51
|
Chen X, Li J, Hou J, Xie Z, Yang F. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases. Expert Rev Proteomics 2014; 7:333-45. [DOI: 10.1586/epr.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
52
|
Porcu S, Lapolla A, Biasutto L, Zoratti M, Piarulli F, Eliana G, Basso D, Roverso M, Seraglia R. A preliminary fastview of mitochondrial protein profile from healthy and type 2 diabetic subjects. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:307-315. [PMID: 25420343 DOI: 10.1255/ejms.1285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Type 2 diabetes results from the development of insulin resistance and a concomitant impairment of insulin secretion. Mitochondrial dysfunctions are thought to be the major contributor to the development of various pathologies, including type 1 and type 2 diabetes mellitus. Mitochondrial oxidative stress has been reported in models of both type 1 and type 2 diabetes mellitus and may play a central role in mitochondrial dysfunction. In the present study, we investigated the occurrence of protein alterations, due to the presence of type 2 diabetes, in mitochondria isolated from human peripheral blood mononuclear cells (PBMCs] by matrix-assisted laser desorp- tion/ionization mass spectrometry (MALDI-MS]. PBMCs may be suitable for this investigation because they have insulin receptors that quickly respond to changes in insulin concentration, and in the presence of insulin rapidly increase their rates of glucose utiliza- tion. In the presence of insulin-resistance conditions, such as type 2 diabetes mellitus, this mechanism is altered and the glycation of cytoplasmic as well as mitochondrial proteins may plausibly appear. Therefore, PBMCs may be useful tools to verify modifications or altered expression of mitochondrial proteins. Human mitochondria were obtained from 32 subjects, 16 healthy controls and 16 type 2 diabetic patients. Two different methods for mitochondria isolation and purification were employed and compared. Some proteins have been found to be differently expressed in the two groups of subjects under investigation and can be classified into two sets: i.e. proteins related to ATP synthase [e.g. 6.8kDa mitochondrial proteolipid [MLQ]; ATP-CF6 [m/z 12,597)] and proteins related to cell proliferation and apoptosis [e.g. TIMM9 [m/z 10,378); Bcl-2-like protein 2 (m/z20,742)].
Collapse
|
53
|
Fujikawa M, Ohsakaya S, Sugawara K, Yoshida M. Population of ATP synthase molecules in mitochondria is limited by available 6.8-kDa proteolipid protein (MLQ). Genes Cells 2013; 19:153-60. [DOI: 10.1111/gtc.12121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Makoto Fujikawa
- JST ICORP ATP-Synthesis Regulation Project; 2-3-6 Aomi Koto-ku Tokyo 135-0064 Japan
- Department of Biochemistry; Faculty of Pharmaceutical Science; Tokyo University of Science; 2641 Yamazaki Noda 278-8510 Japan
| | - Shigenori Ohsakaya
- Chemical Resources Laboratory; Tokyo Institute of Technology; Nagatsuta 4259-R1-8 Midori-ku Yokohama 226-8503 Japan
| | - Kanako Sugawara
- JST ICORP ATP-Synthesis Regulation Project; 2-3-6 Aomi Koto-ku Tokyo 135-0064 Japan
- Department of Molecular Bioscience; Kyoto Sangyo University; Kamigamo-Motoyama Sakyo-ku Kyoto 603-8555 Japan
| | - Masasuke Yoshida
- JST ICORP ATP-Synthesis Regulation Project; 2-3-6 Aomi Koto-ku Tokyo 135-0064 Japan
- Department of Molecular Bioscience; Kyoto Sangyo University; Kamigamo-Motoyama Sakyo-ku Kyoto 603-8555 Japan
| |
Collapse
|
54
|
Kontro H, Hulmi JJ, Rahkila P, Kainulainen H. Cellular and tissue expression of DAPIT, a phylogenetically conserved peptide. Eur J Histochem 2012; 56:e18. [PMID: 22688299 DOI: 10.4081/ejh.2012.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 11/23/2022] Open
Abstract
DAPIT (Diabetes Associated Protein in Insulin-sensitive Tissues) is a small, phylogenetically conserved, 58 amino acid peptide that was previously shown to be down-regulated at mRNA level in insulin-sensitive tissues of type 1 diabetes rats. In this study we characterize a custom made antibody against DAPIT and confirm the mitochondrial presence of DAPIT on cellular level. We also show that DAPIT is localized in lysosomes of HUVEC and HEK 293T cells. In addition, we describe the histological expression of DAPIT in several tissues of rat and man and show that it is highly expressed especially in cells with high aerobic metabolism and epithelial cells related to active transport of nutrients and ions. We propose that DAPIT, in addition to indicated subunit of mitochondrial F-ATPase, is also a subunit of lysosomal V-ATPase suggesting that it is a common component in different proton pumps.
