51
|
Benoit SL, McMurry JL, Hill SA, Maier RJ. Helicobacter pylori hydrogenase accessory protein HypA and urease accessory protein UreG compete with each other for UreE recognition. Biochim Biophys Acta Gen Subj 2012; 1820:1519-25. [PMID: 22698670 DOI: 10.1016/j.bbagen.2012.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND The gastric pathogen Helicobacter pylori relies on nickel-containing urease and hydrogenase enzymes in order to colonize the host. Incorporation of Ni(2+) into urease is essential for the function of the enzyme and requires the action of several accessory proteins, including the hydrogenase accessory proteins HypA and HypB and the urease accessory proteins UreE, UreF, UreG and UreH. METHODS Optical biosensing methods (biolayer interferometry and plasmon surface resonance) were used to screen for interactions between HypA, HypB, UreE and UreG. RESULTS Using both methods, affinity constants were found to be 5nM and 13nM for HypA-UreE and 8μM and 14μM for UreG-UreE. Neither Zn(2+) nor Ni(2+) had an effect on the kinetics or stability of the HypA-UreE complex. By contrast, addition of Zn(2+), but not Ni(2+), altered the kinetics and greatly increased the stability of the UreE-UreG complex, likely due in part to Zn(2+)-mediated oligomerization of UreE. Finally our results unambiguously show that HypA, UreE and UreG cannot form a heterotrimeric protein complex in vitro; instead, HypA and UreG compete with each other for UreE recognition. GENERAL SIGNIFICANCE Factors influencing the pathogen's nickel budget are important to understand pathogenesis and for future drug design.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, 805 Biological Sciences Bldg., Athens, GA, USA
| | | | | | | |
Collapse
|
52
|
Kaluarachchi H, Altenstein M, Sugumar SR, Balbach J, Zamble DB, Haupt C. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli. J Mol Biol 2012; 417:28-35. [PMID: 22310044 DOI: 10.1016/j.jmb.2012.01.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 11/17/2022]
Abstract
SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity. The SlyD homolog from Thermus thermophilus does not contain the extended cysteine- and histidine-rich C-terminal tail of the E. coli protein, yet it binds a single Ni(II) ion tightly. To investigate whether a single metal-binding motif can functionally replace the full-length domain, we generated a truncation of E. coli SlyD, SlyD155. Ni(II) binding to SlyD155 was investigated by using isothermal titration calorimetry, NMR and electrospray ionization mass spectrometry measurements. This in vitro characterization revealed that SlyD155 contains a single metal-binding motif with high affinity for nickel. Structural characterization by X-ray absorption spectroscopy and NMR indicated that nickel was coordinated in an octahedral geometry with at least two histidines as ligands. Heterodimerization between SlyD and another hydrogenase accessory protein, HypB, is essential for optimal hydrogenase maturation and was confirmed for SlyD155 via cross-linking experiments and NMR titrations, as were conserved chaperone and peptidyl-prolyl isomerase activities. Although these properties of SlyD are preserved in the truncated version, it does not modulate nickel binding to HypB in vitro or contribute to the maturation of [NiFe]-hydrogenases in vivo, unlike the full-length protein. This study highlights the importance of the unusual metal-binding domain of E. coli SlyD in hydrogenase biogenesis.
Collapse
Affiliation(s)
- Harini Kaluarachchi
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON, Canada M5S 3H6
| | | | | | | | | | | |
Collapse
|
53
|
Witkowska D, Rowinska-Zyrek M, Valensin G, Kozlowski H. Specific poly-histidyl and poly-cysteil protein sites involved in Ni2+ homeostasis in Helicobacter pylori. Impact of Bi3+ ions on Ni2+ binding to proteins. Structural and thermodynamic aspects. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
54
|
Abstract
In order to ensure their function(s) in the cell, proteins are organized in machineries, underlaid by a complex network of interactions. Identifying protein interactions is thus crucial to our understanding of cell functioning. Technical advances in molecular biology and genomic technology now allow for the systematic study of the interactions occurring in a given organism. This review first presents the techniques readily available to microbiologists for studying protein-protein interactions in bacteria, as well as their usability for high-throughput studies. Two types of techniques need to be considered: (1) the isolation of protein complexes from the organism of interest by affinity purification, and subsequent identification of the complex partners by mass spectrometry and (2) two-hybrid techniques, in general based on the production of two recombinant proteins whose interaction has to be tested in a reporter cell. Next, we summarize the bacterial interactomes already published. Finally, the strengths and pitfalls of the techniques are discussed, together with the potential prospect of interactome studies in bacteria.
Collapse
|
55
|
Xia W, Li H, Yang X, Wong KB, Sun H. Metallo-GTPase HypB from Helicobacter pylori and its interaction with nickel chaperone protein HypA. J Biol Chem 2011; 287:6753-63. [PMID: 22179820 DOI: 10.1074/jbc.m111.287581] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maturation of [NiFe]-hydrogenase is highly dependent on a battery of chaperone proteins. Among these, HypA and HypB were proposed to exert nickel delivery functions in the metallocenter assembly process, although the detailed mechanism remains unclear. Herein, we have overexpressed and purified wild-type HypB as well as two mutants, K168A and M186L/F190V, from Helicobacter pylori. We demonstrated that all proteins bind Ni(2+) at a stoichiometry of one Ni(2+) per monomer of the proteins with dissociation constants at micromolar levels. Ni(2+) elevated GTPase activity of WT HypB, which is attributable to a lower affinity of the protein toward GDP as well as Ni(2+)-induced dimerization. The disruption of GTP-dependent dimerization has led to GTPase activities of both mutants in apo-forms almost completely abolished, compared with the wild-type protein. The GTPase activity is partially restored for HypB(M186L/F190V) mutant but not for HypB(K168A) mutant upon Ni(2+) binding. HypB forms a complex with its partner protein HypA with a low affinity (K(d) of 52.2 ± 8.8 μM). Such interactions were also observed in vivo both in the absence and presence of nickel using a GFP-fragment reassembly technique. The putative protein-protein interfaces on H. pylori HypA and HypB proteins were identified by NMR chemical shift perturbation and mutagenesis studies, respectively. Intriguingly, the unique N terminus of H. pylori HypB was identified to participate in the interaction with H. pylori HypA. These structural and functional studies provide insight into the molecular mechanism of Ni(2+) delivery during maturation of [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Wei Xia
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
56
|
Fong YH, Wong HC, Chuck CP, Chen YW, Sun H, Wong KB. Assembly of preactivation complex for urease maturation in Helicobacter pylori: crystal structure of UreF-UreH protein complex. J Biol Chem 2011; 286:43241-9. [PMID: 22013070 PMCID: PMC3234868 DOI: 10.1074/jbc.m111.296830] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/05/2011] [Indexed: 11/06/2022] Open
Abstract
Colonization of Helicobacter pylori in the acidic environment of the human stomach depends on the neutralizing activity of urease. Activation of apo-urease involves carboxylation of lysine 219 and insertion of two nickel ions. In H. pylori, this maturation process involves four urease accessory proteins as follows: UreE, UreF, UreG, and UreH. It is postulated that the apo-urease interacts with UreF, UreG, and UreH to form a pre-activation complex that undergoes GTP-dependent activation of urease. The crystal structure of the UreF-UreH complex reveals conformational changes in two distinct regions of UreF upon complex formation. First, the flexible C-terminal residues of UreF become ordered, forming an extra helix α10 and a loop structure stabilized by hydrogen bonds involving Arg-250. Second, the first turn of helix α2 uncoils to expose a conserved residue, Tyr-48. Substitution of R250A or Y48A in UreF abolishes the formation of the heterotrimeric complex of UreG-UreF-UreH and abolishes urease maturation. Our results suggest that the C-terminal residues and helix α2 of UreF are essential for the recruitment of UreG for the formation of the pre-activation complex. The molecular mass of the UreF-UreH complex determined by static light scattering was 116 ± 2.3 kDa, which is consistent with the quaternary structure of a dimer of heterodimers observed in the crystal structure. Taking advantage of the unique 2-fold symmetry observed in both the crystal structures of H. pylori urease and the UreF-UreH complex, we proposed a topology model of the pre-activation complex for urease maturation.
