51
|
Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C. The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab 2014; 19:357-72. [PMID: 24561263 DOI: 10.1016/j.cmet.2014.01.010] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria fulfill central functions in bioenergetics, metabolism, and apoptosis. They import more than 1,000 different proteins from the cytosol. It had been assumed that the protein import machinery is constitutively active and not subject to detailed regulation. However, recent studies indicate that mitochondrial protein import is regulated at multiple levels connected to cellular metabolism, signaling, stress, and pathogenesis of diseases. Here, we discuss the molecular mechanisms of import regulation and their implications for mitochondrial homeostasis. The protein import activity can function as a sensor of mitochondrial fitness and provides a direct means of regulating biogenesis, composition, and turnover of the organelle.
Collapse
Affiliation(s)
- Angelika B Harbauer
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Trinationales Graduiertenkolleg 1478, Universität Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - René P Zahedi
- Leibniz-Institute for Analytical Sciences-ISAS-e.V., 44139 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institute for Analytical Sciences-ISAS-e.V., 44139 Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
52
|
Cannon JR, Cammarata M, Robotham SA, Cotham VC, Shaw JB, Fellers RT, Early BP, Thomas PM, Kelleher NL, Brodbelt JS. Ultraviolet photodissociation for characterization of whole proteins on a chromatographic time scale. Anal Chem 2014; 86:2185-92. [PMID: 24447299 PMCID: PMC3958131 DOI: 10.1021/ac403859a] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 02/01/2023]
Abstract
Intact protein characterization using mass spectrometry thus far has been achieved at the cost of throughput. Presented here is the application of 193 nm ultraviolet photodissociation (UVPD) for top down identification and characterization of proteins in complex mixtures in an online fashion. Liquid chromatographic separation at the intact protein level coupled with fast UVPD and high-resolution detection resulted in confident identification of 46 unique sequences compared to 44 using HCD from prepared Escherichia coli ribosomes. Importantly, nearly all proteins identified in both the UVPD and optimized HCD analyses demonstrated a substantial increase in confidence in identification (as defined by an average decrease in E value of ∼40 orders of magnitude) due to the higher number of matched fragment ions. Also shown is the potential for high-throughput characterization of intact proteins via liquid chromatography (LC)-UVPD-MS of molecular weight-based fractions of a Saccharomyces cerevisiae lysate. In total, protein products from 215 genes were identified and found in 292 distinct proteoforms, 168 of which contained some type of post-translational modification.
Collapse
Affiliation(s)
- Joe R. Cannon
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Michael
B. Cammarata
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Scott A. Robotham
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Victoria C. Cotham
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Jared B. Shaw
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Ryan T. Fellers
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Bryan P. Early
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul M. Thomas
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Jennifer S. Brodbelt
- Department
of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| |
Collapse
|
53
|
Abstract
Despite the simplicity of the yeast Saccharomyces cerevisiae, its basic cellular machinery tremendously mirrors that of higher eukaryotic counterparts. Thus, this unicellular organism turned out to be an invaluable model system to study the countless mechanisms that govern life of the cell. Recently, it has also enabled the deciphering of signalling pathways that control flux of mitochondrial proteins to the organelle according to metabolic requirements. For decades mitochondria were considered autonomous organelles that are only partially incorporated into cellular signalling networks. Consequently, only little has been known about the role of reversible phosphorylation as a meaningful mechanism that orchestrates mitochondrial biology accordingly to cellular needs. Therefore, research in this direction has been vastly neglected. However, findings over the past few years have changed this view and new exciting fields in mitochondrial biology have emerged. Here, we summarize recent discoveries in the yeast model system that point towards a vital role of reversible phosphorylation in regulation of mitochondrial protein import.
Collapse
Affiliation(s)
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ ; BIOSS Centre for Biological Signalling Studies
| |
Collapse
|
54
|
González-Mariscal I, García-Testón E, Padilla S, Martín-Montalvo A, Pomares-Viciana T, Vazquez-Fonseca L, Gandolfo-Domínguez P, Santos-Ocaña C. Regulation of coenzyme Q biosynthesis in yeast: A new complex in the block. IUBMB Life 2014; 66:63-70. [DOI: 10.1002/iub.1243] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Isabel González-Mariscal
- Centro Andaluz de Biología del Desarrollo; Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III; Sevilla Spain
| | - Elena García-Testón
- Centro Andaluz de Biología del Desarrollo; Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III; Sevilla Spain
| | - Sergio Padilla
- Sanford Children's Health Research Center; Sanford Research USD; Sioux Falls SD USA
| | - Alejandro Martín-Montalvo
- Centro Andaluz de Biología del Desarrollo; Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III; Sevilla Spain
| | - Teresa Pomares-Viciana
- Centro Andaluz de Biología del Desarrollo; Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III; Sevilla Spain
| | - Luis Vazquez-Fonseca
- Centro Andaluz de Biología del Desarrollo; Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III; Sevilla Spain
| | - Pablo Gandolfo-Domínguez
- Centro Andaluz de Biología del Desarrollo; Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III; Sevilla Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo; Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III; Sevilla Spain
| |
Collapse
|
55
|
Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2014; 111:1473-8. [PMID: 24474773 DOI: 10.1073/pnas.1312399111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
Collapse
|
56
|
Park J, McCormick SP, Chakrabarti M, Lindahl PA. Insights into the iron-ome and manganese-ome of Δmtm1 Saccharomyces cerevisiae mitochondria. Metallomics 2013; 5:656-72. [PMID: 23598994 DOI: 10.1039/c3mt00041a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biophysical spectroscopies and LC-ICP-MS were used to evaluate the iron-ome and manganese-ome of mitochondria from Δmtm1 yeast cells. Deleting the mitochondrial carrier gene MTM1 causes Fe to accumulate in mitochondria and Mn superoxide dismutase (SOD2) activity to decline. One explanation for this is that some accumulated Fe misincorporates into apo-Sod2p. Mössbauer spectroscopy revealed that most of the accumulated Fe was Fe(III) nanoparticles which are unlikely to misincorporate into apo-Sod2p. Under anaerobic conditions, Fe did not accumulate yet SOD2 activity remained low, suggesting that the two phenomena are independent. Mn concentrations were two-fold higher in Δmtm1 mitochondria than in WT mitochondria. Soluble extracts from such samples were subjected to size-exclusion LC and fractions were analyzed with an on-line ICP-MS. Two major Mn peaks were observed, one due to MnSod2p and the other to a Mn species with a mass of 2-3 kDa (called Mn2-3). Mn2-3 may deliver Mn into apo-Sod2p. Most Mn in WT mitochondria was associated with MnSod2p, whereas most Mn in Δmtm1 mitochondria was associated with Mn2-3. The [Mn2-3] increased in cells grown on high MnCl2 while the MnSod2p concentration remained unchanged. Corresponding Fe traces showed numerous peaks, including a complex of ~3 kDa which may be the form of Fe that misincorporates, and an Fe peak with the molecular mass of Sod2p that may correspond to FeSod2p. The intensity of this peak suggests that deleting MTM1 probably diminishes SOD2 activity by some means other than Fe misincorporation. A portion of Sod2p in Δmtm1 mitochondria might be unfolded or immature. Mtm1p may import a species required for apo-Sod2p maturation, activity or stability.
