51
|
Proellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol 2010; 26:297-304. [PMID: 20347614 DOI: 10.1016/j.pt.2010.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 11/13/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
Apicomplexan parasites possess specialized secretory organelles (rhoptries and micronemes) that release their contents during host cell invasion. Although the rhoptries were once thought to be merely a bulbous 'protein reservoir' connected to an anterior neck region, the localization of a protein specifically to the neck suggested that this region was more than just a duct. Recent studies have shown that the rhoptry neck sub-compartment possesses a distinct protein repertoire. Some of these proteins share common features, including conservation across the phylum and involvement in tight-junction formation. A sub-group of rhoptry neck proteins, the RONs, their association with the microneme protein apical membrane antigen AMA1, and their involvement in invasion are discussed.
Collapse
|
52
|
Mosquito cell line glycoproteins: an unsuitable model system for the Plasmodium ookinete-mosquito midgut interaction? Parasit Vectors 2010; 3:22. [PMID: 20338056 PMCID: PMC2861666 DOI: 10.1186/1756-3305-3-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/25/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito midgut glycoproteins may act as key recognition sites for the invading malarial ookinete. Effective transmission blocking strategies require the identification of novel target molecules. We have partially characterised the surface glycoproteins of two cell lines from two mosquito species; Anopheles stephensi and Anopheles gambiae, and investigated the binding of Plasmodium berghei ookinetes to carbohydrate ligands on the cells. Cell line extracts were run on SDS-PAGE gels and carbohydrate moieties determined by blotting against a range of biotinylated lectins. In addition, specific glycosidases were used to cleave the oligosaccharides. Results An. stephensi 43 and An. gambiae 55 cell line glycoproteins expressed oligosaccharides containing oligomannose and hybrid oligosaccharides, with and without α1-6 core fucosylation; N-linked oligosaccharides with terminal Galβ1-3GalNAc or GalNAcβ1-3Gal; O-linked α/βGalNAc. An. stephensi 43 cell line glycoproteins also expressed N-linked Galβ1-4R and O-linked Galβ1-3GalNAc. Although P. berghei ookinetes bound to both mosquito cell lines, binding could not be inhibited by GlcNAc, GalNAc or Galactose. Conclusions Anopheline cell lines displayed a limited range of oligosaccharides. Differences between the glycosylation patterns of the cell lines and mosquito midgut epithelial cells could be a factor why ookinetes did not bind in a carbohydrate inhibitable manner. Anopheline cell lines are not suitable as a potential model system for carbohydrate-mediated adhesion of Plasmodium ookinetes.
Collapse
|
53
|
Suggestive evidence for Darwinian Selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. EUKARYOTIC CELL 2009; 9:228-41. [PMID: 19783771 DOI: 10.1128/ec.00197-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc(3)Man(5)GlcNAc(2)) and the host 14-sugar precursor (Glc(3)Man(9)GlcNAc(2)) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma.
Collapse
|
54
|
Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci U S A 2009; 106:12998-3003. [PMID: 19617561 DOI: 10.1073/pnas.0903831106] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii, as an obligate intracellular and promiscuous pathogen of mammalian cells, utilizes host sugars for energy and to generate glycoconjugates that are important to its survival and virulence. Here, we report that T. gondii glucose transporter (TgGT1) is proficient in transporting mannose, galactose, and fructose besides glucose, and serves as a major hexose transporter at its plasma membrane. Toxoplasma harbors 3 additional putative sugar transporters (TgST1-3), of which TgST2 is expressed at its surface, whereas TgST1 and TgST3 are intracellular. Surprisingly, TgGT1 and TgST2 are nonessential to the parasite as their ablations inflict only a 30% or no defect in its intracellular growth, respectively. Indeed, Toxoplasma can also tolerate the deletion of both genes while incurring no further growth phenotype. Unlike Deltatgst2, the modest impairment in Deltatggt1 and Deltatggt1/Deltatgst2 mutants is because of a minor delay in their intracellular replication, which is a direct consequence of the abolished import of glucose. The Deltatggt1 displays an attenuated motility in defined minimal media that is rescued by glutamine. TgGT1-complemented parasites show an entirely restored growth, motility, and sugar import. The lack of exogenous glucose in Deltatggt1 culture fails to accentuate its intrinsic growth defect and prompts it to procure glutamine to sustain its metabolism. Unexpectedly, in vivo virulence of Deltatggt1 in mice remains unaffected. Taken together, our data demonstrate that glucose is nonessential for T. gondii tachyzoites, underscore glutamine is a complement substrate, and provide a basis for understanding the adaptation of T. gondii to diverse host cells.