Collapse
Affiliation(s)
- Yu Hang Fong
- From the Centre for Protein Science and Crystallography, School of Life Sciences, Chinese University of Hong Kong, China, Hong Kong
| | - Ho Chun Wong
- From the Centre for Protein Science and Crystallography, School of Life Sciences, Chinese University of Hong Kong, China, Hong Kong
| | - Chi Pang Chuck
- From the Centre for Protein Science and Crystallography, School of Life Sciences, Chinese University of Hong Kong, China, Hong Kong
| | - Yu Wai Chen
- King's College London, Randall Division of Cell and Molecular Biophysics, London SE1 1UL, United Kingdom, and
| | - Hongzhe Sun
- the Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Kam-Bo Wong
- From the Centre for Protein Science and Crystallography, School of Life Sciences, Chinese University of Hong Kong, China, Hong Kong
| |
Collapse
|
57
|
Cheng T, Li H, Xia W, Sun H. Multifaceted SlyD from Helicobacter pylori: implication in [NiFe] hydrogenase maturation. J Biol Inorg Chem 2011; 17:331-43. [PMID: 22045417 PMCID: PMC3292732 DOI: 10.1007/s00775-011-0855-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/07/2011] [Indexed: 12/31/2022]
Abstract
SlyD belongs to the FK506-binding protein (FKBP) family with both peptidylprolyl isomerase (PPIase) and chaperone activities, and is considered to be a ubiquitous cytosolic protein-folding facilitator in bacteria. It possesses a histidine- and cysteine-rich C-terminus binding to selected divalent metal ions (e.g., Ni2+, Zn2+), which is important for its involvement in the maturation processes of metalloenzymes. We have determined the solution structure of C-terminus-truncated SlyD from Helicobacter pylori (HpSlyDΔC). HpSlyDΔC folds into two well-separated, orientation-independent domains: the PPIase-active FKBP domain and the chaperone-active insert-in-flap (IF) domain. The FKBP domain consists of a four-stranded antiparallel β-sheet with an α-helix on one side, whereas the IF domain folds into a four-stranded antiparallel β-sheet accompanied by a short α-helix. Intact H. pylori SlyD binds both Ni2+ and Zn2+, with dissociation constants of 2.74 and 3.79 μM respectively. Intriguingly, binding of Ni2+ instead of Zn2+ induces protein conformational changes around the active sites of the FKBP domain, implicating a regulatory role of nickel. The twin-arginine translocation (Tat) signal peptide from the small subunit of [NiFe] hydrogenase (HydA) binds the protein at the IF domain. Nickel binding and the recognition of the Tat signal peptide by the protein suggest that SlyD participates in [NiFe] hydrogenase maturation processes.
Collapse
Affiliation(s)
- Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Wei Xia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
58
|
Chan Chung KC, Zamble DB. Protein interactions and localization of the Escherichia coli accessory protein HypA during nickel insertion to [NiFe] hydrogenase. J Biol Chem 2011; 286:43081-90. [PMID: 22016389 DOI: 10.1074/jbc.m111.290726] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nickel delivery during maturation of Escherichia coli [NiFe] hydrogenase 3 includes the accessory proteins HypA, HypB, and SlyD. Although the isolated proteins have been characterized, little is known about how they interact with each other and the hydrogenase 3 large subunit, HycE. In this study the complexes of HypA and HycE were investigated after modification with the Strep-tag II. Multiprotein complexes containing HypA, HypB, SlyD, and HycE were observed, consistent with the assembly of a single nickel insertion cluster. An interaction between HypA and HycE did not require the other nickel insertion proteins, but HypB was not found with the large subunit in the absence of HypA. The HypA-HycE complex was not detected in the absence of the HypC or HypD proteins, involved in the preceding iron insertion step, and this interaction is enhanced by nickel brought into the cell by the NikABCDE membrane transporter. Furthermore, without the hydrogenase 1, 2, and 3 large subunits, complexes between HypA, HypB, and SlyD were observed. These results support the hypothesis that HypA acts as a scaffold for assembly of the nickel insertion proteins with the hydrogenase precursor protein after delivery of the iron center. At different stages of the hydrogenase maturation process, HypA was observed at or near the cell membrane by using fluorescence confocal microscopy, as was HycE, suggesting membrane localization of the nickel insertion event.
Collapse
Affiliation(s)
- Kim C Chan Chung
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | |
Collapse
|
59
|
Zambelli B, Cremades N, Neyroz P, Turano P, Uversky VN, Ciurli S. Insights in the (un)structural organization of Bacillus pasteurii UreG, an intrinsically disordered GTPase enzyme. MOLECULAR BIOSYSTEMS 2011; 8:220-8. [PMID: 21922108 DOI: 10.1039/c1mb05227f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the past, enzymatic activity has always been expected to be dependent on overall protein rigidity, necessary for substrate recognition and optimal orientation. However, increasing evidence is now accumulating, revealing that some proteins characterized by intrinsic disorder are actually able to perform catalysis. Among them, the only known natural intrinsically disordered enzyme is UreG, a GTPase that, in plants and bacteria, is involved in the protein interaction network leading to Ni(2+) ions delivery into the active site of urease. In this paper, we report a detailed analysis of the unfolding behaviour of UreG from Bacillus pasteurii (BpUreG), following its thermal and chemical denaturation with a combination of fluorescence spectroscopy, calorimetry, CD and NMR. The results demonstrate that BpUreG exists as an ensemble of inter-converting conformations, whose degrees of secondary structure depend on temperature and denaturant concentration. In particular, three major types of conformational ensembles with different degrees of residual structure were identified, with major structural characteristics resembling those of a molten globule (low temperature, absence of denaturant), pre-molten globule (high temperature, absence or presence of denaturant) and random coil (low temperature, presence of denaturant). Transitions among these ensembles of conformational states occur non-cooperatively although reversibly, with a gradual loss or acquisition of residual structure depending on the conditions. A possible role of disorder in the biological function of UreG is envisaged and discussed.