Collapse
Affiliation(s)
- Jinkyu Park
- Texas A&M University, Department of Chemistry, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
57
|
Lotz C, Lin AJ, Black CM, Zhang J, Lau E, Deng N, Wang Y, Zong NC, Choi JH, Xu T, Liem DA, Korge P, Weiss JN, Hermjakob H, Yates JR, Apweiler R, Ping P. Characterization, design, and function of the mitochondrial proteome: from organs to organisms. J Proteome Res 2013; 13:433-46. [PMID: 24070373 DOI: 10.1021/pr400539j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are a common energy source for organs and organisms; their diverse functions are specialized according to the unique phenotypes of their hosting environment. Perturbation of mitochondrial homeostasis accompanies significant pathological phenotypes. However, the connections between mitochondrial proteome properties and function remain to be experimentally established on a systematic level. This uncertainty impedes the contextualization and translation of proteomic data to the molecular derivations of mitochondrial diseases. We present a collection of mitochondrial features and functions from four model systems, including two cardiac mitochondrial proteomes from distinct genomes (human and mouse), two unique organ mitochondrial proteomes from identical genetic codons (mouse heart and mouse liver), as well as a relevant metazoan out-group (drosophila). The data, composed of mitochondrial protein abundance and their biochemical activities, capture the core functionalities of these mitochondria. This investigation allowed us to redefine the core mitochondrial proteome from organs and organisms, as well as the relevant contributions from genetic information and hosting milieu. Our study has identified significant enrichment of disease-associated genes and their products. Furthermore, correlational analyses suggest that mitochondrial proteome design is primarily driven by cellular environment. Taken together, these results connect proteome feature with mitochondrial function, providing a prospective resource for mitochondrial pathophysiology and developing novel therapeutic targets in medicine.
Collapse
Affiliation(s)
- Christopher Lotz
- Departments of Physiology and Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA , 675 Charles E. Young Drive, MRL Building, Suite 1609, Los Angeles, California 90095, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease. EMBO J 2013; 32:3041-54. [PMID: 24129513 PMCID: PMC3844953 DOI: 10.1038/emboj.2013.228] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/10/2013] [Indexed: 12/15/2022] Open
Abstract
Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.
Collapse
|
59
|
Subba P, Barua P, Kumar R, Datta A, Soni KK, Chakraborty S, Chakraborty N. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 2013; 12:5025-47. [PMID: 24083463 DOI: 10.1021/pr400628j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.
Collapse
Affiliation(s)
- Pratigya Subba
- National Institute of Plant Genome Research , Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
60
|
Gerbeth C, Mikropoulou D, Meisinger C. From inventory to functional mechanisms. FEBS J 2013; 280:4933-42. [DOI: 10.1111/febs.12445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 11/27/2022]
|
61
|
Martín-Montalvo A, González-Mariscal I, Pomares-Viciana T, Padilla-López S, Ballesteros M, Vazquez-Fonseca L, Gandolfo P, Brautigan DL, Navas P, Santos-Ocaña C. The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in yeast. J Biol Chem 2013; 288:28126-37. [PMID: 23940037 DOI: 10.1074/jbc.m113.474494] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study of the components of mitochondrial metabolism has potential benefits for health span and lifespan because the maintenance of efficient mitochondrial function and antioxidant capacity is associated with improved health and survival. In yeast, mitochondrial function requires the tight control of several metabolic processes such as coenzyme Q biosynthesis, assuring an appropriate energy supply and antioxidant functions. Many mitochondrial processes are regulated by phosphorylation cycles mediated by protein kinases and phosphatases. In this study, we determined that the mitochondrial phosphatase Ptc7p, a Ser/Thr phosphatase, was required to regulate coenzyme Q6 biosynthesis, which in turn activated aerobic metabolism and enhanced oxidative stress resistance. We showed that Ptc7p phosphatase specifically activated coenzyme Q6 biosynthesis through the dephosphorylation of the demethoxy-Q6 hydroxylase Coq7p. The current findings revealed that Ptc7p is a regulator of mitochondrial metabolism that is essential to maintain proper function of the mitochondria by regulating energy metabolism and oxidative stress resistance.
Collapse
Affiliation(s)
- Alejandro Martín-Montalvo
- From the Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, Sevilla 41013, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Havelund JF, Thelen JJ, Møller IM. Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells. FRONTIERS IN PLANT SCIENCE 2013; 4:51. [PMID: 23494127 PMCID: PMC3595712 DOI: 10.3389/fpls.2013.00051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/26/2013] [Indexed: 05/24/2023]
Abstract
Mitochondria fulfill some basic roles in all plant cells. They supply the cell with energy in the form of ATP and reducing equivalents [NAD(P)H] and they provide the cell with intermediates for a range of biosynthetic pathways. In addition to this, mitochondria contribute to a number of specialized functions depending on the tissue and cell type, as well as environmental conditions. We will here review the biochemistry and proteomics of mitochondria from non-green cells and organs, which differ from those of photosynthetic organs in a number of respects. We will briefly cover purification of mitochondria and general biochemical properties such as oxidative phosphorylation. We will then mention a few adaptive properties in response to water stress, seed maturation and germination, and the ability to function under hypoxic conditions. The discussion will mainly focus on Arabidopsis cell cultures, etiolated germinating rice seedlings and potato tubers as model plants. It will cover the general proteome as well as the posttranslational modification protein phosphorylation. To date 64 phosphorylated mitochondrial proteins with a total of 103 phosphorylation sites have been identified.
Collapse
Affiliation(s)
- Jesper F. Havelund
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus UniversitySlagelse, Denmark
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri-ColumbiaColumbia, MO, USA
| | - Ian M. Møller
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus UniversitySlagelse, Denmark
| |
Collapse
|
63
|
Techritz S, Lützkendorf S, Bazant E, Becker S, Klose J, Schuelke M. Quantitative and qualitative 2D electrophoretic analysis of differentially expressed mitochondrial proteins from five mouse organs. Proteomics 2012; 13:179-95. [DOI: 10.1002/pmic.201100539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 10/02/2012] [Accepted: 10/29/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Sandra Techritz
- Department of Neuropediatrics; Charité University Medical Center; Berlin Germany
| | - Susanne Lützkendorf
- Department of Neuropediatrics; Charité University Medical Center; Berlin Germany
- NeuroCure Clinical Research Center; Charité University Medical Center; Berlin Germany
| | - Esther Bazant
- Department of Neuropediatrics; Charité University Medical Center; Berlin Germany
| | - Silke Becker
- Institute of Human Genetics; Charité University Medical Center; Berlin Germany
| | - Joachim Klose
- Institute of Human Genetics; Charité University Medical Center; Berlin Germany
| | - Markus Schuelke
- Department of Neuropediatrics; Charité University Medical Center; Berlin Germany
- NeuroCure Clinical Research Center; Charité University Medical Center; Berlin Germany
| |
Collapse
|
64
|
Levy ED, Michnick SW, Landry CR. Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information. Philos Trans R Soc Lond B Biol Sci 2012; 367:2594-606. [PMID: 22889910 DOI: 10.1098/rstb.2012.0078] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In eukaryotic cells, protein phosphorylation is an important and widespread mechanism used to regulate protein function. Yet, of the thousands of phosphosites identified to date, only a few hundred at best have a characterized function. It was recently shown that these functional sites are significantly more conserved than phosphosites of unknown function, stressing the importance of considering evolutionary conservation in assessing the global functional landscape of phosphosites. This leads us to review studies that examined the impact of phosphorylation on evolutionary conservation. While all these studies have shown that conservation is greater among phosphorylated sites compared with non-phosphorylated ones, the magnitude of this difference varies greatly. Further, not all studies have considered key factors that may influence the rate of phosphosite evolution. Such key factors are their localization in ordered or disordered regions, their stoichiometry or the abundance of their corresponding protein. Here we take into account all of these factors simultaneously, which reveals remarkable evolutionary patterns. First, while it is well established that protein conservation increases with abundance, we show that phosphosites partly follow an opposite trend. More precisely, Saccharomyces cerevisiae phosphosites present among abundant proteins are 1.5 times more likely to diverge in the closely related species Saccharomyces bayanus when compared with phosphosites present in the 5 per cent least abundant proteins. Second, we show that conservation is coupled to stoichiometry, whereby sites frequently phosphorylated are more conserved than those rarely phosphorylated. Finally, we provide a model of functional and noisy or 'accidental' phosphorylation that explains these observations.