Collapse
Affiliation(s)
- H Kontro
- Institute of Biomedical Technology, University of Tampere, Finland
| | | | | | | |
Collapse
|
55
|
Jonckheere AI, Smeitink JAM, Rodenburg RJT. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012; 35:211-25. [PMID: 21874297 PMCID: PMC3278611 DOI: 10.1007/s10545-011-9382-9] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 12/16/2022]
Abstract
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F(1), situated in the mitochondrial matrix, and F(o), located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- An I. Jonckheere
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Richard J. T. Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
56
|
Volknandt W, Karas M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 2012; 217:449-61. [DOI: 10.1007/s00221-012-3031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
|
57
|
The insecticide DDT targets the OSCP and subunit D of the Apis mellifera ATP synthase. J Bioenerg Biomembr 2011; 43:457-63. [DOI: 10.1007/s10863-011-9378-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/15/2011] [Indexed: 11/27/2022]
|
58
|
Ohsakaya S, Fujikawa M, Hisabori T, Yoshida M. Knockdown of DAPIT (diabetes-associated protein in insulin-sensitive tissue) results in loss of ATP synthase in mitochondria. J Biol Chem 2011; 286:20292-6. [PMID: 21345788 DOI: 10.1074/jbc.m110.198523] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was found recently that a diabetes-associated protein in insulin-sensitive tissue (DAPIT) is associated with mitochondrial ATP synthase. Here, we report that the suppressed expression of DAPIT in DAPIT-knockdown HeLa cells causes loss of the population of ATP synthase in mitochondria. Consequently, DAPIT-knockdown cells show smaller mitochondrial ATP synthesis activity, slower growth in normal medium, and poorer viability in glucose-free medium than the control cells. The mRNA levels of α- and β-subunits of ATP synthase remain unchanged by DAPIT knockdown. These results indicate a critical role of DAPIT in maintaining the ATP synthase population in mitochondria and raise an intriguing possibility of active role of DAPIT in cellular energy metabolism.
Collapse
Affiliation(s)
- Shigenori Ohsakaya
- International Cooperative Research Project ATP-Synthesis Regulation Project, Japan Science and Technology Agency, 2-3-6 Aomi, Koto-Ku, Tokyo 135-0064, Japan
| | | | | | | |
Collapse
|
59
|
Gianazza E, Eberini I, Sensi C, Barile M, Vergani L, Vanoni MA. Energy matters: mitochondrial proteomics for biomedicine. Proteomics 2011; 11:657-74. [PMID: 21241019 DOI: 10.1002/pmic.201000412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/22/2010] [Accepted: 11/03/2010] [Indexed: 12/16/2022]
Abstract
This review compiles results of medical relevance from mitochondrial proteomics, grouped either according to the type of disease - genetic or degenerative - or to the involved mechanism - oxidative stress or apoptosis. The findings are commented in the light of our current understanding of uniformity/variability in cell responses to different stimuli. Specificities in the conceptual and technical approaches to human mitochondrial proteomics are also outlined.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
60
|
Hoffmann J, Sokolova L, Preiss L, Hicks DB, Krulwich TA, Morgner N, Wittig I, Schägger H, Meier T, Brutschy B. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry. Phys Chem Chem Phys 2010; 12:13375-82. [PMID: 20820587 PMCID: PMC2955850 DOI: 10.1039/c0cp00733a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F(1)F(o)-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F(1)F(o)-ATP synthases. Under selected buffer conditions the mass of the intact F(1)F(o)-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases.
Collapse
Affiliation(s)
- Jan Hoffmann
- Institute for Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes, Centre for Membrane Proteomics Goethe-Universität, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Lucie Sokolova
- Institute for Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes, Centre for Membrane Proteomics Goethe-Universität, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Department of Structural Biology, Max-Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - David B. Hicks
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York 10029, USA
| | - Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York 10029, USA
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| | - Ilka Wittig
- Molecular Bioenergetics, Medical School, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | - Hermann Schägger
- Molecular Bioenergetics, Medical School, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max-Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Bernd Brutschy
- Institute for Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes, Centre for Membrane Proteomics Goethe-Universität, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
61
|
Fujikawa M, Yoshida M. A sensitive, simple assay of mitochondrial ATP synthesis of cultured mammalian cells suitable for high-throughput analysis. Biochem Biophys Res Commun 2010; 401:538-43. [PMID: 20875793 DOI: 10.1016/j.bbrc.2010.09.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
A new assay has been developed to measure mitochondrial ATP synthesis of cultured mammalian cells. Cells in a microplate are exposed to streptolysin O to make plasma membranes permeable without damaging mitochondrial function and ATP synthesis is monitored by luciferase. Addition of inhibitors of F₀F₁-ATP synthase (F₀F₁), respiratory chain, TCA cycle and ATP/ADP translocator, as well as knockdown of β-subunit of F₀F₁, resulted in loss of ATP synthesis. Compared with the conventional procedures that need mitochondria fractionation and detergent, this assay is simple, sensitive and suitable for high-throughput analysis of genes and drugs that could affect mitochondrial functional integrity as represented by ATP synthesis activity.