Collapse
Affiliation(s)
- Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, University of Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
60
|
El Ghachi M, Matteï PJ, Ecobichon C, Martins A, Hoos S, Schmitt C, Colland F, Ebel C, Prévost MC, Gabel F, England P, Dessen A, Boneca IG. Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori. Mol Microbiol 2011; 82:68-86. [PMID: 21801243 DOI: 10.1111/j.1365-2958.2011.07791.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two-hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross-linking. Small angle X-ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C-terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.
Collapse
Affiliation(s)
- Meriem El Ghachi
- Institut Pasteur, Group Biology and Genetics of the Bacterial Cell Wall, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Basmarke-Wehelie R, Sjölinder H, Jurkowski W, Elofsson A, Arnqvist A, Engstrand L, Hagner M, Wallin E, Guan N, Kuranasekera H, Aro H, Jonsson AB. The complement regulator CD46 is bactericidal to Helicobacter pylori and blocks urease activity. Gastroenterology 2011; 141:918-28. [PMID: 21699774 DOI: 10.1053/j.gastro.2011.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS CD46 is a C3b/C4b binding complement regulator and a receptor for several human pathogens. We examined the interaction between CD46 and Helicobacter pylori (a bacterium that colonizes the human gastric mucosa and causes gastritis), peptic ulcers, and cancer. METHODS Using gastric epithelial cells, we analyzed a set of H pylori strains and mutants for their ability to interact with CD46 and/or influence CD46 expression. Bacterial interaction with full-length CD46 and small CD46 peptides was evaluated by flow cytometry, fluorescence microscopy, enzyme-linked immunosorbent assay, and bacterial survival analyses. RESULTS H pylori infection caused shedding of CD46 into the extracellular environment. A soluble form of CD46 bound to H pylori and inhibited growth, in a dose- and time-dependent manner, by interacting with urease and alkyl hydroperoxide reductase, which are essential bacterial pathogenicity-associated factors. Binding of CD46 or CD46-derived synthetic peptides blocked the urease activity and ability of bacteria to survive in acidic environments. Oral administration of one CD46 peptide eradicated H pylori from infected mice. CONCLUSIONS CD46 is an antimicrobial agent that can eradicate H pylori. CD46 peptides might be developed to treat H pylori infection.
Collapse
Affiliation(s)
- Rahma Basmarke-Wehelie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Haupt C, Weininger U, Kovermann M, Balbach J. Local and Coupled Thermodynamic Stability of the Two-Domain and Bifunctional Enzyme SlyD from Escherichia coli. Biochemistry 2011; 50:7321-9. [DOI: 10.1021/bi2000627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caroline Haupt
- Institut für Physik,
Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Ulrich Weininger
- Institut für Physik,
Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Michael Kovermann
- Institut für Physik,
Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Jochen Balbach
- Institut für Physik,
Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
- Mitteldeutsches Zentrum für
Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
| |
Collapse
|
63
|
Zambelli B, Musiani F, Benini S, Ciurli S. Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res 2011; 44:520-30. [PMID: 21542631 DOI: 10.1021/ar200041k] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transition metals are both essential to enzymatic catalysis and limited in environmental availability. These two biological facts have together driven organisms to evolve mechanisms for selective metal ion sensing and utilization. Changes in metal ion concentrations are perceived by metal-dependent transcription factors and transduced into appropriate cellular responses, which regulate the machineries of competitive metal ion homeostasis and metallo-enzyme activation. The intrinsic toxicity of the majority of metal ions further creates a need for regulated intracellular trafficking, which is carried out by specific chaperones. The Ni(2+)-dependent urease enzymatic system serves as a paradigm for studying the strategies that cells use to handle an essential, yet toxic, metal ion. Although the discovery of urease as the first biological system for which nickel is essential for activity dates to 1975, the rationale for Ni(2+) selection, as well as the cascade of events involving metal-dependent gene regulation and protein-protein interactions leading to enzyme activation, have yet to be fully unraveled. The past 14 years since the Account by Hausinger and co-workers (Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res. 1997, 30, 330-337) have witnessed impressive achievements in the understanding of the biological chemistry of Ni(2+) in the urease system. In our Account, we discuss more recent advances in the comprehension of the specific role of Ni(2+) in the catalysis and the interplay between Ni(2+) and other metal ions, such as Zn(2+) and Fe(2+), in the metal-dependent enzyme activity. Our discussion focuses on work carried out in our laboratory. In particular, the structural features of the enzyme bound to inhibitors, substrate analogues, and transition state or intermediate analogues have shed light on the catalytic mechanism. Structural and functional information has been correlated to understand the Ni(2+) sensing effected by NikR, a nickel-dependent transcription factor. The urease activation process, involving insertion of Ni(2+) into the urease active site, has been in part dissected and analyzed through the investigation of the molecular properties of the accessory proteins UreD, UreF, and UreG. The intracellular trafficking of Ni(2+) has been rationalized through a deeper understanding of the structural and metal-binding properties of the metallo-chaperone UreE. All the while, a number of key general concepts have been revealed and developed. These include an understanding of (i) the overall ancillary role of Zn(2+) in nickel metabolism, (ii) the intrinsically disordered nature of the GTPase responsible for coupling the energy consumption to the carbon dioxide requirement for the urease activation process, and (iii) the role of the accessory proteins regulating this GTPase activity.