Collapse
Affiliation(s)
- Emmanuel D Levy
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada.
| | | | | |
Collapse
|
65
|
Kaltwaßer B, Schulenborg T, Beck F, Klotz M, Schäfer KH, Schmitt M, Sickmann A, Friauf E. Developmental changes of the protein repertoire in the rat auditory brainstem: a comparative proteomics approach in the superior olivary complex and the inferior colliculus with DIGE and iTRAQ. J Proteomics 2012. [PMID: 23201114 DOI: 10.1016/j.jprot.2012.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein profiles of developing neural circuits undergo manifold changes. The aim of this proteomic analysis was to quantify postnatal changes in two auditory brainstem areas in a comparative approach. Protein samples from the inferior colliculus (IC) and the superior olivary complex (SOC) were obtained from neonatal (P4) and young adult (P60) rats. The cytosolic fractions of both areas were examined by 2-D DIGE, and the plasma membrane-enriched fraction of the IC was analyzed via iTRAQ. iTRAQ showed a regulation in 34% of the quantified proteins. DIGE revealed 12% regulated spots in both the SOC and IC and, thus, numeric congruency. Although regulation in KEGG pathways displayed a similar pattern in both areas, only 13 of 71 regulated DIGE proteins were regulated in common, implying major area-specific differences. 89% of regulated glycolysis/gluconeogenesis and citrate cycle proteins were up-regulated in the SOC or IC, suggesting a higher energy demand in adulthood. Seventeen cytoskeleton proteins were regulated, consistent with complex morphological reorganization between P4 and P60. Fourteen were uniquely regulated in the SOC, providing further evidence for area-specific differences. Altogether, we provide the first elaborate catalog of proteins involved in auditory brainstem development, several of them possibly of particular developmental relevance.
Collapse
Affiliation(s)
- Bernd Kaltwaßer
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Ogura M, Yamaki J, Homma M, Homma Y. Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components. Biochem J 2012; 447:281-9. [PMID: 22823520 PMCID: PMC3459221 DOI: 10.1042/bj20120509] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/17/2012] [Accepted: 07/24/2012] [Indexed: 12/26/2022]
Abstract
Mitochondrial protein tyrosine phosphorylation is an important mechanism for the modulation of mitochondrial functions. In the present study, we have identified novel substrates of c-Src in mitochondria and investigated their function in the regulation of oxidative phosphorylation. The Src family kinase inhibitor PP2 {amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4d] pyrimidine} exhibits significant reduction of respiration. Similar results were obtained from cells expressing kinase-dead c-Src, which harbours a mitochondrial-targeting sequence. Phosphorylation-site analysis selects c-Src targets, including NDUFV2 (NADH dehydrogenase [ubiquinone] flavoprotein 2) at Tyr(193) of respiratory complex I and SDHA (succinate dehydrogenase A) at Tyr(215) of complex II. The phosphorylation of these sites by c-Src is supported by an in vivo assay using cells expressing their phosphorylation-defective mutants. Comparison of cells expressing wild-type proteins and their mutants reveals that NDUFV2 phosphorylation is required for NADH dehydrogenase activity, affecting respiration activity and cellular ATP content. SDHA phosphorylation shows no effect on enzyme activity, but perturbed electron transfer, which induces reactive oxygen species. Loss of viability is observed in T98G cells and the primary neurons expressing these mutants. These results suggest that mitochondrial c-Src regulates the oxidative phosphorylation system by phosphorylating respiratory components and that c-Src activity is essential for cell viability.
Collapse
Key Words
- cell death
- energy metabolism
- mitochondrion
- src
- tyrosine kinase
- reactive oxygen species (ros)
- ant, adenine nucleotide translocase
- bn, blue native
- ca, constitutive-active
- cox, cytochrome c oxidase
- csk, c-terminal src kinase
- ddm, n-dodecyl-β-d-maltoside
- 2-de, two-dimensional page
- he, hydroethidine
- hek, human embryonic kidney
- ipg, immobilized ph gradient
- kd, kinase-dead
- ldh, lactate dehydrogenase
- mab, monoclonal antibody
- map2, microtubule-associated protein 2
- mts, mitochondria-targeting sequence
- nbt, nitro blue tetrazolium
- ndufb10, nadh dehydrogenase [ubiquinone] 1β subcomplex subunit 10
- ndufv2, nadh dehydrogenase [ubiquinone] flavoprotein 2
- pi, propidium iodide
- pms, phenazine methosulfate
- pp2, amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4d] pyrimidine
- ros, reactive oxygen species
- sdha, succinate dehydrogenase a
- sfk, src family kinase
- ucp, uncoupling protein
- vlcad, very long chain acyl-coa dehydrogenase
- wt, wild-type
Collapse
Affiliation(s)
- Masato Ogura
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Junko Yamaki
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Miwako K. Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
67
|
Cui Y, Zhao S, Wu Z, Dai P, Zhou B. Mitochondrial release of the NADH dehydrogenase Ndi1 induces apoptosis in yeast. Mol Biol Cell 2012; 23:4373-82. [PMID: 22993213 PMCID: PMC3496611 DOI: 10.1091/mbc.e12-04-0281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ndi1, the yeast homologue of caspase-independent apoptosis inducer AMID, turns out to be a general, as well as a potent, yeast apoptotic factor. This protein normally acts at the first step in respiration but, when stressed, cleaves its protective N-terminal, escapes from the mitochondria, and switches to become apoptotic. Saccharomyces cerevisiae NDI1 codes for the internal mitochondrial ubiquinone oxidoreductase, which transfers electrons from NADH to ubiquinone in the respiratory chain. Previously we found that Ndi1 is a yeast homologue of the protein apoptosis-inducing factor–homologous mitochondrion-associated inducer of death and displays potent proapoptotic activity. Here we show that S. cerevisiae NDI1 is involved in apoptosis induced by various stimuli tested, including H2O2, Mn, and acetate acid, independent of Z-VAD-fmk (a caspase inhibitor) inhibition. Although Ndi1 also participates in respiration, its proapoptotic property is separable from the ubiquinone oxidoreductase activity. During apoptosis, the N-terminal of Ndi1 is cleaved off in the mitochondria, and this activated form then escapes out to execute its apoptotic function. The N-terminal cleavage appears to be essential for the manifestation of the full apoptotic activity, as the uncleaved form of Ndi1 exhibits much less growth-inhibitory activity. Our results thus indicate an important role of Ndi1 in the switch of life and death fates in yeast: during normal growth, Ndi1 assimilates electrons to the electron transport chain and initiates the respiration process to make ATP, whereas under stresses, it cleaves the toxicity-sequestering N-terminal cap, is released from the mitochondria, and becomes a cell killer.
