51
|
Inder KL, Davis M, Hill MM. Ripples in the pond--using a systems approach to decipher the cellular functions of membrane microdomains. MOLECULAR BIOSYSTEMS 2013; 9:330-8. [PMID: 23322173 DOI: 10.1039/c2mb25300c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane microdomains such as lipid rafts and caveolae regulate a myriad of cellular functions including cell signalling, protein trafficking, cell viability, and cell movement. They have been implicated in diseases such as cancer, diabetes and Alzheimer's disease, highlighting the essential role they play in cell processes. Despite much research and debate on the size, composition and dynamics of membrane microdomains, the molecular mechanism(s) of their action remain poorly understood. Most studies have dealt solely with the content and properties of the membrane microdomain as an entity in itself. However, recent work shows that membrane microdomain disruption has wide ranging effects on other subcellular compartments, and the cell as a whole. Hence we propose that a systems approach incorporating many cellular attributes such as subcellular localisation is required in order to understand the global impact of microdomains on cell function. Although analysis of sub-proteome changes already provides additional insight, we further propose biological network analysis of functional proteomics data to capture effects at the systems level. In this review, we highlight the use of protein-protein interactions networks and mixed networks to portray and visualize the relationships between proteins within and between subcellular fractions. Such a systems analysis will be required to improve our understanding of the full cellular function of membrane microdomains.
Collapse
|
52
|
Xargay-Torrent S, López-Guerra M, Montraveta A, Saborit-Villarroya I, Rosich L, Navarro A, Pérez-Galán P, Roué G, Campo E, Colomer D. Sorafenib inhibits cell migration and stroma-mediated bortezomib resistance by interfering B-cell receptor signaling and protein translation in mantle cell lymphoma. Clin Cancer Res 2012; 19:586-97. [PMID: 23231952 DOI: 10.1158/1078-0432.ccr-12-1935] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We evaluated the antitumoral properties of the multikinase inhibitor sorafenib in mantle cell lymphoma (MCL), an aggressive B lymphoma for which current therapies have shown limited efficacy. EXPERIMENTAL DESIGN Sensitivity to sorafenib was analyzed in MCL cell lines and primary samples in the context of BCR and microenvironment simulation. Sorafenib signaling was characterized by quantitative PCR, Western blotting, immunofluorescence, and protein immunoprecipitation. Migration analysis included flow cytometric counting, actin polymerization assays, and siRNA-mediated knockdown of focal adhesion kinase (FAK). In vivo antitumor effect of sorafenib and bortezomib was analyzed in an MCL xenograft mouse model. RESULTS Sorafenib rapidly dephosphorylates the BCR-associated kinases, Syk and Lyn, as well as FAK, an Src target involved in focal adhesion. In this line, sorafenib displays strong synergy with the Syk inhibitor, R406. Sorafenib also blocks Mcl-1 and cyclin D1 translation, which promotes an imbalance between pro- and antiapoptotic proteins and facilitates Bax release from cyclin D1, leading to the induction of mitochondrial apoptosis and caspase-dependent and -independent mechanisms. Moreover, sorafenib inhibits MCL cell migration and CXCL12-induced actin polymerization. FAK knockdown partially prevents this inhibitory effect, indicating that FAK is a relevant target of sorafenib. Furthermore, sorafenib enhances the antitumoral activity of bortezomib in an MCL xenograft mouse model as well as overcomes stroma-mediated bortezomib resistance in MCL cells. CONCLUSION We show for the first time that sorafenib interferes with BCR signaling, protein translation and modulates the microenvironment prosurvival signals in MCL, suggesting that sorafenib, alone or in combination with bortezomib, may represent a promising approach to treat patients with MCL.