Collapse
Affiliation(s)
- Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, University of Bologna, Italy
| | | | - Stefano Benini
- Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, University of Bologna, Italy
- CERM (Center of Magnetic Resonance), University of Florence, Italy
| |
Collapse
|
64
|
Haupt C, Patzschke R, Weininger U, Gröger S, Kovermann M, Balbach J. Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR. J Am Chem Soc 2011; 133:11154-62. [DOI: 10.1021/ja2010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caroline Haupt
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Rica Patzschke
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Ulrich Weininger
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Stefan Gröger
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Michael Kovermann
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
65
|
Muller C, Bahlawane C, Aubert S, Delay CM, Schauer K, Michaud-Soret I, De Reuse H. Hierarchical regulation of the NikR-mediated nickel response in Helicobacter pylori. Nucleic Acids Res 2011; 39:7564-75. [PMID: 21666253 PMCID: PMC3177205 DOI: 10.1093/nar/gkr460] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nickel is an essential metal for Helicobacter pylori, as it is the co-factor of two enzymes crucial for colonization, urease and hydrogenase. Nickel is taken up by specific transporters and its intracellular homeostasis depends on nickel-binding proteins to avoid toxicity. Nickel trafficking is controlled by the Ni(II)-dependent transcriptional regulator NikR. In contrast to other NikR proteins, NikR from H. pylori is a pleiotropic regulator that depending on the target gene acts as an activator or a repressor. We systematically quantified the in vivo Ni2+-NikR response of 11 direct NikR targets that encode functions related to nickel metabolism, four activated and seven repressed genes. Among these, four targets were characterized for the first time (hpn, hpn-like, hydA and hspA) and NikR binding to their promoter regions was demonstrated by electrophoretic mobility shift assays. We found that NikR-dependent repression was generally set up at higher nickel concentrations than activation. Kinetics of the regulation revealed a gradual and temporal NikR-mediated response to nickel where activation of nickel-protection mechanisms takes place before repression of nickel uptake. Our in vivo study demonstrates, for the first time, a chronological hierarchy in the NikR-dependent transcriptional response to nickel that is coherent with the control of nickel homeostasis in H. pylori.
Collapse
Affiliation(s)
- Cécile Muller
- Département de Microbiologie, Institut Pasteur, Unité Pathogenèse de Helicobacter, Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
66
|
Carter EL, Flugga N, Boer JL, Mulrooney SB, Hausinger RP. Interplay of metal ions and urease. Metallomics 2011; 1:207-21. [PMID: 20046957 DOI: 10.1039/b903311d] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Urease, the first enzyme to be crystallized, contains a dinuclear nickel metallocenter that catalyzes the decomposition of urea to produce ammonia, a reaction of great agricultural and medical importance. Several mechanisms of urease catalysis have been proposed on the basis of enzyme crystal structures, model complexes, and computational efforts, but the precise steps in catalysis and the requirement of nickel versus other metals remain unclear. Purified bacterial urease is partially activated via incubation with carbon dioxide plus nickel ions; however, in vitro activation also has been achieved with manganese and cobalt. In vivo activation of most ureases requires accessory proteins that function as nickel metallochaperones and GTP-dependent molecular chaperones or play other roles in the maturation process. In addition, some microorganisms control their levels of urease by metal ion-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Eric L Carter
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | | | | | | | |
Collapse
|
67
|
Valenzuela M, Albar JP, Paradela A, Toledo H. Helicobacter pylori exhibits a fur-dependent acid tolerance response. Helicobacter 2011; 16:189-99. [PMID: 21585604 DOI: 10.1111/j.1523-5378.2011.00824.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Helicobacter pylori colonizes the acid environment of the gastric mucosa. Like other enteric bacterial pathogens, including Salmonella enterica, which must survive a brief exposure to that environment, H. pylori displays a rapid response to subtle changes in pH, which confers an increased ability to survive at more extreme acidic pH. This two-step acid tolerance response (ATR) requires de novo protein synthesis and is dependent on the function of the global regulatory protein Fur. OBJECTIVE We have explored the physiological bases of the ATR in H. pylori. MATERIALS AND METHODS Proteomic analysis of phenotypes of H. pylori and fur mutant strains show that subtle pH changes elicit significant changes in the pattern of proteins synthesized. RESULTS A loss-of-function mutation in the fur gene, obtained by insertion of an antibiotic resistance cassette, indicated that Fur regulates the expression of a fraction of H. pylori proteins. CONCLUSION A subset of proteins is involved in the ATR and confer a negative ATR phenotype.
Collapse
Affiliation(s)
- Manuel Valenzuela
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago-7, Chile
| | | | | | | |
Collapse
|
68
|
Terradot L, Noirot-Gros MF. Bacterial protein interaction networks: puzzle stones from solved complex structures add to a clearer picture. Integr Biol (Camb) 2011; 3:645-52. [PMID: 21584322 DOI: 10.1039/c0ib00023j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global scale studies of protein-protein interaction (PPI) networks have considerably expanded our view of how proteins act in the cell. In particular, bacterial "interactome" surveys have revealed that proteins can sometimes interact with a large number of protein partners and connect different cellular processes. More targeted, pathway-orientated PPI studies have also helped to propose functions for unknown proteins based on the "guilty by association" principle. However, given the immense repertoire of PPIs generated and the variability of PPI networks, more studies are required to understand the role(s) of these interactions in the cell. With the availability of bioinformatic analysis tools, transcriptomics and co-expression experiments for a given interaction, interactomes are being deciphered. More recently, functional and structural studies have been derived from these PPI networks. In this review, we will give a number of examples of how combining functional and structural studies into PPI networks has contributed to understanding the functions of some of these interactions. We discuss how interactomes now represent a unique opportunity to determine the structures of bacterial protein complexes on a large scale by the integration of multiple technologies.
Collapse
Affiliation(s)
- Laurent Terradot
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS Université de Lyon, IFR128, Biologie Structurale des Complexes Macromoléculaires Bactériens, 7 Passage du Vercors, F-69367, Lyon Cedex 07, France.
| | | |
Collapse
|
69
|
Relationship between the GTPase, metal-binding, and dimerization activities of E. coli HypB. J Biol Inorg Chem 2011; 16:857-68. [PMID: 21544686 DOI: 10.1007/s00775-011-0782-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Biosynthesis of the metallocenter in the active site of the [NiFe] hydrogenase enzyme requires the accessory protein HypB, which is a metal-binding GTPase. In this study, the interplay between the individual activities of Escherichia coli HypB was examined. The full-length protein undergoes nucleotide-responsive dimerization that is disrupted upon mutation of L242 and L246 to alanine. This mutant HypB is monomeric under all of the conditions investigated but the inability of L242A/L246A HypB to dimerize does not abolish its GTPase activity and the monomeric protein has metal-binding behavior similar to that of wild-type HypB. Furthermore, expression of L242A/L246A HypB in vivo results in hydrogenase activity that is approximately half of the activity produced by the wild-type control, suggesting that dimerization of HypB does not have a critical role in the hydrogenase maturation pathway. In contrast, the GTPase activity of HypB is modulated by metal loading of the protein. These results provide insight into the role of HypB in hydrogenase biosynthesis.