Collapse
Affiliation(s)
- Yixian Cui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
68
|
Lundquist PK, Davis JI, van Wijk KJ. ABC1K atypical kinases in plants: filling the organellar kinase void. TRENDS IN PLANT SCIENCE 2012; 17:546-55. [PMID: 22694836 PMCID: PMC3926664 DOI: 10.1016/j.tplants.2012.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 05/20/2023]
Abstract
Surprisingly few protein kinases have been demonstrated in chloroplasts or mitochondria. Here, we discuss the activity of bc(1) complex kinase (ABC1K) protein family, which we suggest locate in mitochondria and plastids, thus filling the kinase void. The ABC1Ks are atypical protein kinases and their ancestral function is the regulation of quinone synthesis. ABC1Ks have proliferated from one or two members in non-photosynthetic organisms to more than 16 members in algae and higher plants. In this review, we reconstruct the evolutionary history of the ABC1K family, provide a functional domain analysis for angiosperms and a nomenclature for ABC1Ks in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and maize (Zea mays). Finally, we hypothesize that targets of ABC1Ks include enzymes of prenyl-lipid metabolism as well as components of the organellar gene expression machineries.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
69
|
Where do phosphosites come from and where do they go after gene duplication? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:843167. [PMID: 22779031 PMCID: PMC3388353 DOI: 10.1155/2012/843167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/03/2012] [Indexed: 01/09/2023]
Abstract
Gene duplication followed by divergence is an important mechanism that leads to molecular innovation. Divergence of paralogous genes can be achieved at functional and regulatory levels. Whereas regulatory divergence at the transcriptional level is well documented, little is known about divergence of posttranslational modifications (PTMs). Protein phosphorylation, one of the most important PTMs, has recently been shown to be an important determinant of the retention of paralogous genes. Here we test whether gains and losses of phosphorylated amino acids after gene duplication may specifically modify the regulation of these duplicated proteins. We show that when phosphosites are lost in one paralog, transitions from phosphorylated serines and threonines are significantly biased toward negatively charged amino acids, which can mimic their phosphorylated status in a constitutive manner. Our analyses support the hypothesis that divergence between paralogs can be generated by a loss of the posttranslational regulatory control on a function rather than by the complete loss of the function itself. Surprisingly, these favoured transitions cannot be reached by single mutational steps, which suggests that the function of a phosphosite needs to be completely abolished before it is restored through substitution by these phosphomimetic residues. We conclude by discussing how gene duplication could facilitate the transitions between phosphorylated and phosphomimetic amino acids.
Collapse
|
70
|
GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) β1-induced senescence. Exp Cell Res 2012; 318:1808-19. [PMID: 22652454 DOI: 10.1016/j.yexcr.2012.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023]
Abstract
Transforming growth factor β1 (TGF β1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF β1 on mitochondrial complex IV activity. TGF β1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) α and β, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O(2) consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF β1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF β1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.
Collapse
|
71
|
Vukotic M, Oeljeklaus S, Wiese S, Vögtle FN, Meisinger C, Meyer HE, Zieseniss A, Katschinski DM, Jans DC, Jakobs S, Warscheid B, Rehling P, Deckers M. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab 2012; 15:336-47. [PMID: 22342701 DOI: 10.1016/j.cmet.2012.01.016] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/23/2011] [Accepted: 01/26/2012] [Indexed: 11/26/2022]
Abstract
The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants.
Collapse
Affiliation(s)
- Milena Vukotic
- Department of Biochemistry II, University of Göttingen, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Sanges C, Scheuermann C, Zahedi RP, Sickmann A, Lamberti A, Migliaccio N, Baljuls A, Marra M, Zappavigna S, Reinders J, Rapp U, Abbruzzese A, Caraglia M, Arcari P. Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells. Cell Death Dis 2012; 3:e276. [PMID: 22378069 PMCID: PMC3317347 DOI: 10.1038/cddis.2012.16] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.
Collapse
Affiliation(s)
- C Sanges
- Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Amoutzias GD, He Y, Lilley KS, Van de Peer Y, Oliver SG. Evaluation and properties of the budding yeast phosphoproteome. Mol Cell Proteomics 2012; 11:M111.009555. [PMID: 22286756 PMCID: PMC3433898 DOI: 10.1074/mcp.m111.009555] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have assembled a reliable phosphoproteomic data set for budding yeast Saccharomyces cerevisiae and have investigated its properties. Twelve publicly available phosphoproteome data sets were triaged to obtain a subset of high-confidence phosphorylation sites (p-sites), free of “noisy” phosphorylations. Analysis of this combined data set suggests that the inventory of phosphoproteins in yeast is close to completion, but that these proteins may have many undiscovered p-sites. Proteins involved in budding and protein kinase activity have high numbers of p-sites and are highly over-represented in the vast majority of the yeast phosphoproteome data sets. The yeast phosphoproteome is characterized by a few proteins with many p-sites and many proteins with a few p-sites. We confirm a tendency for p-sites to cluster together and find evidence that kinases may phosphorylate off-target amino acids that are within one or two residues of their cognate target. This suggests that the precise position of the phosphorylated amino acid is not a stringent requirement for regulatory fidelity. Compared with nonphosphorylated proteins, phosphoproteins are more ancient, more abundant, have longer unstructured regions, have more genetic interactions, more protein interactions, and are under tighter post-translational regulation. It appears that phosphoproteins constitute the raw material for pathway rewiring and adaptation at various evolutionary rates.
Collapse
Affiliation(s)
- Grigoris D Amoutzias
- Cambridge Systems Biology Centre and Dept Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
74
|
Kaganovich M, Snyder M. Phosphorylation of yeast transcription factors correlates with the evolution of novel sequence and function. J Proteome Res 2011; 11:261-8. [PMID: 22141333 DOI: 10.1021/pr201065k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene duplication is a significant source of novel genes and the dynamics of gene duplicate retention vs loss are poorly understood, particularly in terms of the functional and regulatory specialization of their gene products. We compiled a comprehensive data set of S. cerevisiae phosphosites to study the role of phosphorylation in yeast paralog divergence. We found that proteins coded by duplicated genes created in the Whole Genome Duplication (WGD) event and in a period prior to the WGD are significantly more phosphorylated than other duplicates or singletons. Though the amino acid sequence of each paralog of a given pair tends to diverge fairly similarly from their common ortholog in a related species, the phosphorylated amino acids tend to diverge in sequence from the ortholog at different rates. We observed that transcription factors (TFs) are disproportionately present among the set of duplicate genes and among the set of proteins that are phosphorylated. Interestingly, TFs that occur on higher levels of the transcription network hierarchy (i.e., tend to regulate other TFs) tend to be more phosphorylated than lower-level TFs. We found that TF paralog divergence in expression, binding, and sequence correlates with the abundance of phosphosites. Overall, these studies have important implications for understanding divergence of gene function and regulation in eukaryotes.