Collapse
Affiliation(s)
- Makoto Fujikawa
- ICORP ATP-Synthesis Regulation Project, Japan Science and Technology Agency (JST), Aomi 2-3-6, Tokyo 135-0064, Japan
| | | |
Collapse
|
62
|
Mayr JA, Havlícková V, Zimmermann F, Magler I, Kaplanová V, Jesina P, Pecinová A, Nusková H, Koch J, Sperl W, Houstek J. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum Mol Genet 2010; 19:3430-9. [PMID: 20566710 DOI: 10.1093/hmg/ddq254] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
F1Fo-ATP synthase is a key enzyme of mitochondrial energy provision producing most of cellular ATP. So far, mitochondrial diseases caused by isolated disorders of the ATP synthase have been shown to result from mutations in mtDNA genes for the subunits ATP6 and ATP8 or in nuclear genes encoding the biogenesis factors TMEM70 and ATPAF2. Here, we describe a patient with a homozygous p.Tyr12Cys mutation in the epsilon subunit encoded by the nuclear gene ATP5E. The 22-year-old woman presented with neonatal onset, lactic acidosis, 3-methylglutaconic aciduria, mild mental retardation and developed peripheral neuropathy. Patient fibroblasts showed 60-70% decrease in both oligomycin-sensitive ATPase activity and mitochondrial ATP synthesis. The mitochondrial content of the ATP synthase complex was equally reduced, but its size was normal and it contained the mutated epsilon subunit. A similar reduction was found in all investigated F1 and Fo subunits with the exception of Fo subunit c, which was found to accumulate in a detergent-insoluble form. This is the first case of a mitochondrial disease due to a mutation in a nuclear encoded structural subunit of the ATP synthase. Our results indicate an essential role of the epsilon subunit in the biosynthesis and assembly of the F1 part of the ATP synthase. Furthermore, the epsilon subunit seems to be involved in the incorporation of subunit c to the rotor structure of the mammalian enzyme.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Pediatrics, Paracelsus Medical University, Salzburg A5020, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Short M, Short A, Vankempen R, Seymour M, Burnatowska-Hledin M. Using HPLC-mass spectrometry to teach proteomics concepts with problem-based techniques. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 38:242-246. [PMID: 21567835 DOI: 10.1002/bmb.20380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Practical instruction of proteomics concepts was provided using high-performance liquid chromatography coupled with a mass selective detection system (HPLC-MS) for the analysis of simulated protein digests. The samples were prepared from selected dipeptides in order to facilitate the mass spectral identification. As part of the prelaboratory preparation, students calculated the parent ion patterns of the dipeptides using peptide calculator websites. Following instruction on the use of the HPLC-MS instrument, students analyzed mixtures of the dipeptides and identified the individual dipeptides in the unknowns. In addition, purchased chicken egg white lysozyme alkylated with iodoacetamide and digested with trypsin was analyzed using the same approach. Key tryptic peptides were identified from the HPLC-MS chromatogram with information generated with the FindPept tool. This experiment demonstrates that complex concepts can be taught in the undergraduate biochemistry laboratory using a problem-based approach.
Collapse
Affiliation(s)
- Michael Short
- Department of Chemistry, Hope College, Holland, Michigan 49423; Department of Biology, Hope College, Holland, Michigan 49423; Montana State University, Bozeman, Montana.
| | | | | | | | | |
Collapse
|
64
|
Havlícková V, Kaplanová V, Nůsková H, Drahota Z, Houstek J. Knockdown of F1 epsilon subunit decreases mitochondrial content of ATP synthase and leads to accumulation of subunit c. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1124-9. [PMID: 20026007 DOI: 10.1016/j.bbabio.2009.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/11/2009] [Accepted: 12/13/2009] [Indexed: 10/20/2022]
Abstract
The subunit epsilon of mitochondrial ATP synthase is the only F1 subunit without a homolog in bacteria and chloroplasts and represents the least characterized F1 subunit of the mammalian enzyme. Silencing of the ATP5E gene in HEK293 cells resulted in downregulation of the activity and content of the mitochondrial ATP synthase complex and of ADP-stimulated respiration to approximately 40% of the control. The decreased content of the epsilon subunit was paralleled by a decrease in the F1 subunits alpha and beta and in the Fo subunits a and d while the content of the subunit c was not affected. The subunit c was present in the full-size ATP synthase complex and in subcomplexes of 200-400 kDa that neither contained the F1 subunits, nor the Fo subunits. The results indicate that the epsilon subunit is essential for the assembly of F1 and plays an important role in the incorporation of the hydrophobic subunit c into the F1-c oligomer rotor of the mitochondrial ATP synthase complex.