Collapse
Affiliation(s)
- Sílvia Xargay-Torrent
- Hematopathology Unit, Department of Pathology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kohnke PL, Mactier S, Almazi JG, Crossett B, Christopherson RI. Fludarabine and Cladribine Induce Changes in Surface Proteins on Human B-Lymphoid Cell Lines Involved with Apoptosis, Cell Survival, and Antitumor Immunity. J Proteome Res 2012; 11:4436-48. [PMID: 22839105 DOI: 10.1021/pr300079c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Philippa L. Kohnke
- School of
Molecular Bioscience, University of Sydney,
Sydney, NSW 2006, Australia
| | - Swetlana Mactier
- School of
Molecular Bioscience, University of Sydney,
Sydney, NSW 2006, Australia
| | - Juhura G. Almazi
- School of
Molecular Bioscience, University of Sydney,
Sydney, NSW 2006, Australia
| | - Ben Crossett
- School of
Molecular Bioscience, University of Sydney,
Sydney, NSW 2006, Australia
| | | |
Collapse
|
54
|
Kim A, Park S, Lee JE, Jang WS, Lee SJ, Kang HJ, Lee SS. The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leuk Res 2012; 36:912-20. [DOI: 10.1016/j.leukres.2012.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 12/24/2022]
|
55
|
Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L, Schwabe JWR, Cain K, Macfarlane M. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 2012; 47:291-305. [PMID: 22683266 PMCID: PMC3477315 DOI: 10.1016/j.molcel.2012.05.004] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/24/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
Abstract
Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.
Collapse
Affiliation(s)
- Laura S Dickens
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Robinson GL, Dinsdale D, Macfarlane M, Cain K. Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL. Oncogene 2012; 31:4996-5006. [PMID: 22310286 DOI: 10.1038/onc.2012.13] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
TRAIL (TNF (tumour necrosis factor)-related apoptosis-inducing ligand) a putative anti-cancer cytokine induces apoptosis through DISC (death-inducing signalling complex)-mediated activation of caspase-8 and/or cleavage of Bid. TRAIL is relatively specific for tumour cells but primary chronic lymphocytic leukaemia and mantle cell lymphoma (MCL) cells are resistant. Herein, we show that cellular metabolism influences cell death and that MCL cells (Z138 cell line) can survive/proliferate in glucose-free media by switching from aerobic glycolysis to 'coupled' oxidative phosphorylation. Extracellular flux analysis and mitochondrial inhibitors reveal that in the absence of glycolysis, Z138 cells have enhanced respiratory capacity coupled to ATP synthesis, similar to 'classical' state 3 mitochondria. Conversely, 2-deoxyglucose (2DG) blocked glycolysis and partially inhibited glycolytic-dependent oxidative phosphorylation, resulting in a 50% reduction in cellular ATP levels. Also, 2DG sensitised Z138 cells to TRAIL and induced a marked decrease in caspase-8, -3, cFLIP(S), Bid and Mcl-1 expression but Bak remained unchanged, altering the Mcl-1/Bak ratio, facilitating cytochrome c release and cell death. Conversely, under glucose-free conditions, Z138 cells were less sensitive to TRAIL with reduced TRAIL-R1/R2 surface receptor expression and impaired DISC formation. Anti-apoptotic proteins Bcl-2 and XIAP were up-regulated while pro-apoptotic BAX was down-regulated. Additionally, mitochondria had higher levels of cytochrome c and ultrastucturally exhibited a condensed configuration with enhanced intracristal spaces. Thus, metabolic switching was accompanied by mitochondrial proteome and ultrastructural remodelling enabling enhanced respiration activity. Cytochrome c release was decreased in glucose-free cells, suggesting that either pore formation was inhibited or that cytochrome c was more tightly bound. Glucose-free Z138 cells were also resistant to intrinsic cell death stimuli (ABT-737 and ionising radiation). In summary, in MCL cells, the anti-glycolytic effects of 2DG and glucose restriction produced opposite effects on TRAIL-induced cell death, demonstrating that mitochondrial metabolism directly modulates sensitivity of tumour cells to apoptosis.
Collapse
Affiliation(s)
- G L Robinson
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
57
|
Owen C, Stewart DA. Obinutuzumab for the treatment of lymphoproliferative disorders. Expert Opin Biol Ther 2012; 12:343-51. [PMID: 22283718 DOI: 10.1517/14712598.2012.657622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Targeted therapy against CD20 with the mAb rituximab has led to significant improvements in survival for patients with B-cell non-Hodgkin's lymphoma (NHL). Despite these improvements, many patients relapse and/or become refractory after rituximab-containing therapies and thus better therapies are required for NHL. AREAS COVERED Obinutuzumab is a novel, humanized, anti-CD20 mAb currently being investigated in Phase III studies in comparison to rituximab. An overview of obinutuzumab, its mechanisms of action and the results of pre-clinical and Phase I/II studies are presented. EXPERT OPINION Pre-clinical studies suggest that obinutuzumab is a more potent anti-CD20 mAb than Rituximab at inducing antibody-dependent cellular cytotoxicity (ADCC) and direct cell death (DCD). Obinutuzumab is safe and effective in CD20 + NHL and further study is warranted. Results of ongoing Phase III clinical trials comparing Obinutuzumab to Rituximab in different disease settings and with different chemotherapy regimens are eagerly awaited.