Collapse
Affiliation(s)
- Mark Kaganovich
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, United States
| | | |
Collapse
|
75
|
Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S, Deckers M. MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 2011; 23:247-57. [PMID: 22114354 PMCID: PMC3258170 DOI: 10.1091/mbc.e11-09-0774] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MINOS1/Mio10, a conserved mitochondrial protein, is required for mitochondrial inner membrane organization and cristae morphology. MINOS1/Mio10 is a novel constituent of the mitofilin/Fcj1 complex of the inner membrane, linking the morphology phenotype of the mutant to the activity of the mitochondrial inner membrane organizing complex. The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.
Collapse
Affiliation(s)
- Alwaleed K Alkhaja
- Department of Biochemistry II, University of Göttingen Medical School, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
O'Rourke B, Van Eyk JE, Foster DB. Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. CONGESTIVE HEART FAILURE (GREENWICH, CONN.) 2011; 17:269-82. [PMID: 22103918 PMCID: PMC4067253 DOI: 10.1111/j.1751-7133.2011.00266.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation of mitochondrial proteins has been recognized for decades, and the regulation of pyruvate- and branched-chain α-ketoacid dehydrogenases by an atypical kinase/phosphatase cascade is well established. More recently, the development of new mass spectrometry-based technologies has led to the discovery of many novel phosphorylation sites on a variety of mitochondrial targets. The evidence suggests that the major classes of kinase and several phosphatases may be present at the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix, but many questions remain to be answered as to the location, timing, and reversibility of these phosphorylation events and whether they are functionally relevant. The authors review phosphorylation as a mitochondrial regulatory strategy and highlight its possible role in the pathophysiology of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Brian O'Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD 21205-2195, USA.
| | | | | |
Collapse
|
77
|
Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p. Biochem J 2011; 440:107-14. [DOI: 10.1042/bj20101422] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CoQ6 (coenzyme Q6) biosynthesis in yeast is a well-regulated process that requires the final conversion of the late intermediate DMQ6 (demethoxy-CoQ6) into CoQ6 in order to support respiratory metabolism in yeast. The gene CAT5/COQ7 encodes the Cat5/Coq7 protein that catalyses the hydroxylation step of DMQ6 conversion into CoQ6. In the present study, we demonstrated that yeast Coq7 recombinant protein purified in bacteria can be phosphorylated in vitro using commercial PKA (protein kinase A) or PKC (protein kinase C) at the predicted amino acids Ser20, Ser28 and Thr32. The total absence of phosphorylation in a Coq7p version containing alanine instead of these phospho-amino acids, the high extent of phosphorylation produced and the saturated conditions maintained in the phosphorylation assay indicate that probably no other putative amino acids are phosphorylated in Coq7p. Results from in vitro assays have been corroborated using phosphorylation assays performed in purified mitochondria without external or commercial kinases. Coq7p remains phosphorylated in fermentative conditions and becomes dephosphorylated when respiratory metabolism is induced. The substitution of phosphorylated residues to alanine dramatically increases CoQ6 levels (256%). Conversely, substitution with negatively charged residues decreases CoQ6 content (57%). These modifications produced in Coq7p also alter the ratio between DMQ6 and CoQ6 itself, indicating that the Coq7p phosphorylation state is a regulatory mechanism for CoQ6 synthesis.
Collapse
|
78
|
ATP synthase superassemblies in animals and plants: Two or more are better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1185-97. [PMID: 21679683 DOI: 10.1016/j.bbabio.2011.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022]
|
79
|
Freschi L, Courcelles M, Thibault P, Michnick SW, Landry CR. Phosphorylation network rewiring by gene duplication. Mol Syst Biol 2011; 7:504. [PMID: 21734643 PMCID: PMC3159966 DOI: 10.1038/msb.2011.43] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/27/2011] [Indexed: 11/09/2022] Open
Abstract
In a comprehensive analysis of phosphoregulatory evolution in yeast, the authors observe that phosphorylation sites tend to be lost after gene duplication and protein network turnover reshuffles kinase–substrate relationships over time. Elucidating how complex regulatory networks have assembled during evolution requires a detailed understanding of the evolutionary dynamics that follow gene duplication events, including changes in post-translational modifications. We compared the phosphorylation profiles of paralogous proteins in the budding yeast Saccharomyces cerevisiae to that of a species that diverged from the budding yeast before the duplication of those genes. We found that 100 million years of post-duplication divergence are sufficient for the majority of phosphorylation sites to be lost or gained in one paralog or the other, with a strong bias toward losses. However, some losses may be partly compensated for by the evolution of other phosphosites, as paralogous proteins tend to preserve similar numbers of phosphosites over time. We also found that up to 50% of kinase–substrate relationships may have been rewired during this period. Our results suggest that after gene duplication, proteins tend to subfunctionalize at the level of post-translational regulation and that even when phosphosites are preserved, there is a turnover of the kinases that phosphorylate them.
Collapse
Affiliation(s)
- Luca Freschi
- Département de Biologie, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
80
|
Walkey CJ, Luo Z, Borchers CH, Measday V, van Vuuren HJJ. The Saccharomyces cerevisiae fermentation stress response protein Igd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme. FEMS Yeast Res 2011; 11:499-508. [PMID: 21585652 DOI: 10.1111/j.1567-1364.2011.00740.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Wine fermentation imposes a number of stresses on Saccharomyces cerevisiae, and wine yeasts respond to this harsh environment by altering their transcriptional profile (Marks et al., 2008). We have labeled this change in gene expression patterns the fermentation stress response (FSR). An important component of the FSR is the increased expression of 62 genes for which no function has been identified for their protein products. We hypothesize that a function for these proteins may only be revealed late in grape must fermentation, when the yeast cells are facing conditions much more extreme than those normally encountered in laboratory media. We used affinity copurification to identify interaction partners for the FSR protein Yfr017p, and found that it interacts specifically with the glycogen debranching enzyme (Gdb1p). The expression of both of these proteins is strongly induced during wine fermentation. Therefore, we investigated the role of Yfr017p in glycogen metabolism by constructing wine yeast strains that lack this protein. These YFR017C null cells displayed a significant reduction in their ability to accumulate glycogen during aerobic growth and fermentation. Moreover, Yfr017p inhibits Gdb1p activity in vitro. These results suggest that Yfr017p functions as an inhibitor of Gdb1p, enhancing the ability of yeast cells to store glucose as glycogen. Therefore, we propose IGD1 (for inhibitor of glycogen debranching) as a gene name for the YFR017C ORF.