Collapse
Affiliation(s)
- Vendula Havlícková
- Department of Bioenergetics, Institute of Physiology and Centre for Applied Genomics, Academy of Sciences of the Czech Republic, 142 20 Prague
| | | | | | | | | |
Collapse
|
65
|
Zickermann V, Angerer H, Ding MG, Nübel E, Brandt U. Small single transmembrane domain (STMD) proteins organize the hydrophobic subunits of large membrane protein complexes. FEBS Lett 2010; 584:2516-25. [PMID: 20398659 DOI: 10.1016/j.febslet.2010.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/30/2010] [Accepted: 04/09/2010] [Indexed: 11/24/2022]
Abstract
The large membrane protein complexes of mitochondrial oxidative phosphorylation are composed of central subunits that are essential for their bioenergetic core function and accessory subunits that may assist in regulation, assembly or stabilization. Although sequence conservation is low, a significant proportion of the accessory subunits is characterized by a common single transmembrane (STMD) topology. The STMD signature is also found in subunits of other membrane protein complexes. We hypothesize that the general function of STMD subunits is to organize the hydrophobic subunits of large membrane protein complexes in specialized environments like the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Volker Zickermann
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, Cluster of Excellence Frankfurt "Macromolecular Complexes", Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
66
|
Zhang L, Yu C, Vasquez FE, Galeva N, Onyango I, Swerdlow RH, Dobrowsky RT. Hyperglycemia alters the schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production. J Proteome Res 2010; 9:458-71. [PMID: 19905032 DOI: 10.1021/pr900818g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hyperglycemia-induced mitochondrial dysfunction contributes to sensory neuron pathology in diabetic neuropathy. Although Schwann cells (SCs) also undergo substantial degeneration in diabetic neuropathy, the effect of hyperglycemia on the SC mitochondrial proteome and mitochondrial function has not been examined. Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantify the temporal effect of hyperglycemia on the mitochondrial proteome of primary SCs isolated from neonatal rats. Of 317 mitochondrial proteins identified, about 78% were quantified and detected at multiple time points. Pathway analysis indicated that proteins associated with mitochondrial dysfunction, oxidative phosphorylation, the TCA cycle, and detoxification were significantly increased in expression and over-represented. Assessing mitochondrial respiration in intact SCs indicated that hyperglycemia increased the overall rate of oxygen consumption but decreased the efficiency of coupled respiration. Although a glucose-dependent increase in superoxide production occurs in embryonic sensory neurons, hyperglycemia did not induce a substantial change in superoxide levels in SCs. This correlated with a 1.9-fold increase in Mn superoxide dismutase expression, which was confirmed by immunoblot and enzymatic activity assays. These data support that hyperglycemia alters mitochondrial respiration and can cause remodeling of the SC mitochondrial proteome independent of significant contributions from glucose-induced superoxide production.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pharmacology and Toxicology and Analytic Proteomics Laboratory, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Wittig I, Meyer B, Heide H, Steger M, Bleier L, Wumaier Z, Karas M, Schägger H. Assembly and oligomerization of human ATP synthase lacking mitochondrial subunits a and A6L. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1004-11. [PMID: 20188060 DOI: 10.1016/j.bbabio.2010.02.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 12/22/2022]
Abstract
Here we study ATP synthase from human rho0 (rho zero) cells by clear native electrophoresis (CNE or CN-PAGE) and show that ATP synthase is almost fully assembled in spite of the absence of subunits a and A6L. This identifies subunits a and A6L as two of the last subunits to complete the ATP synthase assembly. Minor amounts of dimeric and even tetrameric forms of the large assembly intermediate were preserved under the conditions of CNE, suggesting that it associated further into higher order structures in the mitochondrial membrane. This result was reminiscent to the reduced amounts of dimeric and tetrameric ATP synthase from yeast null mutants of subunits e and g detected by CNE. The dimer/oligomer-stabilizing effects of subunits e/g and a/A6L seem additive in human and yeast cells. The mature IF1 inhibitor was specifically bound to the dimeric/oligomeric forms of ATP synthase and not to the monomer. Conversely, nonprocessed pre-IF1 still containing the mitochondrial targeting sequence was selectively bound to the monomeric assembly intermediate in rho0 cells and not to the dimeric form. This supports previous suggestions that IF1 plays an important role in the dimerization/oligomerization of mammalian ATP synthase and in the regulation of mitochondrial structure and function.
Collapse
Affiliation(s)
- Ilka Wittig
- Molecular Bioenergetics Group, Medical School, Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Wittig I, Beckhaus T, Wumaier Z, Karas M, Schägger H. Mass estimation of native proteins by blue native electrophoresis: principles and practical hints. Mol Cell Proteomics 2010; 9:2149-61. [PMID: 20173216 DOI: 10.1074/mcp.m900526-mcp200] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blue native electrophoresis is one of the most popular techniques for mass estimation of native membrane proteins, but the use of non-optimal mass markers and acrylamide gels can compromise accuracy and reliability of the results. We present short protocols taking 10-30 min to prepare optimal sets of membrane protein markers from chicken, rat, mouse, and bovine heart. Especially heart materials from local supermarkets or butcher's shops, e.g. chicken or bovine heart, are ideal sources of high mass membrane protein standards. Considerable discrepancies between the migration behavior of membrane and soluble markers suggest using membrane protein markers for mass estimation of membrane proteins. Soluble standard proteins can be used, with some limitations, when soluble proteins are the focus. Principles and general rules for the determination of mass and oligomeric state of native membrane and soluble proteins are elaborated, and potential pitfalls are discussed.