Collapse
Affiliation(s)
- Carolyn Owen
- Tom Baker Cancer Centre & University of Calgary, 1331-29th St NW, Calgary, Alberta, Canada
| | | |
Collapse
|
58
|
Staubach S, Hanisch FG. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics 2011; 8:263-77. [PMID: 21501018 DOI: 10.1586/epr.11.2] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid rafts are defined as microdomains within the lipid bilayer of cellular membranes that assemble subsets of transmembrane or glycosylphosphatidylinisotol-anchored proteins and lipids (cholesterol and sphingolipids) and experimentally resist extraction in cold detergent (detergent-resistant membrane). These highly dynamic raft domains are essential in signaling processes and also form sorting platforms for targeted protein traffic. Lipid rafts are involved in protein endocytosis that occurs via caveolae or flotillin-dependent pathways. Non-constitutive protein components of rafts fluctuate dramatically in cancer with impacts on cell proliferation, signaling, protein trafficking, adhesion and apoptosis. This article focuses on the identification of candidate cancer-associated biomarkers in carcinoma cells using state-of-the-art proteomics.
Collapse
Affiliation(s)
- Simon Staubach
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| | | |
Collapse
|
59
|
Sander B. Mantle cell lymphoma: recent insights into pathogenesis, clinical variability, and new diagnostic markers. Semin Diagn Pathol 2011; 28:245-55. [DOI: 10.1053/j.semdp.2011.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
60
|
TRPV channels in tumor growth and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:947-67. [PMID: 21290335 DOI: 10.1007/978-94-007-0265-3_49] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential (TRP) channels affect several physiological and pathological processes. In particular, TRP channels have been recently involved in the triggering of enhanced proliferation, aberrant differentiation, and resistance to apoptotic cell death leading to the uncontrolled tumor invasion. About thirty TRPs have been identified to date, and are classified in seven different families: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane protein) and TRPN (NomPC-like). Among these channel families, the TRPC, TRPM, and TRPV families have been mainly correlated with malignant growth and progression. The aim of this review is to summarize data reported so far on the expression and the functional role of TRPV channels during cancer growth and progression. TRPV channels have been found to regulate cancer cell proliferation, apoptosis, angiogenesis, migration and invasion during tumor progression, and depending on the stage of the cancer, up- and down-regulation of TRPV mRNA and protein expression have been reported. These changes may have cancer promoting effects by increasing the expression of constitutively active TRPV channels in the plasma membrane of cancer cells by enhancing Ca(2+)-dependent proliferative response; in addition, an altered expression of TRPV channels may also offer a survival advantage, such as resistance of cancer cells to apoptotic-induced cell death. However, recently, a role of TRPV gene mutations in cancer development, and a relationship between the expression of specific TRPV gene single nucleotide polymorphisms and increased cancer risk have been reported. We are only at the beginning, a more deep studies on the physiopathology role of TRPV channels are required to understand the functional activity of these channels in cancer, to assess which TRPV proteins are associated with the development and progression of cancer and to develop further knowledge of TRPV proteins as valuable diagnostic and/or prognostic markers, as well as targets for pharmaceutical intervention and targeting in cancer.
Collapse
|
61
|
Savas JN, Stein BD, Wu CC, Yates JR. Mass spectrometry accelerates membrane protein analysis. Trends Biochem Sci 2011; 36:388-96. [PMID: 21616670 PMCID: PMC3222592 DOI: 10.1016/j.tibs.2011.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 12/25/2022]
Abstract
Cellular membranes are composed of proteins and glyco- and phospholipids and play an indispensible role in maintaining cellular integrity and homeostasis, by physically restricting biochemical processes within cells and providing protection. Membrane proteins perform many essential functions, which include operating as transporters, adhesion-anchors, receptors, and enzymes. Recent advancements in proteomic mass spectrometry have resulted in substantial progress towards the determination of the plasma membrane (PM) proteome, resolution of membrane protein topology, establishment of numerous receptor protein complexes, identification of ligand-receptor pairs, and the elucidation of signaling networks originating at the PM. Here, we discuss the recent accelerated success of discovery-based proteomic pipelines for the establishment of a complete membrane proteome.