Collapse
|
81
|
Guo T, Lee SS, Ng WH, Zhu Y, Gan CS, Zhu J, Wang H, Huang S, Sze SK, Kon OL. Global molecular dysfunctions in gastric cancer revealed by an integrated analysis of the phosphoproteome and transcriptome. Cell Mol Life Sci 2011; 68:1983-2002. [PMID: 20953656 PMCID: PMC11114721 DOI: 10.1007/s00018-010-0545-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 12/30/2022]
Abstract
We integrated LC-MS/MS-based and protein antibody array-based proteomics with genomics approaches to investigate the phosphoproteome and transcriptome of gastric cancer cell lines and endoscopic gastric biopsies from normal subjects and patients with benign gastritis or gastric cancer. More than 3,000 non-redundant phosphorylation sites in over 1,200 proteins were identified in gastric cancer cells. We correlated phosphoproteome data with transcriptome data sets and reported the expression of 41 protein kinases, 5 phosphatases and 65 phosphorylated mitochondrial proteins in gastric cancer cells. Transcriptional expression levels of 190 phosphorylated proteins were >2-fold higher in gastric cancer cells compared to normal stomach tissue. Pathway analysis demonstrated over-presentation of DNA damage response pathway and underscored critical roles of phosphorylated p53 in gastric cancer. This is the first study to comprehensively report the gastric cancer phosphoproteome. Integrative analysis of the phosphoproteome and transcriptome provided an expansive view of molecular signaling pathways in gastric cancer.
Collapse
Affiliation(s)
- Tiannan Guo
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Sze Sing Lee
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Wai Har Ng
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Yi Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Chee Sian Gan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Jiang Zhu
- Center for Stem Cell Research and Application, Union Hospital, Huazhong University of Science and Technology, 430022 Wuhan, People’s Republic of China
| | - Haixia Wang
- Center for Stem Cell Research and Application, Union Hospital, Huazhong University of Science and Technology, 430022 Wuhan, People’s Republic of China
| | - Shiang Huang
- Center for Stem Cell Research and Application, Union Hospital, Huazhong University of Science and Technology, 430022 Wuhan, People’s Republic of China
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Oi Lian Kon
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| |
Collapse
|
82
|
Gerosa L, Sauer U. Regulation and control of metabolic fluxes in microbes. Curr Opin Biotechnol 2011; 22:566-75. [PMID: 21600757 DOI: 10.1016/j.copbio.2011.04.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/20/2011] [Indexed: 01/09/2023]
Abstract
After about ten years of research renaissance in metabolism, the present challenge is to understand how metabolic fluxes are controlled by a complex interplay of overlapping regulatory mechanisms. Reconstruction of various regulatory network topologies is steaming, illustrating that we underestimated the broad importance of post-translational modifications such as enzyme phosphorylation or acetylation for microbial metabolism. With the growing topological knowledge, the functional relevance of these regulatory events becomes an even more pressing need. A major knowledge gap resides in the regulatory network of protein-metabolite interactions, simply because we lacked pertinent methods for systematic analyses - but a start has now been made. Perhaps most dramatic was the conceptual shift in our perception of metabolism from an engine of cellular operation to a generator of input and feedback signals for regulatory circuits that govern many important decisions on cell proliferation, differentiation, death, and naturally metabolism.
Collapse
Affiliation(s)
- Luca Gerosa
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
83
|
Phillips D, Aponte AM, Covian R, Balaban RS. Intrinsic protein kinase activity in mitochondrial oxidative phosphorylation complexes. Biochemistry 2011; 50:2515-29. [PMID: 21329348 DOI: 10.1021/bi101434x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondrial protein phosphorylation is a well-recognized metabolic control mechanism, with the classical example of pyruvate dehydrogenase (PDH) regulation by specific kinases and phosphatases of bacterial origin. However, despite the growing number of reported mitochondrial phosphoproteins, the identity of the protein kinases mediating these phosphorylation events remains largely unknown. The detection of mitochondrial protein kinases is complicated by the low concentration of kinase relative to that of the target protein, the lack of specific antibodies, and contamination from associated, but nonmatrix, proteins. In this study, we use blue native gel electrophoresis (BN-PAGE) to isolate rat and porcine heart mitochondrial complexes for screening of protein kinase activity. To detect kinase activity, one-dimensional BN-PAGE gels were exposed to [γ-(32)P]ATP and then followed by sodium dodecyl sulfate gel electrophoresis. Dozens of mitochondrial proteins were labeled with (32)P in this setting, including all five complexes of oxidative phosphorylation and several citric acid cycle enzymes. The nearly ubiquitous (32)P protein labeling demonstrates protein kinase activity within each mitochondrial protein complex. The validity of this two-dimensional BN-PAGE method was demonstrated by detecting the known PDH kinases and phosphatases within the PDH complex band using Western blots and mass spectrometry. Surprisingly, these same approaches detected only a few additional conventional protein kinases, suggesting a major role for autophosphorylation in mitochondrial proteins. Studies on purified Complex V and creatine kinase confirmed that these proteins undergo autophosphorylation and, to a lesser degree, tenacious (32)P-metabolite association. In-gel Complex IV activity was shown to be inhibited by ATP, and partially reversed by phosphatase activity, consistent with an inhibitory role for protein phosphorylation in this complex. Collectively, this study proposes that many of the mitochondrial complexes contain an autophosphorylation mechanism, which may play a functional role in the regulation of these multiprotein units.
Collapse
Affiliation(s)
- Darci Phillips
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | | | | | | |
Collapse
|
84
|
Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1373-82. [PMID: 21320465 DOI: 10.1016/j.bbabio.2011.02.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/03/2011] [Accepted: 02/05/2011] [Indexed: 11/23/2022]
Abstract
Mitochondrial dysfunction is a major contributor in heart failure (HF). We investigated whether the decrease in respirasome organization reported by us previously in cardiac mitochondria in HF is due to changes in the phospholipids of the mitochondrial inner membrane or modifications of the subunits of the electron transport chain (ETC) complexes. The contents of the main phospholipid species, including cardiolipin, as well as the molecular species of cardiolipin were unchanged in cardiac mitochondria in HF. Oxidized cardiolipin molecular species were not observed. In heart mitochondria isolated from HF, complex IV not incorporated into respirasomes exhibits increased threonine phosphorylation. Since HF is associated with increased adrenergic drive to cardiomyocytes, this increased protein phosphorylation might be explained by the involvement of cAMP-activated protein kinase. Does the preservation of cAMP-induced phosphorylation changes of mitochondrial proteins or the addition of exogenous cAMP have similar effects on oxidative phosphorylation? The usage of phosphatase inhibitors revealed a specific decrease in complex I-supported respiration with glutamate. In saponin-permeabilized cardiac fibers, pre-incubation with cAMP decreases oxidative phosphorylation due to a defect localized at complex IV of the ETC inter alia. We propose that phosphorylation of specific complex IV subunits decreases oxidative phosphorylation either by limiting the incorporation of complex IV in supercomplexes or by decreasing supercomplex stability.