Collapse
Affiliation(s)
- Ilka Wittig
- Molecular Bioenergetics, Medical School, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
69
|
|
70
|
Kagawa Y. ATP synthase: from single molecule to human bioenergetics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:667-93. [PMID: 20689227 PMCID: PMC3066536 DOI: 10.2183/pjab.86.667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/30/2010] [Indexed: 05/20/2023]
Abstract
ATP synthase (F(o)F(1)) consists of an ATP-driven motor (F(1)) and a H(+)-driven motor (F(o)), which rotate in opposite directions. F(o)F(1) reconstituted into a lipid membrane is capable of ATP synthesis driven by H(+) flux. As the basic structures of F(1) (alpha(3)beta(3)gammadeltaepsilon) and F(o) (ab(2)c(10)) are ubiquitous, stable thermophilic F(o)F(1) (TF(o)F(1)) has been used to elucidate molecular mechanisms, while human F(1)F(o) (HF(1)F(o)) has been used to study biomedical significance. Among F(1)s, only thermophilic F(1) (TF(1)) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TF(o)F(1), HF(o)F(1) is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HF(o)F(1) were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HF(o)F(1) is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity.
Collapse
|
71
|
Kane LA, Youngman MJ, Jensen RE, Van Eyk JE. Phosphorylation of the F(1)F(o) ATP synthase beta subunit: functional and structural consequences assessed in a model system. Circ Res 2009; 106:504-13. [PMID: 20035080 DOI: 10.1161/circresaha.109.214155] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RATIONALE We previously discovered several phosphorylations to the beta subunit of the mitochondrial F(1)F(o) ATP synthase complex in isolated rabbit myocytes on adenosine treatment, an agent that induces cardioprotection. The role of these phosphorylations is unknown. OBJECTIVE The present study focuses on the functional consequences of phosphorylation of the ATP synthase complex beta subunit by generating nonphosphorylatable and phosphomimetic analogs in a model system, Saccharomyces cerevisiae. METHODS AND RESULTS The 4 amino acid residues with homology in yeast (T58, S213, T262, and T318) were studied with respect to growth, complex and supercomplex formation, and enzymatic activity (ATPase rate). The most striking mutant was the T262 site, for which the phosphomimetic (T262E) abolished activity, whereas the nonphosphorylatable strain (T262A) had an ATPase rate equivalent to wild type. Although T262E, like all of the beta subunit mutants, was able to form the intact complex (F(1)F(o)), this strain lacked a free F(1) component found in wild-type and had a corresponding increase of lower-molecular-weight forms of the protein, indicating an assembly/stability defect. In addition, the ATPase activity was reduced but not abolished with the phosphomimetic mutation at T58, a site that altered the formation/maintenance of dimers of the F(1)F(o) ATP synthase complex. CONCLUSIONS Taken together, these data show that pseudophosphorylation of specific amino acid residues can have separate and distinctive effects on the F(1)F(o) ATP synthase complex, suggesting the possibility that several of the phosphorylations observed in the rabbit heart can have structural and functional consequences to the F(1)F(o) ATP synthase complex.
Collapse
Affiliation(s)
- Lesley A Kane
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
72
|
Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G. Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 2009; 284:33982-8. [PMID: 19801635 PMCID: PMC2797168 DOI: 10.1074/jbc.m109.020115] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/02/2009] [Indexed: 01/02/2023] Open
Abstract
Blue native gel electrophoresis purification and immunoprecipitation of F(0)F(1)-ATP synthase from bovine heart mitochondria revealed that cyclophilin (CyP) D associates to the complex. Treatment of intact mitochondria with the membrane-permeable bifunctional reagent dimethyl 3,3-dithiobis-propionimidate (DTBP) cross-linked CyPD with the lateral stalk of ATP synthase, whereas no interactions with F(1) sector subunits, the ATP synthase natural inhibitor protein IF1, and the ATP/ADP carrier were observed. The ATP synthase-CyPD interactions have functional consequences on enzyme catalysis and are modulated by phosphate (increased CyPD binding and decreased enzyme activity) and cyclosporin (Cs) A (decreased CyPD binding and increased enzyme activity). Treatment of MgATP submitochondrial particles or intact mitochondria with CsA displaced CyPD from membranes and activated both hydrolysis and synthesis of ATP sustained by the enzyme. No effect of CsA was detected in CyPD-null mitochondria, which displayed a higher specific activity of the ATP synthase than wild-type mitochondria. Modulation by CyPD binding appears to be independent of IF1, whose association to ATP synthase was not affected by CsA treatment. These findings demonstrate that CyPD association to the lateral stalk of ATP synthase modulates the activity of the complex.