Collapse
Affiliation(s)
- Jeffrey N. Savas
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Benjamin D. Stein
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Christine C. Wu
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace St., Pittsburgh, PA 15261
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
62
|
Abstract
Rituximab has become a ubiquitous component of treatment regimens for follicular non-Hodgkin lymphoma. Despite widespread clinical use, the mechanisms by which tumor cells resist rituximab-mediated destruction remain unclear. Rituximab relies in part on immune effector mechanisms for its antitumor effect, and thus resistance may be mediated not only by intrinsic tumor-cell alterations but also by the host immunological environment. In this article, we explore the mechanisms of action of rituximab, the incidence of rituximab resistance, and potential mechanisms of resistance. Finally, we discuss novel approaches to modulate the antibody, the tumor cell, and the host immunologic environment to overcome rituximab resistance. Further research into the mechanisms of rituximab resistance will be essential to improving the efficacy of anti-CD20 therapy in NHL, and may also pay dividends in the optimization of monoclonal antibody therapy across a wide range of diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antigens, CD20/genetics
- Antigens, CD20/immunology
- Apoptosis/drug effects
- Apoptosis/immunology
- Complement System Proteins/genetics
- Complement System Proteins/metabolism
- Drug Administration Schedule
- Drug Dosage Calculations
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/immunology
- Humans
- Immunotherapy
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/pathology
- Lymphoma, Follicular/therapy
- Mice
- Polymorphism, Single Nucleotide
- Receptors, Fc/genetics
- Receptors, Fc/metabolism
- Rituximab
- Tumor Microenvironment
Collapse
Affiliation(s)
- Andrew R. Rezvani
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - David G. Maloney
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| |
Collapse
|
63
|
Pighi C, Gu TL, Dalai I, Barbi S, Parolini C, Bertolaso A, Pedron S, Parisi A, Ren J, Cecconi D, Chilosi M, Menestrina F, Zamò A. Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol (Dordr) 2011; 34:141-53. [PMID: 21394647 PMCID: PMC3063577 DOI: 10.1007/s13402-011-0019-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2011] [Indexed: 01/29/2023] Open
Abstract
Background Mantle cell lymphoma (MCL) is currently an incurable entity, and new therapeutic approaches are needed. We have applied a high-throughput phospho-proteomic technique to MCL cell lines to identify activated pathways and we have then validated our data in both cell lines and tumor tissues. Methods PhosphoScan analysis was performed on MCL cell lines. Results were validated by flow cytometry and western blotting. Functional validation was performed by blocking the most active pathway in MCL cell lines. Results PhosphoScan identified more than 300 tyrosine-phosporylated proteins, among which many protein kinases. The most abundant peptides belonged to proteins connected with B-cell receptor (BCR) signaling. Active BCR signaling was demonstrated by flow cytometry in MCL cells and by western blotting in MCL tumor tissues. Blocking BCR signaling by Syk inhibitor piceatannol induced dose/time-dependent apoptosis in MCL cell lines, as well as several modifications in the phosphorylation status of BCR pathway members and a collapse of cyclin D1 protein levels. Conclusion Our data support a pro-survival role of BCR signaling in MCL and suggest that this pathway might be a candidate for therapy. Our findings also suggest that Syk activation patterns might be different in MCL compared to other lymphoma subtypes. Electronic supplementary material The online version of this article (doi:10.1007/s13402-011-0019-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiara Pighi
- Department of Pathology and Diagnostics, University of Verona, P.le Scuro 10, 37134, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Capasso M, DeCoursey TE, Dyer MJS. pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1. Trends Cell Biol 2011; 21:20-8. [PMID: 20961760 PMCID: PMC3014425 DOI: 10.1016/j.tcb.2010.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/02/2010] [Accepted: 09/13/2010] [Indexed: 12/22/2022]
Abstract
Electrophysiological studies have implicated voltage-gated proton channels in several specific cellular contexts. In neutrophils, they mediate charge compensation that is associated with the oxidative burst of phagocytosis. Molecular characterization of the hydrogen voltage-gated channel 1 (HVCN1) has enabled identification of unanticipated and diverse functions: HVCN1 not only modulates signaling from the B-cell receptor following B-cell activation and histamine release from basophils, but also mediates pH-dependent activation of spermatozoa, as well as acid secretion by tracheal epithelium. The importance of HVCN1 in pH regulation during phagocytosis was established by surprising evidence that indicated its first-responder role. In this review, we discuss recent findings from a functional perspective, and the potential of HVCN1 as a therapeutic target for autoimmune and other diseases.