Collapse
|
85
|
Jia L, Wu Z, Hao X, Carrie C, Zheng L, Whelan J, Wu Y, Wang S, Wu P, Mao C. Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa. THE NEW PHYTOLOGIST 2011; 189:843-855. [PMID: 21039568 DOI: 10.1111/j.1469-8137.2010.03513.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• A rice mutant, Oryza sativa short postembryonic roots 1 (Osspr1), has been characterized. It has short postembryonic roots, including adventitious and lateral roots, and a lower iron content in its leaves. • OsSPR1 was identified by map-based cloning. It encodes a novel mitochondrial protein with the Armadillo-like repeat domain. • Osspr1 mutants exhibited decreased root cell elongation. The iron content of the mutant shoots was significantly altered compared with that of wild-type shoots. A similar pattern of alteration of manganese and zinc concentrations in shoots was also observed. Complementation of the mutant confirmed that OsSPR1 is involved in post-embryonic root elongation and iron homeostasis in rice. OsSPR1 was found to be ubiquitously expressed in various tissues throughout the plant. The transcript abundance of various genes involved in iron uptake and signaling via both strategies I and II was similar in roots of wild-type and mutant plants, but was higher in the leaves of mutant plants. • Thus, a novel mitochondrial protein that is involved in root elongation and plays a role in metal ion homeostasis has been identified.
Collapse
Affiliation(s)
- Liqiang Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Xi Hao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Chris Carrie
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009 WA, Australia
- Joint Laboratory in Genomics and Nutriomics, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Libin Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009 WA, Australia
- Joint Laboratory in Genomics and Nutriomics, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Shoufeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
86
|
Eyrich B, Sickmann A, Zahedi RP. Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies. Proteomics 2011; 11:554-70. [PMID: 21226000 DOI: 10.1002/pmic.201000489] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/13/2010] [Accepted: 09/21/2010] [Indexed: 01/16/2023]
Abstract
Phosphorylation of proteins is one of the most prominent PTMs and for instance a key regulator of signal transduction. In order to improve our understanding of cellular phosphorylation events, considerable effort has been devoted to improving the analysis of phosphorylation by MS-based proteomics. Different enrichment strategies for phosphorylated peptides/proteins, such as immunoaffinity chromatography (IMAC) or titanium dioxide, have been established and constantly optimized for subsequent MS analysis. Concurrently, specific MS techniques were developed for more confident identification and phosphorylation site localization. In addition, more attention is paid to the LC-MS instrumentation to avoid premature loss of phosphorylated peptides within the analytical system. Despite major advances in all of these fields, the analysis of phosphopeptides still remains far from being routine in proteomics. However, to reveal cellular regulation by phosphorylation events, not only qualitative information about the phosphorylation status of proteins but also, in particular, quantitative information about distinct changes in phosphorylation patterns upon specific stimulation is mandatory. Thus, yielded insights are of outstanding importance for the emerging field of systems biology. In this review, we will give an insight into the historical development of phosphoproteome analysis and discuss its recent progress particularly regarding phosphopeptide quantification and assessment of phosphorylation stoichiometry.
Collapse
Affiliation(s)
- Beate Eyrich
- Leibniz-Institut für Analytische Wissenschaften-ISAS-eV, Dortmund, Germany
| | | | | |
Collapse
|
87
|
Zhao X, León IR, Bak S, Mogensen M, Wrzesinski K, Højlund K, Jensen ON. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 2011; 10:M110.000299. [PMID: 20833797 PMCID: PMC3013442 DOI: 10.1074/mcp.m110.000299] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/04/2010] [Indexed: 11/06/2022] Open
Abstract
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.
Collapse
Affiliation(s)
- Xiaolu Zhao
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Ileana R. León
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Steffen Bak
- From the ‡Department of Biochemistry and Molecular Biology and
- §Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | - Martin Mogensen
- ¶Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, DK-5230 Odense M, Denmark and
| | | | - Kurt Højlund
- §Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | | |
Collapse
|
88
|
Regulation of Mitochondrial Protein Import by Cytosolic Kinases. Cell 2011; 144:227-39. [DOI: 10.1016/j.cell.2010.12.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 09/04/2010] [Accepted: 12/07/2010] [Indexed: 12/27/2022]
|
89
|
van Alen T, Claus H, Zahedi RP, Groh J, Blazyca H, Lappann M, Sickmann A, Vogel U. Comparative proteomic analysis of biofilm and planktonic cells of Neisseria meningitidis. Proteomics 2010; 10:4512-21. [PMID: 21136603 DOI: 10.1002/pmic.201000267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neisseria meningitidis is a commensal of the human nasopharynx occasionally causing invasive disease. In vitro biofilms have been employed to model meningococcal carriage. A proteomic analysis of meningococcal biofilms was conducted and metabolic changes related to oxygen and nutrient limitation and upregulation of proteins involved in ROS defense were observed. The upregulated MntC which protects against ROS was shown to be required for meningococcal biofilm formation, but not for planktonic growth. ROS-induced proteomic changes might train the biofilm to cope with immune effectors.
Collapse
Affiliation(s)
- Tessa van Alen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Trost M, Bridon G, Desjardins M, Thibault P. Subcellular phosphoproteomics. MASS SPECTROMETRY REVIEWS 2010; 29:962-90. [PMID: 20931658 DOI: 10.1002/mas.20297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein phosphorylation represents one of the most extensively studied post-translational modifications, primarily due to the emergence of sensitive methods enabling the detection of this modification both in vitro and in vivo. The availability of enrichment methods combined with sensitive mass spectrometry instrumentation has played a crucial role in uncovering the dynamic changes and the large expanding repertoire of this reversible modification. The structural changes imparted by the phosphorylation of specific residues afford exquisite mechanisms for the regulation of protein functions by modulating new binding sites on scaffold proteins or by abrogating protein-protein interactions. However, the dynamic interplay of protein phosphorylation is not occurring randomly within the cell but is rather finely orchestrated by specific kinases and phosphatases that are unevenly distributed across subcellular compartments. This spatial separation not only regulates protein phosphorylation but can also control the activity of other enzymes and the transfer of other post-translational modifications. While numerous large-scale phosphoproteomics studies highlighted the extent and diversity of phosphoproteins present in total cell lysates, the further understanding of their regulation and biological activities require a spatio-temporal resolution only achievable through subcellular fractionation. This review presents a first account of the emerging field of subcellular phosphoproteomics where cell fractionation approaches are combined with sensitive mass spectrometry methods to facilitate the identification of low abundance proteins and to unravel the intricate regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Matthias Trost
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
91
|
Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Pötter M, Marx A, Barth G. Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 2010; 89:1519-26. [DOI: 10.1007/s00253-010-2957-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
|
92
|
Martínez-Pastor M, Proft M, Pascual-Ahuir A. Adaptive Changes of the Yeast Mitochondrial Proteome in Response to Salt Stress. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:541-52. [DOI: 10.1089/omi.2010.0020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mar Martínez-Pastor
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)—Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Markus Proft
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)—Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Amparo Pascual-Ahuir
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)—Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| |
Collapse
|
93
|
Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 2010; 11:655-67. [PMID: 20729931 DOI: 10.1038/nrm2959] [Citation(s) in RCA: 526] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Ohlmeier S, Hiltunen JK, Bergmann U. Protein phosphorylation in mitochondria - A study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 2010; 31:2869-81. [DOI: 10.1002/elps.200900759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
95
|
Gnad F, Forner F, Zielinska DF, Birney E, Gunawardena J, Mann M. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. Mol Cell Proteomics 2010; 9:2642-53. [PMID: 20688971 DOI: 10.1074/mcp.m110.001594] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the evolution of life.