Collapse
Affiliation(s)
- Valentina Giorgio
- From the Department of Biomedical Sciences and the Consiglio Nazionale delle Ricerche Institute of Neuroscience and
| | - Elena Bisetto
- the Department of Biomedical Sciences, University of Udine, I-33100 Udine, Italy, and
| | - Maria Eugenia Soriano
- From the Department of Biomedical Sciences and the Consiglio Nazionale delle Ricerche Institute of Neuroscience and
| | - Federica Dabbeni-Sala
- the Department of Pharmacology and Anesthesiology, University of Padova, I-35121 Padova, Italy
| | - Emy Basso
- From the Department of Biomedical Sciences and the Consiglio Nazionale delle Ricerche Institute of Neuroscience and
| | - Valeria Petronilli
- From the Department of Biomedical Sciences and the Consiglio Nazionale delle Ricerche Institute of Neuroscience and
| | - Michael A. Forte
- the Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Paolo Bernardi
- From the Department of Biomedical Sciences and the Consiglio Nazionale delle Ricerche Institute of Neuroscience and
| | - Giovanna Lippe
- the Department of Biomedical Sciences, University of Udine, I-33100 Udine, Italy, and
| |
Collapse
|
73
|
Wittig I, Schägger H. Native electrophoretic techniques to identify proteinâprotein interactions. Proteomics 2009; 9:5214-23. [DOI: 10.1002/pmic.200900151] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
74
|
Li X, Xie C, Jin Q, Liu M, He Q, Cao R, Lin Y, Li J, Li Y, Chen P, Liang S. Proteomic screen for multiprotein complexes in synaptic plasma membrane from rat hippocampus by blue native gel electrophoresis and tandem mass spectrometry. J Proteome Res 2009; 8:3475-86. [PMID: 19432478 DOI: 10.1021/pr900101d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neuronal synapses are specialized sites for information exchange between neurons. Many diseases, such as addiction and mood disorders, likely result from altered expression of synaptic proteins, or altered formation of synaptic complexes involved in neurotransmission or neuroplasticity. A detailed description of native multiprotein complexes in synaptic plasma membranes (PM) is therefore essential for understanding biological mechanisms and disease processes. For the first time in this study, two-dimensional Blue Native/SDS-PAGE electrophoresis, combined with tandem mass spectrometry, was used to screen multiprotein complexes in synaptic plasma membranes from rat hippocampus. As a result, 514 unique proteins were identified, of which 36% were integral membrane proteins. In addition, 19 potentially novel and known heterooligomeric multiprotein complexes were found, such as the SNARE and ATPase complexes. A potentially novel protein complex, involving syntaxin, synapsin I and Na+/K+ ATPase alpha-1, was further confirmed by co-immunoprecipitation and immunofluorescence staining. As demonstrated here, Blue Native-PAGE is a powerful tool for the separation of hydrophobic membrane proteins. The combination of Blue Native-PAGE and mass spectrometry could systematically identify multiprotein complexes.
Collapse
Affiliation(s)
- Xuanwen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Committee, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Since the early studies on the resolution and reconstitution of the oxidative phosphorylation system from animal mitochondria, coupling factor B was recognized as an essential component of the machinery responsible for energy-driven ATP synthesis. At the phenomenological level, factor B was agreed to lie at the interface of energy transfer between the respiratory chain and the ATP synthase complex. However, biochemical characterization of the factor B polypeptide has proved difficult. It was not until 1990 that the N-terminal amino acid sequence of bovine mitochondrial factor B was reported, which followed, a decade later, by the report describing the amino acid sequence of full-length human factor B and its functional characterization. The present review summarizes the recent advances in structure-functional studies of factor B, including its recently determined crystal structure at 0.96 A resolution. Ectopic expression of human factor B in cultured animal cells has unexpectedly revealed its role in shaping mitochondrial morphology. The supramolecular assembly of ATP synthase as dimer ribbons at highly curved apices of the mitochondrial cristae was recently suggested to optimize ATP synthesis under proton-limited conditions. We propose that the binding of the ATP synthase dimers with factor B tetramers could be a means to enhance the efficiency of the terminal step of oxidative phosphorylation in animal mitochondria.
Collapse
|
76
|
Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK. A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet 2009; 5:e1000590. [PMID: 19680543 PMCID: PMC2721412 DOI: 10.1371/journal.pgen.1000590] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022] Open
Abstract
The human oxidative phosphorylation (OxPhos) system consists of approximately 90 proteins encoded by nuclear and mitochondrial genomes and serves as the primary cellular pathway for ATP biosynthesis. While the core protein machinery for OxPhos is well characterized, many of its assembly, maturation, and regulatory factors remain unknown. We exploited the tight transcriptional control of the genes encoding the core OxPhos machinery to identify novel regulators. We developed a computational procedure, which we call expression screening, which integrates information from thousands of microarray data sets in a principled manner to identify genes that are consistently co-expressed with a target pathway across biological contexts. We applied expression screening to predict dozens of novel regulators of OxPhos. For two candidate genes, CHCHD2 and SLIRP, we show that silencing with RNAi results in destabilization of OxPhos complexes and a marked loss of OxPhos enzymatic activity. Moreover, we show that SLIRP plays an essential role in maintaining mitochondrial-localized mRNA transcripts that encode OxPhos protein subunits. Our findings provide a catalogue of potential novel OxPhos regulators that advance our understanding of the coordination between nuclear and mitochondrial genomes for the regulation of cellular energy metabolism. Respiratory chain disorders represent the largest class of inborn errors in metabolism affecting 1 in every 5,000 individuals. Biochemically, these disorders are characterized by a breakdown in the cellular process called oxidative phosphorylation (OxPhos), which is responsible for generating most of the cell's energy in the form of ATP. Sadly, for approximately 50% of patients diagnosed, we do not know the molecular cause behind these disorders. One possible reason for our limited diagnostic capability is that these patients harbor a mutation in a gene that is not known to act in the OxPhos pathway. We therefore designed a computational strategy called expression screening that integrates publicly available genome-wide gene expression data to predict new genes that may play a role in OxPhos biology. We identified several uncharacterized genes that were strongly predicted by our procedure to function in the OxPhos pathway and experimentally validated two genes, SLIRP and CHCHD2, as being essential for OxPhos function. These genes, as well as others predicted by expression screening to regulate OxPhos, represent a valuable resource for identifying the molecular underpinnings of respiratory chain disorders.