Collapse
|
70
|
Pflieger D, Bigeard J, Hirt H. Isolation and characterization of plant protein complexes by mass spectrometry. Proteomics 2011; 11:1824-33. [DOI: 10.1002/pmic.201000635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/15/2011] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
|
71
|
Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. Transient protein-protein interactions: structural, functional, and network properties. Structure 2011; 18:1233-43. [PMID: 20947012 DOI: 10.1016/j.str.2010.08.007] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/13/2010] [Accepted: 08/02/2010] [Indexed: 11/28/2022]
Abstract
Transient interactions, which involve protein interactions that are formed and broken easily, are important in many aspects of cellular function. Here we describe structural and functional properties of transient interactions between globular domains and between globular domains, short peptides, and disordered regions. The importance of posttranslational modifications in transient interactions is also considered. We review techniques used in the detection of the different types of transient protein-protein interactions. We also look at the role of transient interactions within protein-protein interaction networks and consider their contribution to different aspects of these networks.
Collapse
Affiliation(s)
- James R Perkins
- Department of Structural and Molecular Biology, University College of London, Gower Street, WC1E 6BT London, UK.
| | | | | | | | | |
Collapse
|
72
|
Sydor AM, Liu J, Zamble DB. Effects of metal on the biochemical properties of Helicobacter pylori HypB, a maturation factor of [NiFe]-hydrogenase and urease. J Bacteriol 2011; 193:1359-68. [PMID: 21239585 PMCID: PMC3067625 DOI: 10.1128/jb.01333-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/08/2011] [Indexed: 01/12/2023] Open
Abstract
The biosyntheses of the [NiFe]-hydrogenase and urease enzymes in Helicobacter pylori require several accessory proteins for proper construction of the nickel-containing metallocenters. The hydrogenase accessory proteins HypA and HypB, a GTPase, have been implicated in the nickel delivery steps of both enzymes. In this study, the metal-binding properties of H. pylori HypB were characterized, and the effects of metal binding on the biochemical behavior of the protein were examined. The protein can bind stoichiometric amounts of Zn(II) or Ni(II), each with nanomolar affinity. Mutation of Cys106 and His107, which are located between two major GTPase motifs, results in undetectable Ni(II) binding, and the Zn(II) affinity is weakened by 2 orders of magnitude. These two residues are also required for the metal-dependent dimerization observed in the presence of Ni(II) but not Zn(II). The addition of metals to the protein has distinct impacts on GTPase activity, with zinc significantly reducing GTP hydrolysis to below detectable levels and nickel only slightly altering the k(cat) and K(m) of the reaction. The regulation of HypB activities by metal binding may contribute to the maturation of the nickel-containing enzymes.
Collapse
Affiliation(s)
- Andrew M. Sydor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jenny Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
73
|
Pflieger D, Gonnet F, de la Fuente van Bentem S, Hirt H, de la Fuente A. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry. MASS SPECTROMETRY REVIEWS 2011; 30:268-297. [PMID: 21337599 DOI: 10.1002/mas.20278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 05/30/2023]
Abstract
Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks.
Collapse
Affiliation(s)
- Delphine Pflieger
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry Val d'Essonne, CNRS UMR 8587, Evry, France
| | | | | | | | | |
Collapse
|
74
|
Dian C, Vitale S, Leonard GA, Bahlawane C, Fauquant C, Leduc D, Muller C, de Reuse H, Michaud-Soret I, Terradot L. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 2011; 79:1260-75. [PMID: 21208302 DOI: 10.1111/j.1365-2958.2010.07517.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fur, the ferric uptake regulator, is a transcription factor that controls iron metabolism in bacteria. Binding of ferrous iron to Fur triggers a conformational change that activates the protein for binding to specific DNA sequences named Fur boxes. In Helicobacter pylori, HpFur is involved in acid response and is important for gastric colonization in model animals. Here we present the crystal structure of a functionally active HpFur mutant (HpFur2M; C78S-C150S) bound to zinc. Although its fold is similar to that of other Fur and Fur-like proteins, the crystal structure of HpFur reveals a unique structured N-terminal extension and an unusual C-terminal helix. The structure also shows three metal binding sites: S1 the structural ZnS₄ site previously characterized biochemically in HpFur and the two zinc sites identified in other Fur proteins. Site-directed mutagenesis and spectroscopy analyses of purified wild-type HpFur and various mutants show that the two metal binding sites common to other Fur proteins can be also metallated by cobalt. DNA protection and circular dichroism experiments demonstrate that, while these two sites influence the affinity of HpFur for DNA, only one is absolutely required for DNA binding and could be responsible for the conformational changes of Fur upon metal binding while the other is a secondary site.
Collapse
Affiliation(s)
- Cyril Dian
- Structural Biology Group, European Synchrotron Radiation Facility, BP 220 F-38043 Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Chung KCC, Zamble DB. The Escherichia coli metal-binding chaperone SlyD interacts with the large subunit of [NiFe]-hydrogenase 3. FEBS Lett 2010; 585:291-4. [PMID: 21185288 DOI: 10.1016/j.febslet.2010.12.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/10/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
Abstract
The multi-step biosynthesis of the [NiFe]-hydrogenase enzyme involves a variety of accessory proteins. To further understand this process, a Strep-tag II variant of the large subunit of Escherichia coli hydrogenase 3, HycE, was constructed to enable isolation of protein complexes. A complex with SlyD, a chaperone protein implicated in hydrogenase production through association with the nickel-binding accessory protein HypB, was observed. A SlyD-HycE interaction preceding both iron and nickel insertion to the enzyme was detected, mediated by the chaperone domain of SlyD, and independent of HypB. These results support a model of several roles for SlyD during hydrogenase maturation.
Collapse
Affiliation(s)
- Kim C Chan Chung
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
76
|
Bernarde C, Lehours P, Lasserre JP, Castroviejo M, Bonneu M, Mégraud F, Ménard A. Complexomics study of two Helicobacter pylori strains of two pathological origins: potential targets for vaccine development and new insight in bacteria metabolism. Mol Cell Proteomics 2010; 9:2796-826. [PMID: 20610778 PMCID: PMC3101863 DOI: 10.1074/mcp.m110.001065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection plays a causal role in the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma (LG-MALT) and duodenal ulcer (DU). Although many virulence factors have been associated with DU, many questions remain unanswered regarding the evolution of the infection toward this exceptional event, LG-MALT. The present study describes and compares the complexome of two H. pylori strains, strain J99 associated with DU and strain B38 associated with LG-MALT, using the two-dimensional blue native/SDS-PAGE method. It was possible to identify 90 different complexes (49 and 41 in the B38 and J99 strains, respectively); 12 of these complexes were common to both strains (seven and five in the membrane and cytoplasm, respectively), reflecting the variability of H. pylori strains. The 44 membrane complexes included numerous outer membrane proteins, such as the major adhesins BabA and SabA retrieved from a complex in the B38 strain, and also proteins from the hor family rarely studied. BabA and BabB adhesins were found to interact independently with HopM/N in the B38 and J99 strains, respectively. The 46 cytosolic complexes essentially comprised proteins involved in H. pylori physiology. Some orphan proteins were retrieved from heterooligomeric complexes, and a function could be proposed for a number of them via the identification of their partners, such as JHP0119, which may be involved in the flagellar function. Overall, this study gave new insights into the membrane and cytoplasm structure, and those which could help in the design of molecules for vaccine and/or antimicrobial agent development are highlighted.