Collapse
Affiliation(s)
- Florian Gnad
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
This review focuses on the evidence accumulated in humans and animal models to the effect that mitochondria are key players in the progression of heart failure (HF). Mitochondria are the primary source of energy in the form of adenosine triphosphate that fuels the contractile apparatus, and are thus essential for the pumping activity of the heart. We evaluate changes in mitochondrial morphology and alterations in the main components of mitochondrial energetics, such as substrate utilization and oxidative phosphorylation coupled with the level of respirasomes, in the context of their contribution to the chronic energy deficit and mechanical dysfunction in HF.
Collapse
Affiliation(s)
- Mariana G Rosca
- Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
97
|
Balaban RS. The mitochondrial proteome: a dynamic functional program in tissues and disease states. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:352-9. [PMID: 20544878 PMCID: PMC3209511 DOI: 10.1002/em.20574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The nuclear DNA transcriptional programming of the mitochondria proteome varies dramatically between tissues depending on its functional requirements. This programming generally regulates all of the proteins associated with a metabolic or biosynthetic pathway associated with a given function, essentially regulating the maximum rate of the pathway while keeping the enzymes at the same molar ratio. This may permit the same regulatory mechanisms to function at low- and high-flux capacity situations. This alteration in total protein content results in rather dramatic changes in the mitochondria proteome between tissues. A tissues mitochondria proteome also changes with disease state, in Type 1 diabetes the liver mitochondrial proteome shifts to support ATP production, urea synthesis, and fatty acid oxidation. Acute flux regulation is modulated by numerous posttranslational events that also are highly variable between tissues. The most studied posttranslational modification is protein phosphorylation, which is found all of the complexes of oxidative phosphorylation and most of the major metabolic pathways. The functional significance of these modifications is currently a major area of research along with the kinase and phosphatase regulatory network. This near ubiquitous presence of protein phosphorylations, and other posttranslational events, in the matrix suggest that not all posttranslational events have functional significance. Screening methods are being introduced to detect the active or dynamic posttranslational sites to focus attention on sites that might provide insight into regulatory mechanisms.
Collapse
Affiliation(s)
- Robert S Balaban
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Department of Health and Human Services, Bethesda, Maryland, USA.
| |
Collapse
|
98
|
Cui Z, Hou J, Chen X, Li J, Xie Z, Xue P, Cai T, Wu P, Xu T, Yang F. The Profile of Mitochondrial Proteins and Their Phosphorylation Signaling Network in INS-1 β Cells. J Proteome Res 2010; 9:2898-908. [DOI: 10.1021/pr100139z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ziyou Cui
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Hou
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Chen
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhensheng Xie
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xue
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanxi Cai
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wu
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Xu
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuquan Yang
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Medical College of CAPF, Tianjin 300162, China, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
99
|
Wagner K, Perschil I, Fichter CD, van der Laan M. Stepwise assembly of dimeric F(1)F(o)-ATP synthase in mitochondria involves the small F(o)-subunits k and i. Mol Biol Cell 2010; 21:1494-504. [PMID: 20219971 PMCID: PMC2861609 DOI: 10.1091/mbc.e09-12-1023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oligomerization of F1Fo-ATP synthase in the inner mitochondrial membrane governs the formation of cristae membrane domains. We show that the F1Fo-subunits Su i and Su k are crucial for the formation and maturation of ATP synthase dimers and oligomers. Su i additionally facilitates the incorporation of new subunits into ATP synthase monomers. F1Fo-ATP synthase is a key enzyme of oxidative phosphorylation that is localized in the inner membrane of mitochondria. It uses the energy stored in the proton gradient across the inner mitochondrial membrane to catalyze the synthesis of ATP from ADP and phosphate. Dimeric and higher oligomeric forms of ATP synthase have been observed in mitochondria from various organisms. Oligomerization of ATP synthase is critical for the morphology of the inner mitochondrial membrane because it supports the generation of tubular cristae membrane domains. Association of individual F1Fo-ATP synthase complexes is mediated by the membrane-embedded Fo-part. Several subunits were mapped to monomer-monomer-interfaces of yeast ATP synthase complexes, but only Su e (Atp21) and Su g (Atp20) have so far been identified as crucial for the formation of stable dimers. We show that two other small Fo-components, Su k (Atp19) and Su i (Atp18) are involved in the stepwise assembly of F1Fo-ATP synthase dimers and oligomers. We have identified an intermediate form of the ATP synthase dimer, which accumulates in the absence of Su i. Moreover, our data indicate that Su i facilitates the incorporation of newly synthesized subunits into ATP synthase complexes.
Collapse
Affiliation(s)
- Karina Wagner
- Institut für Biochemie und Molekularbiologie, Freiburg, Germany
| | | | | | | |
Collapse
|
100
|
Højlund K, Yi Z, Lefort N, Langlais P, Bowen B, Levin K, Beck-Nielsen H, Mandarino LJ. Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle. Diabetologia 2010; 53:541-51. [PMID: 20012595 DOI: 10.1007/s00125-009-1624-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Insulin resistance in skeletal muscle is linked to mitochondrial dysfunction in obesity and type 2 diabetes. Emerging evidence indicates that reversible phosphorylation regulates oxidative phosphorylation (OxPhos) proteins. The aim of this study was to identify and quantify site-specific phosphorylation of the catalytic beta subunit of ATP synthase (ATPsyn-beta) and determine protein abundance of ATPsyn-beta and other OxPhos components in skeletal muscle from healthy and insulin-resistant individuals. METHODS Skeletal muscle biopsies were obtained from lean, healthy, obese, non-diabetic and type 2 diabetic volunteers (each group n = 10) for immunoblotting of proteins, and hypothesis-driven identification and quantification of phosphorylation sites on ATPsyn-beta using targeted nanospray tandem mass spectrometry. Volunteers were metabolically characterised by euglycaemic-hyperinsulinaemic clamps. RESULTS Seven phosphorylation sites were identified on ATPsyn-beta purified from human skeletal muscle. Obese individuals with and without type 2 diabetes were characterised by impaired insulin-stimulated glucose disposal rates, and showed a approximately 30% higher phosphorylation of ATPsyn-beta at Tyr361 and Thr213 (within the nucleotide-binding region of ATP synthase) as well as a coordinated downregulation of ATPsyn-beta protein and other OxPhos components. Insulin increased Tyr361 phosphorylation of ATPsyn-beta by approximately 50% in lean and healthy, but not insulin-resistant, individuals. CONCLUSIONS/INTERPRETATION These data demonstrate that ATPsyn-beta is phosphorylated at multiple sites in human skeletal muscle, and suggest that abnormal site-specific phosphorylation of ATPsyn-beta together with reduced content of OxPhos proteins contributes to mitochondrial dysfunction in insulin resistance. Further characterisation of phosphorylation of ATPsyn-beta may offer novel targets of treatment in human diseases with mitochondrial dysfunction, such as diabetes.
Collapse
Affiliation(s)
- K Højlund
- Center for Metabolic Biology, School of Life Sciences, Arizona State University, PO Box 87370, Tempe, AZ 85287, USA.
| | | | | | | | | | | | | | | |
Collapse
|