Collapse
Affiliation(s)
- Joshua M. Baughman
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roland Nilsson
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vishal M. Gohil
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel H. Arlow
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zareen Gauhar
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vamsi K. Mootha
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
77
|
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD. The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog 2009; 5:e1000436. [PMID: 19436713 PMCID: PMC2674945 DOI: 10.1371/journal.ppat.1000436] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/20/2009] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought. African trypanosomes (Trypanosoma brucei and related subspecies) are unicellular parasites that cause the devastating disease of African sleeping sickness in man and nagana in livestock. Both of these diseases are lethal, killing thousands of people each year and causing major economical complications in the developing world, thus affecting the lives of millions. Furthermore, available drugs are obsolete, difficult to administer and have many undesirable side-effects. Therefore, there is a reinvigorated effort to design new drugs against these parasites. From the pharmacological perspective, unique metabolic processes and protein complexes with singular structure, composition and essential function are of particular interest. One such remarkable protein complex is the mitochondrial F0F1-ATP synthase/ATPase. Here we show that F0F1-ATP synthase complex is essential for viability of procyclic T. brucei cells and it possesses unique and novel subunits. The three F0F1-ATP synthase subunits that were tested were shown to be crucial for the structural integrity of the F0F1-ATP synthase complex and its activities. The compositional and functional characterization of the F0F1-ATP synthase in T. brucei represents a major step towards deciphering the unique and essential properties of the respiratory chain of both an early diverged eukaryote and a lethal human parasite.
Collapse
Affiliation(s)
- Alena Zíková
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Rachel A. Dalley
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Aswini K. Panigrahi
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
78
|
Lippe G, Bisetto E, Comelli M, Contessi S, Di Pancrazio F, Mavelli I. Mitochondrial and cell-surface F0F1ATPsynthase in innate and acquired cardioprotection. J Bioenerg Biomembr 2009; 41:151-7. [PMID: 19387805 DOI: 10.1007/s10863-009-9208-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F(0)F(1)ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F(0)F(1)ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F(0)F(1)ATPsynthase regulation by the inhibitory protein IF(1) in heart preconditioning strategies; ii) the structure and function of mitochondrial F(0)F(1)ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F(0)F(1) ATP synthase in search for possible actors of its regulation, such as IF(1) and calmodulin, at cell surface.
Collapse
Affiliation(s)
- Giovanna Lippe
- Department of Biomedical Sciences and Technologies and M.A.T.I. Centre of Excellence, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | | | | | | | | | | |
Collapse
|
79
|
The fully-active and structurally-stable form of the mitochondrial ATP synthase of Polytomella sp. is dimeric. J Bioenerg Biomembr 2009; 41:1-13. [DOI: 10.1007/s10863-009-9203-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 02/05/2009] [Indexed: 11/30/2022]
|
80
|
Wumaier Z, Nübel E, Wittig I, Schägger H. Chapter 8 Two-Dimensional Native Electrophoresis for Fluorescent and Functional Assays of Mitochondrial Complexes. Methods Enzymol 2009; 456:153-68. [DOI: 10.1016/s0076-6879(08)04408-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
81
|
|
82
|
Bisetto E, Picotti P, Giorgio V, Alverdi V, Mavelli I, Lippe G. Functional and stoichiometric analysis of subunit e in bovine heart mitochondrial F(0)F(1)ATP synthase. J Bioenerg Biomembr 2008; 40:257-67. [PMID: 18958608 DOI: 10.1007/s10863-008-9183-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/16/2008] [Indexed: 12/21/2022]
Abstract
The role of the integral inner membrane subunit e in self-association of F(0)F(1)ATP synthase from bovine heart mitochondria was analyzed by in situ limited proteolysis, blue native PAGE/iterative SDS-PAGE, and LC-MS/MS. Selective degradation of subunit e, without disrupting membrane integrity or ATPase capacity, altered the oligomeric distribution of F(0)F(1)ATP synthase, by eliminating oligomers and reducing dimers in favor of monomers. The stoichiometry of subunit e was determined by a quantitative MS-based proteomics approach, using synthetic isotope-labelled reference peptides IAQL*EEVK, VYGVGSL*ALYEK, and ELAEAQEDTIL*K to quantify the b, gamma and e subunits, respectively. Accuracy of the method was demonstrated by confirming the 1:1 stoichiometry of subunits gamma and b. Altogether, the results indicate that the integrity of a unique copy of subunit e is essential for self-association of mammalian F(0)F(1)ATP synthase.