Collapse
|
55
|
Abstract
Toxoplasma gondii is a ubiquitous, Apicomplexan parasite that, in humans, can cause several clinical syndromes, including encephalitis, chorioretinitis and congenital infection. T. gondii was described a little over 100 years ago in the tissues of the gundi (Ctenodoactylus gundi). There are a large number of applicable experimental techniques available for this pathogen and it has become a model organism for the study of intracellular pathogens. With the completion of the genomes for a type I (GT-1), type II (ME49) and type III (VEG) strains, proteomic studies on this organism have been greatly facilitated. Several subcellular proteomic studies have been completed on this pathogen. These studies have helped elucidate specialized invasion organelles and their composition, as well as proteins associated with the cytoskeleton. Global proteomic studies are leading to improved strategies for genome annotation in this organism and an improved understanding of protein regulation in this pathogen. Web-based resources, such as EPIC-DB and ToxoDB, provide proteomic data and support for studies on T. gondii. This review will summarize the current status of proteomic research on T. gondii.
Collapse
Affiliation(s)
- Louis M Weiss
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 504, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
56
|
Chen G, Pramanik BN. Application of LC/MS to proteomics studies: current status and future prospects. Drug Discov Today 2009; 14:465-71. [DOI: 10.1016/j.drudis.2009.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/02/2009] [Accepted: 02/13/2009] [Indexed: 02/06/2023]
|
57
|
Madrid-Aliste CJ, Dybas JM, Angeletti RH, Weiss LM, Kim K, Simon I, Fiser A. EPIC-DB: a proteomics database for studying Apicomplexan organisms. BMC Genomics 2009; 10:38. [PMID: 19159464 PMCID: PMC2652494 DOI: 10.1186/1471-2164-10-38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/21/2009] [Indexed: 11/18/2022] Open
Abstract
Background High throughput proteomics experiments are useful for analyzing the protein expression of an organism, identifying the correct gene structure of a genome, or locating possible post-translational modifications within proteins. High throughput methods necessitate publicly accessible and easily queried databases for efficiently and logically storing, displaying, and analyzing the large volume of data. Description EPICDB is a publicly accessible, queryable, relational database that organizes and displays experimental, high throughput proteomics data for Toxoplasma gondii and Cryptosporidium parvum. Along with detailed information on mass spectrometry experiments, the database also provides antibody experimental results and analysis of functional annotations, comparative genomics, and aligned expressed sequence tag (EST) and genomic open reading frame (ORF) sequences. The database contains all available alternative gene datasets for each organism, which comprises a complete theoretical proteome for the respective organism, and all data is referenced to these sequences. The database is structured around clusters of protein sequences, which allows for the evaluation of redundancy, protein prediction discrepancies, and possible splice variants. The database can be expanded to include genomes of other organisms for which proteome-wide experimental data are available. Conclusion EPICDB is a comprehensive database of genome-wide T. gondii and C. parvum proteomics data and incorporates many features that allow for the analysis of the entire proteomes and/or annotation of specific protein sequences. EPICDB is complementary to other -genomics- databases of these organisms by offering complete mass spectrometry analysis on a comprehensive set of all available protein sequences.
Collapse
Affiliation(s)
- Carlos J Madrid-Aliste
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Dybas JM, Madrid-Aliste CJ, Che FY, Nieves E, Rykunov D, Angeletti RH, Weiss LM, Kim K, Fiser A. Computational analysis and experimental validation of gene predictions in Toxoplasma gondii. PLoS One 2008; 3:e3899. [PMID: 19065262 PMCID: PMC2587701 DOI: 10.1371/journal.pone.0003899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause both acute and chronic infections, many of which are asymptomatic, and, in immunocompromised hosts, can cause fatal infection due to reactivation from an asymptomatic chronic infection. An essential step towards understanding molecular mechanisms controlling transitions between the various life stages and identifying candidate drug targets is to accurately characterize the T. gondii proteome. METHODOLOGY/PRINCIPAL FINDINGS We have explored the proteome of T. gondii tachyzoites with high throughput proteomics experiments and by comparison to publicly available cDNA sequence data. Mass spectrometry analysis validated 2,477 gene coding regions with 6,438 possible alternative gene predictions; approximately one third of the T. gondii proteome. The proteomics survey identified 609 proteins that are unique to Toxoplasma as compared to any known species including other Apicomplexan. Computational analysis identified 787 cases of possible gene duplication events and located at least 6,089 gene coding regions. Commonly used gene prediction algorithms produce very disparate sets of protein sequences, with pairwise overlaps ranging from 1.4% to 12%. Through this experimental and computational exercise we benchmarked gene prediction methods and observed false negative rates of 31 to 43%. CONCLUSIONS/SIGNIFICANCE This study not only provides the largest proteomics exploration of the T. gondii proteome, but illustrates how high throughput proteomics experiments can elucidate correct gene structures in genomes.
