taken together, our results suggest that the ubiquitin-proteasome pathway is required for cell cycle and EFF transformation in T. foetus.
Collapse
MESH Headings
- Acetylcysteine/analogs & derivatives
- Acetylcysteine/pharmacology
- Amino Acid Sequence
- Blotting, Western
- Cell Cycle
- Cysteine Proteinase Inhibitors/pharmacology
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/ultrastructure
- Flagella/metabolism
- Flagella/ultrastructure
- Life Cycle Stages/drug effects
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Molecular Sequence Data
- Phylogeny
- Proteasome Endopeptidase Complex/classification
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Protozoan Proteins/ultrastructure
- Sequence Homology, Amino Acid
- Spores, Protozoan/drug effects
- Spores, Protozoan/metabolism
- Spores, Protozoan/ultrastructure
- Tritrichomonas foetus/genetics
- Tritrichomonas foetus/growth & development
- Tritrichomonas foetus/metabolism
Collapse
Affiliation(s)
- Antonio Pereira-Neves
- Programa de Pós-graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Fiocruz, Centro de Pesquisa Aggeu Magalhães, Departamento de Microbiologia, Laboratório de Microbiologia e Biologia Celular, Recife, PE, Brazil
| | - Luiz Gonzaga
- Laboratório Nacional de Computação Cientifica (LNCC/MCT), Petrópolis, RJ, Brazil
| | | | - Marlene Benchimol
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- UNIGRANRIO- Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
66
|
Srinivasa S, Ding X, Kast J. Formaldehyde cross-linking and structural proteomics: Bridging the gap. Methods 2015; 89:91-8. [PMID: 25979347 DOI: 10.1016/j.ymeth.2015.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field.
Collapse
Affiliation(s)
- Savita Srinivasa
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xuan Ding
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, United States
| | - Juergen Kast
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
67
|
Chorev DS, Ben-Nissan G, Sharon M. Exposing the subunit diversity and modularity of protein complexes by structural mass spectrometry approaches. Proteomics 2015; 15:2777-91. [PMID: 25727951 DOI: 10.1002/pmic.201400517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/08/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022]
Abstract
Although the number of protein-encoding genes in the human genome is only about 20 000 not far from the amount found in the nematode worm genome, the number of proteins that are translated from these sequences is larger by several orders of magnitude. A number of mechanisms have evolved to enable this diversity. For example, genes can be alternatively spliced to create multiple transcripts; they may also be translated from different alternative initiation sites. After translation, hundreds of chemical modifications can be introduced in proteins, altering their chemical properties, folding, stability, and activity. The complexity is then further enhanced by the various combinations that are generated from the assembly of different subunit variants into protein complexes. This, in turn, confers structural and functional flexibility, and endows the cell with the ability to adapt to various environmental conditions. Therefore, exposing the variability of protein complexes is an important step toward understanding their biological functions. Revealing this enormous diversity, however, is not a simple task. In this review, we will focus on the array of MS-based strategies that are capable of performing this mission. We will also discuss the challenges that lie ahead, and the future directions toward which the field might be heading.
Collapse
Affiliation(s)
- Dror S Chorev
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
68
|
Bernaudo F, Monteleone F, Mesuraca M, Krishnan S, Chiarella E, Scicchitano S, Cuda G, Morrone G, Bond HM, Gaspari M. Validation of a novel shotgun proteomic workflow for the discovery of protein-protein interactions: focus on ZNF521. J Proteome Res 2015; 14:1888-99. [PMID: 25774781 DOI: 10.1021/pr501288h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The study of protein-protein interactions is increasingly relying on mass spectrometry (MS). The classical approach of separating immunoprecipitated proteins by SDS-PAGE followed by in-gel digestion is long and labor-intensive. Besides, it is difficult to integrate it with most quantitative MS-based workflows, except for stable isotopic labeling of amino acids in cell culture (SILAC). This work describes a fast, flexible and quantitative workflow for the discovery of novel protein-protein interactions. A cleavable cross-linker, dithiobis[succinimidyl propionate] (DSP), is utilized to stabilize protein complexes before immunoprecipitation. Protein complex detachment from the antibody is achieved by limited proteolysis. Finally, protein quantitation is performed via (18)O labeling. The workflow has been optimized concerning (i) DSP concentration and (ii) incubation times for limited proteolysis, using the stem cell-associated transcription cofactor ZNF521 as a model target. The interaction of ZNF521 with the core components of the nuclear remodelling and histone deacetylase (NuRD) complex, already reported in the literature, was confirmed. Additionally, interactions with newly discovered molecular partners of potentially relevant functional role, such as ZNF423, Spt16, Spt5, were discovered and validated by Western blotting.