Collapse
Affiliation(s)
- Elena Bisetto
- Department of Biomedical Sciences and Technologies and M.A.T.I. Centre of Excellence, University of Udine, Udine, Italy
| | | | | | | | | | | |
Collapse
|
83
|
Wittig I, Schägger H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 2008; 8:3974-90. [DOI: 10.1002/pmic.200800017] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
84
|
Galkin A, Meyer B, Wittig I, Karas M, Schägger H, Vinogradov A, Brandt U. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J Biol Chem 2008; 283:20907-13. [PMID: 18502755 PMCID: PMC2475694 DOI: 10.1074/jbc.m803190200] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/23/2008] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide:oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.
Collapse
Affiliation(s)
- Alexander Galkin
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Björn Meyer
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Ilka Wittig
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Michael Karas
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Hermann Schägger
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Andrei Vinogradov
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Cluster of
Excellence Frankfurt “Macromolecular complexes,” Medical School,
Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590
Frankfurt am Main, Germany, the Institut
für Pharmazeutische Chemie, Cluster of Excellence Frankfurt
“Macromolecular complexes,” Johann Wolfgang
Goethe-Universität, Max-von-Laue Str.-9, D-60438 Frankfurt am Main,
Germany, and the Department of Biochemistry,
School of Biology, Moscow State University, Moscow 119992, Russian
Federation
| |
Collapse
|
85
|
Wittig I, Schägger H. Structural organization of mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:592-8. [DOI: 10.1016/j.bbabio.2008.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 01/02/2023]
|
86
|
Blue native electrophoresis study on lipases. Anal Biochem 2008; 377:270-1. [DOI: 10.1016/j.ab.2008.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/20/2022]
|
87
|
Wittig I, Velours J, Stuart R, Schägger H. Characterization of domain interfaces in monomeric and dimeric ATP synthase. Mol Cell Proteomics 2008; 7:995-1004. [PMID: 18245802 DOI: 10.1074/mcp.m700465-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
We disassembled monomeric and dimeric yeast ATP synthase under mild conditions to identify labile proteins and transiently stable subcomplexes that had not been observed before. Specific removal of subunits alpha, beta, oligomycin sensitivity conferring protein (OSCP), and h disrupted the ATP synthase at the gamma-alpha(3)beta(3) rotor-stator interface. Loss of two F(1)-parts from dimeric ATP synthase led to the isolation of a dimeric subcomplex containing membrane and peripheral stalk proteins thus identifying the membrane/peripheral stalk sectors immediately as the dimerizing parts of ATP synthase. Almost all subunit a was found associated with a ring of 10 c-subunits in two-dimensional blue native/SDS gels. We therefore postulate that c10a1-complex is a stable structure in resting ATP synthase until the entry of protons induces a breaking of interactions and stepwise rotation of the c-ring relative to the a-subunit in the catalytic mechanism. Dimeric subunit a was identified in SDS gels in association with two c10-rings suggesting that a c10a2c10-complex may constitute an important part of the monomer-monomer interface in dimeric ATP synthase that seems to be further tightened by subunits b, i, e, g, and h. In contrast to the monomer-monomer interface, the interface between dimers in higher oligomeric structures remains largely unknown. However, we could show that the natural inhibitor protein Inh1 is not required for oligomerization.
Collapse
Affiliation(s)
- Ilka Wittig
- Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Cluster of Excellence "Macromolecular Complexes", Johann Wolfgang Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
88
|
Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 2008; 27:1154-60. [PMID: 18323778 DOI: 10.1038/emboj.2008.35] [Citation(s) in RCA: 510] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/11/2008] [Indexed: 11/08/2022] Open
Abstract
ATP synthase converts the electrochemical potential at the inner mitochondrial membrane into chemical energy, producing the ATP that powers the cell. Using electron cryo-tomography we show that the ATP synthase of mammalian mitochondria is arranged in long approximately 1-microm rows of dimeric supercomplexes, located at the apex of cristae membranes. The dimer ribbons enforce a strong local curvature on the membrane with a 17-nm outer radius. Calculations of the electrostatic field strength indicate a significant increase in charge density, and thus in the local pH gradient of approximately 0.5 units in regions of high membrane curvature. We conclude that the mitochondrial cristae act as proton traps, and that the proton sink of the ATP synthase at the apex of the compartment favours effective ATP synthesis under proton-limited conditions. We propose that the mitochondrial ATP synthase organises itself into dimer ribbons to optimise its own performance.
Collapse
|
89
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|