Collapse
Affiliation(s)
- Joseph M. Dybas
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Carlos J. Madrid-Aliste
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fa-Yun Che
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Edward Nieves
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dmitry Rykunov
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ruth Hogue Angeletti
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Louis M. Weiss
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kami Kim
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Andras Fiser
- Biodefense Proteomics Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
59
|
Garénaux E, Shams-Eldin H, Chirat F, Bieker U, Schmidt J, Michalski JC, Cacan R, Guérardel Y, Schwarz RT. The Dual Origin of Toxoplasma gondii N-Glycans. Biochemistry 2008; 47:12270-6. [DOI: 10.1021/bi801090a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Estelle Garénaux
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Hosam Shams-Eldin
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Frederic Chirat
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Ulrike Bieker
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Jörg Schmidt
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Jean-Claude Michalski
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - René Cacan
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Yann Guérardel
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Ralph T. Schwarz
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| |
Collapse
|
60
|
Wastling JM, Xia D, Sohal A, Chaussepied M, Pain A, Langsley G. Proteomes and transcriptomes of the Apicomplexa--where's the message? Int J Parasitol 2008; 39:135-43. [PMID: 18996390 DOI: 10.1016/j.ijpara.2008.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 11/19/2022]
Abstract
The Apicomplexa have some of the most comprehensive and integrated proteome datasets of all pathogenic micro-organisms. Coverage is currently at a level where these data can be used to help predict the potential biological function of proteins in these parasites, without having to defer to measurement of mRNA levels. Transcriptomic data for the Apicomplexa (microarrays, expressed sequence tag (EST) collections, serial analysis of gene expression (SAGE) and massively parallel signature sequencing (MPSS) tags) are also copious, enabling us to investigate the extent to which global mRNA levels correlate with proteomic data. Here, we present a proteomic and transcriptomic perspective of gene expression in key apicomplexan parasites, including Plasmodium spp., Toxoplasma gondii, Cryptosporidium parvum, Neospora caninum and Theileria spp., and discuss the alternative views of gene expression that they provide. Although proteomic evidence does not exist for every gene, many examples of readily detected proteins whose corresponding genes display little or no detectable transcription, are seen across the Apicomplexa. These examples are not easily explained by the "guilt by association", or "stock and go" hypotheses of gene transcription. With the advent of ultra-high-throughput sequencing technologies there will be a quantum shift in transcriptional analysis which, combined with improving quantitative proteome datasets, will provide a core component of a systems-wide approach to studying the Apicomplexa.
Collapse
Affiliation(s)
- J M Wastling
- Department of Pre-Clinical Veterinary Science, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK.
| | | | | | | | | | | |
Collapse
|
61
|
Gendrin C, Mercier C, Braun L, Musset K, Dubremetz JF, Cesbron-Delauw MF. Toxoplasma gondiiUses Unusual Sorting Mechanisms to Deliver Transmembrane Proteins into the Host-Cell Vacuole. Traffic 2008; 9:1665-80. [DOI: 10.1111/j.1600-0854.2008.00793.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
62
|
Abstract
It has been 100 years since Toxoplasma gondii was initially described in Tunis by Nicolle and Manceaux (1908) in the tissues of the gundi (Ctenodoactylus gundi) and in Brazil by Splendore (1908) in the tissues of a rabbit. T. gondii is a ubiquitous, Apicomplexan parasite of warm-blooded animals that can cause several clinical syndromes including encephalitis, chorioretinitis and congenital infection. Due to the extensive repertoire of applicable experimental techniques available for this pathogen it has become a model organism for the study of intracellular pathogens. Data obtained from genome-wide expression studies, including ChIP on chip and proteomics surveys, are refining our understanding of the genetic networks involved in the developmental biology of this pathogen as well as the interactions of the parasite with its host. This review addresses recent advances in our understanding of the developmental biology and host-pathogen relationships of T. gondii.
Collapse
Affiliation(s)
- Kami Kim
- Departments of Medicine (Division of Infectious Diseases) and Microbiology & Immunology, Albert Einstein College of Medicine, Ullmann 1225, 1300 Morris Park Avenue, Bronx, NY 10461, USA, Ph 01 718 430 2611, Fax 01 718 430 8968,
| | - Louis M. Weiss
- Departments of Medicine (Division of Infectious Diseases) and Pathology (Division of Parasitology), Albert Einstein College of Medicine, Forchheimer 504, 1300 Morris Park Avenue, Bronx, NY 10461, USA, Ph 718 430 2142, Fax 01 718 430,
| |
Collapse
|