Collapse
Affiliation(s)
- Francesca Bernaudo
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Francesca Monteleone
- ‡Department of Experimental and Clinical Medicine, Proteomics@UMG, University Magna Graecia, Catanzaro 88100, Italy
| | - Maria Mesuraca
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Shibu Krishnan
- ‡Department of Experimental and Clinical Medicine, Proteomics@UMG, University Magna Graecia, Catanzaro 88100, Italy
| | - Emanuela Chiarella
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Stefania Scicchitano
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Giovanni Cuda
- ‡Department of Experimental and Clinical Medicine, Proteomics@UMG, University Magna Graecia, Catanzaro 88100, Italy
| | - Giovanni Morrone
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Heather M Bond
- †Department of Experimental and Clinical Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Graecia, Catanzaro 88100, Italy
| | - Marco Gaspari
- ‡Department of Experimental and Clinical Medicine, Proteomics@UMG, University Magna Graecia, Catanzaro 88100, Italy
| |
Collapse
|
69
|
Priestman MA, Wang Q, Jernigan FE, Chowdhury R, Schmidt M, Lawrence DS. Multicolor monitoring of the proteasome's catalytic signature. ACS Chem Biol 2015; 10:433-40. [PMID: 25347733 PMCID: PMC4340355 DOI: 10.1021/cb5007322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The proteasome, a validated anticancer
target, participates in
an array of biochemical activities, which range from the proteolysis
of defective proteins to antigen presentation. We report the preparation
of biochemically and photophysically distinct green, red, and far-red
real-time sensors designed to simultaneously monitor the proteasome’s
chymotrypsin-, trypsin-, and caspase-like activities, respectively.
These sensors were employed to assess the effect of simultaneous multiple
active site catalysis on the kinetic properties of the individual
subunits. Furthermore, we have found that the catalytic signature
of the proteasome varies depending on the source, cell type, and disease
state. Trypsin-like activity is more pronounced in yeast than in mammals,
whereas chymotrypsin-like activity is the only activity detectable
in B-cells (unlike other mammalian cells). Furthermore, chymotrypsin-like
activity is more prominent in transformed B cells relative to their
counterparts from healthy donors.
Collapse
Affiliation(s)
- Melanie A. Priestman
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Qunzhao Wang
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Finith E. Jernigan
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ruma Chowdhury
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Marion Schmidt
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - David S. Lawrence
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
70
|
Fabre B, Lambour T, Garrigues L, Amalric F, Vigneron N, Menneteau T, Stella A, Monsarrat B, Van den Eynde B, Burlet-Schiltz O, Bousquet-Dubouch MP. Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 2015; 11:771. [PMID: 25561571 PMCID: PMC4332148 DOI: 10.15252/msb.20145497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin-proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes.