Collapse
Affiliation(s)
- Cédric Bernarde
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Philippe Lehours
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Jean-Paul Lasserre
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Michel Castroviejo
- ‖Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, and
| | - Marc Bonneu
- **Pôle Protéomique, Plateforme Génomique Fonctionnelle, Université Victor Segalen Bordeaux 2, Bordeaux, F 33076 France
| | - Francis Mégraud
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Armelle Ménard
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| |
Collapse
|
77
|
Hitchcock A, Hall SJ, Myers JD, Mulholland F, Jones MA, Kelly DJ. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. MICROBIOLOGY (READING, ENGLAND) 2010; 156:2994-3010. [PMID: 20688826 DOI: 10.1099/mic.0.042788-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The zoonotic pathogen Campylobacter jejuni NCTC 11168 uses a complex set of electron transport chains to ensure growth with a variety of electron donors and alternative electron acceptors, some of which are known to be important for host colonization. Many of the key redox proteins essential for electron transfer in this bacterium have N-terminal twin-arginine translocase (TAT) signal sequences that ensure their transport across the cytoplasmic membrane in a folded state. By comparisons of 2D gels of periplasmic extracts, gene fusions and specific enzyme assays in wild-type, tatC mutant and complemented strains, we experimentally verified the TAT dependence of 10 proteins with an N-terminal twin-arginine motif. NrfH, which has a TAT-like motif (LRRKILK), was functional in nitrite reduction in a tatC mutant, and was correctly rejected as a TAT substrate by the tatfind and TatP prediction programs. However, the hydrogenase subunit HydA is also rejected by tatfind, but was shown to be TAT-dependent experimentally. The YedY homologue Cj0379 is the only TAT translocated molybdoenzyme of unknown function in C. jejuni; we show that a cj0379c mutant is deficient in chicken colonization and has a nitrosative stress phenotype, suggestive of a possible role for Cj0379 in the reduction of reactive nitrogen species in the periplasm. Only two potential TAT chaperones, NapD and Cj1514, are encoded in the genome. Surprisingly, despite homology to TorD, Cj1514 was shown to be specifically required for the activity of formate dehydrogenase, not trimethylamine N-oxide reductase, and was designated FdhM.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Stephen J Hall
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Jonathan D Myers
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Francis Mulholland
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonnington, Loughborough LE12 2RD, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
78
|
Shi R, Munger C, Asinas A, Benoit SL, Miller E, Matte A, Maier RJ, Cygler M. Crystal structures of apo and metal-bound forms of the UreE protein from Helicobacter pylori: role of multiple metal binding sites. Biochemistry 2010; 49:7080-8. [PMID: 20681615 DOI: 10.1021/bi100372h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The crystal structure of the urease maturation protein UreE from Helicobacter pylori has been determined in its apo form at 2.1 A resolution, bound to Cu(2+) at 2.7 A resolution, and bound to Ni(2+) at 3.1 A resolution. Apo UreE forms dimers, while the metal-bound enzymes are arranged as tetramers that consist of a dimer of dimers associated around the metal ion through coordination by His102 residues from each subunit of the tetramer. Comparison of independent subunits from different crystal forms indicates changes in the relative arrangement of the N- and C-terminal domains in response to metal binding. The improved ability of engineered versions of UreE containing hexahistidine sequences at either the N-terminal or C-terminal end to provide Ni(2+) for the final metal sink (urease) is eliminated in the H102A version. Therefore, the ability of the improved Ni(2+)-binding versions to deliver more nickel is likely an effect of an increased local concentration of metal ions that can rapidly replenish transferred ions bound to His102.
Collapse
Affiliation(s)
- Rong Shi
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | |
Collapse
|
79
|
The Sulfolobus rod-shaped virus 2 encodes a prominent structural component of the unique virion release system in Archaea. Virology 2010; 404:1-4. [PMID: 20488501 DOI: 10.1016/j.virol.2010.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/08/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Recently a unique mechanism of virion release was discovered in Archaea, different from lysis and egress systems of bacterial and eukaryotic viruses. It involves formation of pyramidal structures on the host cell surface that rupture the S-layer and by opening outwards, create apertures through which mature virions escape the cell. Here we present results of a protein analysis of Sulfolobus islandicus cells infected with the rudivirus SIRV2, which enable us to postulate SIRV2-encoded protein P98 as the major constituent of these exceptional cellular ultrastructures.
Collapse
|
80
|
Coupled amino acid deamidase-transport systems essential for Helicobacter pylori colonization. Infect Immun 2010; 78:2782-92. [PMID: 20368342 DOI: 10.1128/iai.00149-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In addition to their classical roles as carbon or nitrogen sources, amino acids can be used for bacterial virulence, colonization, or stress resistance. We found that original deamidase-transport systems impact colonization by Helicobacter pylori, a human pathogen associated with gastric pathologies, including adenocarcinoma. We demonstrated that l-asparaginase (Hp-AnsB) and gamma-glutamyltranspeptidase (Hp-gammaGT) are highly active periplasmic deamidases in H. pylori, producing ammonia and aspartate or glutamate from asparagine and glutamine, respectively. Hp-GltS was identified as a sole and specialized transporter for glutamate, while aspartate was exclusively imported by Hp-DcuA. Uptake of Gln and Asn strictly relies on indirect pathways following prior periplasmic deamidation into Glu and Asp. Hence, in H. pylori, the coupled action of periplasmic deamidases with their respective transporters enables the acquisition of Glu and Asp from Gln and Asn, respectively. These systems were active at neutral rather than acidic pH, suggesting their function near the host epithelial cells. We showed that Hp-DcuA, the fourth component of these novel deamidase-transport systems, was as crucial as Hp-gammaGT, Hp-AnsB, and Hp-GltS for animal model colonization. In conclusion, the pH-regulated coupled amino acid deamidase-uptake system represents an original optimized system that is essential for in vivo colonization of the stomach environment by H. pylori. We propose a model in which these two nonredundant systems participate in H. pylori virulence by depleting gastric or immune cells from protective amino acids such as Gln and producing toxic ammonia close to the host cells.