Collapse
Affiliation(s)
- Bertrand Fabre
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Thomas Lambour
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Luc Garrigues
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - François Amalric
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels, Belgium WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium de Duve Institute Université catholique de Louvain, Brussels, Belgium
| | - Thomas Menneteau
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Alexandre Stella
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Bernard Monsarrat
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium de Duve Institute Université catholique de Louvain, Brussels, Belgium
| | - Odile Burlet-Schiltz
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| |
Collapse
|
71
|
Kaake RM, Kao A, Yu C, Huang L. Characterizing the dynamics of proteasome complexes by proteomics approaches. Antioxid Redox Signal 2014; 21:2444-56. [PMID: 24423446 PMCID: PMC4241863 DOI: 10.1089/ars.2013.5815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE The proteasome is the degradation machine of the ubiquitin-proteasome system, which is critical in controlling many essential biological processes. Aberrant regulation of proteasome-dependent protein degradation can lead to various human diseases, and general proteasome inhibitors have shown efficacy for cancer treatments. Though clinically effective, current proteasome inhibitors have detrimental side effects and, thus, better therapeutic strategies targeting proteasomes are needed. Therefore, a comprehensive characterization of proteasome complexes will provide the molecular details that are essential for developing new and improved drugs. RECENT ADVANCES New mass spectrometry (MS)-based proteomics approaches have been developed to study protein interaction networks and structural topologies of proteasome complexes. The results have helped define the dynamic proteomes of proteasome complexes, thus providing new insights into the mechanisms underlying proteasome function and regulation. CRITICAL ISSUES The proteasome exists as heterogeneous populations in tissues/cells, and its proteome is highly dynamic and complex. In addition, proteasome complexes are regulated by various mechanisms under different physiological conditions. Consequently, complete proteomic profiling of proteasome complexes remains a major challenge for the field. FUTURE DIRECTIONS We expect that proteomic methodologies enabling full characterization of proteasome complexes will continue to evolve. Further advances in MS instrumentation and protein separation techniques will be needed to facilitate the detailed proteomic analysis of low-abundance components and subpopulations of proteasome complexes. The results will help us understand proteasome biology as well as provide new therapeutic targets for disease diagnostics and treatment.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Physiology and Biophysics, University of California , Irvine, Irvine, California
| | | | | | | |
Collapse
|
72
|
Cornish Carmony K, Sharma LK, Lee DM, Park JE, Lee W, Kim KB. Elucidating the catalytic subunit composition of distinct proteasome subtypes: a crosslinking approach employing bifunctional activity-based probes. Chembiochem 2014; 16:284-92. [PMID: 25477005 DOI: 10.1002/cbic.201402491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Indexed: 12/25/2022]
Abstract
In addition to two well-recognized proteasome subtypes-constitutive proteasomes and immunoproteasomes-mounting evidence also suggests the existence of intermediate proteasome subtypes containing unconventional mixtures of catalytic subunits. Although they appear to play unique biological roles, the lack of practical methods for detecting distinct proteasome subtypes has limited functional investigations. Here, we report the development of activity-based probes that crosslink two catalytic subunits within intact proteasome complexes. Identification of the crosslinked subunit pairs provides direct evidence of the catalytic subunit composition of proteasomes. Using these probes, we found that U266 multiple myeloma cells contain intermediate proteasomes comprising both β1i and β2, but not β1 and β2i, consistent with previous findings with other cell types. Our bifunctional probes can be utilized in functional investigations of distinct proteasome subtypes in various biological settings.
Collapse
Affiliation(s)
- Kimberly Cornish Carmony
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596 (USA)
| | | | | | | | | | | |
Collapse
|
73
|
Ben-Nissan G, Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 2014; 4:862-84. [PMID: 25250704 PMCID: PMC4192676 DOI: 10.3390/biom4030862] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
74
|
Fabre B, Lambour T, Bouyssié D, Menneteau T, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
Fabre B, Lambour T, Garrigues L, Ducoux-Petit M, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Label-Free Quantitative Proteomics Reveals the Dynamics of Proteasome Complexes Composition and Stoichiometry in a Wide Range of Human Cell Lines. J Proteome Res 2014; 13:3027-37. [DOI: 10.1021/pr500193k] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bertrand Fabre
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Thomas Lambour
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Luc Garrigues
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Manuelle Ducoux-Petit
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - François Amalric
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Bernard Monsarrat
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| |
Collapse
|
76
|
Ubiquitin-independent proteasomal degradation of tumor suppressors by human cytomegalovirus pp71 requires the 19S regulatory particle. J Virol 2013; 87:4665-71. [PMID: 23408605 DOI: 10.1128/jvi.03301-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Proteasomes generally degrade substrates tagged with polyubiquitin chains. In rare cases, however, proteasomes can degrade proteins without prior ubiquitination. For example, the human cytomegalovirus (HCMV) pp71 protein induces the proteasome-dependent, ubiquitin-independent degradation of the retinoblastoma (Rb) and Daxx proteins. These transcriptional corepressors and tumor suppressors inhibit the expression of cellular or viral genes that are required for efficient viral replication. Proteasomes are composed of a 20S catalytic core with or without one or two activator complexes, of which there are four different types. Here, we show that only one of these activators, the 19S regulatory particle that normally participates in ubiquitin-dependent protein degradation, is required for pp71-mediated degradation of Rb and Daxx. We report the unique use of a well-established route of substrate delivery to the proteasome by a viral protein to promote infection.
Collapse
|