Collapse
|
81
|
Löw C, Neumann P, Tidow H, Weininger U, Haupt C, Friedrich-Epler B, Scholz C, Stubbs MT, Balbach J. Crystal structure determination and functional characterization of the metallochaperone SlyD from Thermus thermophilus. J Mol Biol 2010; 398:375-90. [PMID: 20230833 DOI: 10.1016/j.jmb.2010.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/25/2010] [Accepted: 03/04/2010] [Indexed: 11/27/2022]
Abstract
SlyD (sensitive to lysis D; product of the slyD gene) is a prolyl isomerase [peptidyl-prolyl cis/trans isomerase (PPIase)] of the FK506 binding protein (FKBP) type with chaperone properties. X-ray structures derived from three different crystal forms reveal that SlyD from Thermus thermophilus consists of two domains representing two functional units. PPIase activity is located in a typical FKBP domain, whereas chaperone function is associated with the autonomously folded insert-in-flap (IF) domain. The two isolated domains are stable and functional in solution, but the presence of the IF domain increases the PPIase catalytic efficiency of the FKBP domain by 2 orders of magnitude, suggesting that the two domains act synergistically to assist the folding of polypeptide chains. The substrate binding surface of SlyD from T. thermophilus was mapped by NMR chemical shift perturbations to hydrophobic residues of the IF domain, which exhibits significantly reduced thermodynamic stability according to NMR hydrogen/deuterium exchange and fluorescence equilibrium transition experiments. Based on structural homologies, we hypothesize that this is due to the absence of a stabilizing beta-strand, suggesting in turn a mechanism for chaperone activity by 'donor-strand complementation.' Furthermore, we identified a conserved metal (Ni(2+)) binding site at the C-terminal SlyD-specific helical appendix of the FKBP domain, which may play a role in metalloprotein assembly.
Collapse
Affiliation(s)
- Christian Löw
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Schauer K, Muller C, Carrière M, Labigne A, Cavazza C, De Reuse H. The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. J Bacteriol 2010; 192:1231-7. [PMID: 20061471 PMCID: PMC2820833 DOI: 10.1128/jb.01216-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/27/2009] [Indexed: 02/06/2023] Open
Abstract
The transition metal nickel plays a central role in the human gastric pathogen Helicobacter pylori because it is required for two enzymes indispensable for colonization, the nickel metalloenzyme urease and [NiFe] hydrogenase. To sustain nickel availability for these metalloenzymes while providing protection from the metal's harmful effects, H. pylori is equipped with several specific nickel-binding proteins. Among these, H. pylori possesses a particular chaperone, HspA, that is a homolog of the highly conserved and essential bacterial heat shock protein GroES. HspA contains a unique His-rich C-terminal extension and was demonstrated to bind nickel in vitro. To investigate the function of this extension in H. pylori, we constructed mutants carrying either a complete deletion or point mutations in critical residues of this domain. All mutants presented a decreased intracellular nickel content measured by inductively coupled plasma mass spectrometry (ICP-MS) and reduced nickel tolerance. While urease activity was unaffected in the mutants, [NiFe] hydrogenase activity was significantly diminished when the C-terminal extension of HspA was mutated. We conclude that H. pylori HspA is involved in intracellular nickel sequestration and detoxification and plays a novel role as a specialized nickel chaperone involved in nickel-dependent maturation of hydrogenase.
Collapse
Affiliation(s)
- Kristine Schauer
- Institut Pasteur, Département de Microbiologie, Unité Postulante Pathogenèse de Helicobacter, 75724 Paris Cedex 15, France, Institut Pasteur, Département de Microbiologie, Unité de Pathogénie Bactérienne des Muqueuses, 75724 Paris Cedex 15, France, UMR3299 CEA-CNRS SIS2M, LSDRNI CEA/Saclay, 91191 Gif-sur-Yvette, France, Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | - Cécile Muller
- Institut Pasteur, Département de Microbiologie, Unité Postulante Pathogenèse de Helicobacter, 75724 Paris Cedex 15, France, Institut Pasteur, Département de Microbiologie, Unité de Pathogénie Bactérienne des Muqueuses, 75724 Paris Cedex 15, France, UMR3299 CEA-CNRS SIS2M, LSDRNI CEA/Saclay, 91191 Gif-sur-Yvette, France, Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | - Marie Carrière
- Institut Pasteur, Département de Microbiologie, Unité Postulante Pathogenèse de Helicobacter, 75724 Paris Cedex 15, France, Institut Pasteur, Département de Microbiologie, Unité de Pathogénie Bactérienne des Muqueuses, 75724 Paris Cedex 15, France, UMR3299 CEA-CNRS SIS2M, LSDRNI CEA/Saclay, 91191 Gif-sur-Yvette, France, Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | - Agnès Labigne
- Institut Pasteur, Département de Microbiologie, Unité Postulante Pathogenèse de Helicobacter, 75724 Paris Cedex 15, France, Institut Pasteur, Département de Microbiologie, Unité de Pathogénie Bactérienne des Muqueuses, 75724 Paris Cedex 15, France, UMR3299 CEA-CNRS SIS2M, LSDRNI CEA/Saclay, 91191 Gif-sur-Yvette, France, Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | - Christine Cavazza
- Institut Pasteur, Département de Microbiologie, Unité Postulante Pathogenèse de Helicobacter, 75724 Paris Cedex 15, France, Institut Pasteur, Département de Microbiologie, Unité de Pathogénie Bactérienne des Muqueuses, 75724 Paris Cedex 15, France, UMR3299 CEA-CNRS SIS2M, LSDRNI CEA/Saclay, 91191 Gif-sur-Yvette, France, Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Postulante Pathogenèse de Helicobacter, 75724 Paris Cedex 15, France, Institut Pasteur, Département de Microbiologie, Unité de Pathogénie Bactérienne des Muqueuses, 75724 Paris Cedex 15, France, UMR3299 CEA-CNRS SIS2M, LSDRNI CEA/Saclay, 91191 Gif-sur-Yvette, France, Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| |
Collapse
|
83
|
|
84
|
Kaluarachchi H, Sutherland DEK, Young A, Pickering IJ, Stillman MJ, Zamble DB. The Ni(II)-Binding Properties of the Metallochaperone SlyD. J Am Chem Soc 2009; 131:18489-500. [DOI: 10.1021/ja9081765] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harini Kaluarachchi
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7, and Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Duncan E. K. Sutherland
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7, and Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Alex Young
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7, and Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Ingrid J. Pickering
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7, and Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Martin J. Stillman
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7, and Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7, and Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| |
Collapse
|
85
|
Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crécy-Lagard V. A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics 2009; 10:470. [PMID: 19822009 PMCID: PMC2770081 DOI: 10.1186/1471-2164-10-470] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/12/2009] [Indexed: 11/11/2022] Open
Abstract
Background COG0523 proteins are, like the nickel chaperones of the UreG family, part of the G3E family of GTPases linking them to metallocenter biosynthesis. Even though the first COG0523-encoding gene, cobW, was identified almost 20 years ago, little is known concerning the function of other members belonging to this ubiquitous family. Results Based on a combination of comparative genomics, literature and phylogenetic analyses and experimental validations, the COG0523 family can be separated into at least fifteen subgroups. The CobW subgroup involved in cobalamin synthesis represents only one small sub-fraction of the family. Another, larger subgroup, is suggested to play a predominant role in the response to zinc limitation based on the presence of the corresponding COG0523-encoding genes downstream from putative Zur binding sites in many bacterial genomes. Zur binding sites in these genomes are also associated with candidate zinc-independent paralogs of zinc-dependent enzymes. Finally, the potential role of COG0523 in zinc homeostasis is not limited to Bacteria. We have predicted a link between COG0523 and regulation by zinc in Archaea and show that two COG0523 genes are induced upon zinc depletion in a eukaryotic reference organism, Chlamydomonas reinhardtii. Conclusion This work lays the foundation for the pursuit by experimental methods of the specific role of COG0523 members in metal trafficking. Based on phylogeny and comparative genomics, both the metal specificity and the protein target(s) might vary from one COG0523 subgroup to another. Additionally, Zur-dependent expression of COG0523 and putative paralogs of zinc-dependent proteins may represent a mechanism for hierarchal zinc distribution and zinc sparing in the face of inadequate zinc nutrition.
Collapse
Affiliation(s)
- Crysten E Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Affiliation(s)
- Yanjie Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
87
|
Fischer W, Prassl S, Haas R. Virulence Mechanisms and Persistence Strategies of the Human Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2009; 337:129-71. [DOI: 10.1007/978-3-642-01846-6_5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
88
|
Helicobacter pylori UreE, a urease accessory protein: specific Ni(2+)- and Zn(2+)-binding properties and interaction with its cognate UreG. Biochem J 2009; 422:91-100. [PMID: 19476442 DOI: 10.1042/bj20090434] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The persistence of Helicobacter pylori in the hostile environment of the human stomach is ensured by the activity of urease. The essentiality of Ni(2+) for this enzyme demands proper intracellular trafficking of this metal ion. The metallo-chaperone UreE promotes Ni(2+) insertion into the apo-enzyme in the last step of urease maturation while facilitating concomitant GTP hydrolysis. The present study focuses on the metal-binding properties of HpUreE (Helicobacter pylori UreE) and its interaction with the related accessory protein HpUreG, a GTPase involved in the assembly of the urease active site. ITC (isothermal titration calorimetry) showed that HpUreE binds one equivalent of Ni(2+) (Kd=0.15 microM) or Zn(2+) (Kd=0.49 microM) per dimer, without modification of the protein oligomeric state, as indicated by light scattering. Different ligand environments for Zn(2+) and Ni(2+), which involve crucial histidine residues, were revealed by site-directed mutagenesis, suggesting a mechanism for discriminating metal-ion-specific binding. The formation of a HpUreE-HpUreG protein complex was revealed by NMR spectroscopy, and the thermodynamics of this interaction were established using ITC. A role for Zn(2+), and not for Ni(2+), in the stabilization of this complex was demonstrated using size-exclusion chromatography, light scattering, and ITC experiments. A calculated viable structure for the complex suggested the presence of a novel binding site for Zn(2+), actually detected using ITC and site-directed mutagenesis. The results are discussed in relation to available evidence of a UreE-UreG functional interaction in vivo. A possible role for Zn(2+) in the Ni(2+)-dependent urease system is envisaged.
Collapse
|
89
|
An intact urease assembly pathway is required to compete with NikR for nickel ions in Helicobacter pylori. J Bacteriol 2009; 191:2405-8. [PMID: 19168618 DOI: 10.1128/jb.01657-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the effects of urease and hydrogenase assembly gene deletions on NikR activation in H. pylori strains 26695 and G27. The loss of any component of urease assembly increased NikR activity under Ni2+-limiting conditions, as measured by reduced transcript levels and 63Ni accumulation. Additionally, SlyD functioned in urease assembly in strain 26695.
Collapse
|
90
|
Thibonnier M, Thiberge JM, De Reuse H. Trans-translation in Helicobacter pylori: essentiality of ribosome rescue and requirement of protein tagging for stress resistance and competence. PLoS One 2008; 3:e3810. [PMID: 19043582 PMCID: PMC2584231 DOI: 10.1371/journal.pone.0003810] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 10/29/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The ubiquitous bacterial trans-translation is one of the most studied quality control mechanisms. Trans-translation requires two specific factors, a small RNA SsrA (tmRNA) and a protein co-factor SmpB, to promote the release of ribosomes stalled on defective mRNAs and to add a specific tag sequence to aberrant polypeptides to direct them to degradation pathways. Helicobacter pylori is a pathogen persistently colonizing a hostile niche, the stomach of humans. PRINCIPAL FINDINGS We investigated the role of trans-translation in this bacterium well fitted to resist stressful conditions and found that both smpB and ssrA were essential genes. Five mutant versions of ssrA were generated in H. pylori in order to investigate the function of trans-translation in this organism. Mutation of the resume codon that allows the switch of template of the ribosome required for its release was essential in vivo, however a mutant in which this codon was followed by stop codons interrupting the tag sequence was viable. Therefore one round of translation is sufficient to promote the rescue of stalled ribosomes. A mutant expressing a truncated SsrA tag was viable in H. pylori, but affected in competence and tolerance to both oxidative and antibiotic stresses. This demonstrates that control of protein degradation through trans-translation is by itself central in the management of stress conditions and of competence and supports a regulatory role of trans-translation-dependent protein tagging. In addition, the expression of smpB and ssrA was found to be induced upon acid exposure of H. pylori. CONCLUSIONS We conclude to a central role of trans-translation in H. pylori both for ribosome rescue possibly due to more severe stalling and for protein degradation to recover from stress conditions frequently encountered in the gastric environment. Finally, the essential trans-translation machinery of H. pylori is an excellent specific target for the development of novel antibiotics.
Collapse
Affiliation(s)
- Marie Thibonnier
- Institut Pasteur, Unité Postulante de Pathogenèse de Helicobacter, Paris, France
| | - Jean-Michel Thiberge
- Institut Pasteur, Unité Postulante de Pathogenèse de Helicobacter, Paris, France
| | - Hilde De Reuse
- Institut Pasteur, Unité Postulante de Pathogenèse de Helicobacter, Paris, France
- * E-mail:
| |
Collapse
|