Collapse
Affiliation(s)
- Melania Capasso
- Centre for Cancer & Inflammation, Institute of Cancer, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom.
| | | | | |
Collapse
|
65
|
Nagashima T, Ichimiya S, Kikuchi T, Saito Y, Matsumiya H, Ara S, Koshiba S, Zhang J, Hatate C, Tonooka A, Kubo T, Ye RC, Hirose B, Shirasaki H, Izumi T, Takami T, Himi T, Sato N. Arachidonate 5-lipoxygenase establishes adaptive humoral immunity by controlling primary B cells and their cognate T-cell help. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:222-32. [PMID: 21224059 DOI: 10.1016/j.ajpath.2010.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/19/2022]
Abstract
In this study, we report the unique role of arachidonate 5-lipoxygenase (Alox5) in the regulation of specific humoral immune responses. We previously reported an L22 monoclonal antibody with which human primary resting B cells in the mantle zones of lymphoid follicles are well-defined. Proteomics analyses enabled identification of an L22 antigen as Alox5, which was highly expressed by naive and memory B cells surrounding germinal centers. Cellular growth of mantle cell lymphoma cells also seemed to depend on Alox5. Alox5(-/-) mice exhibited weak antibody responses specific to foreign antigens at the initial and recall phases. This was probably attributable to the low number of follicular and memory B cells and the functional loss of interleukin-21-mediated responses of follicular B cells. Moreover, Alox5(-/-) mice could not fully foster the development of follicular B helper T (Tfh) cells even after immunization with foreign antigens. Further experiments indicated that Alox5 affected mortality in experimentally induced enterocolitis in germ-prone circumstances, indicating that Alox5 would endow immunologic milieu. Our results illustrate the novel role of Alox5 in adaptive humoral immunity by managing primary B cells and Tfh cells in vivo.
Collapse
Affiliation(s)
- Tsutomu Nagashima
- Department of Pathology Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Quo Vadis: where are you going? Advances in MS-based proteomics have enabled research to move from obtaining the basic protein inventory of cells and organelles to the ability of monitoring their dynamics, including changes in abundance, location and various PTMs. In this respect, the cellular plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma membrane proteome is crucial for understanding fundamental biological processes, disease mechanisms and for finding drug targets. Protein identification, characterization of dynamic PTMs and protein-ligand interactions, and determination of transient changes in protein expression and composition are among the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required for detailed functional and comparative analysis of the dynamic plasma membrane proteome.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
67
|
Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 2010; 117:26-38. [PMID: 20940415 DOI: 10.1182/blood-2010-04-189977] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a B-cell non-Hodgkin lymphoma of which at least a subset arises from antigen-experienced B cells. However, what role antigen stimulation plays in its pathogenesis remains ill defined. The genetic hallmark is the chromosomal translocation t(11;14) resulting in aberrant expression of cyclin D1. Secondary genetic events increase the oncogenic potential of cyclin D1 and frequently inactivate DNA damage response pathways. In combination these changes drive cell-cycle progression and give rise to pronounced genetic instability. Several signaling pathways contribute to MCL pathogenesis, including the often constitutively activated PI3K/AKT/mTOR pathway, which promotes tumor proliferation and survival. WNT, Hedgehog, and NF-κB pathways also appear to be important. Although MCL typically responds to frontline chemotherapy, it remains incurable with standard approaches. Proteasome inhibitors (bortezomib), mTOR inhibitors (temsirolimus), and immunomodulatory drugs (lenalidomide) have recently been added to the treatment options in MCL. The molecular basis for the antitumor activity of these agents is an area of intense study that hopefully will lead to further improvements in the near future. Given its unique biology, relative rarity, and the difficulty in achieving long-lasting remissions with conventional approaches, patients with MCL should be encouraged to participate in clinical trials.
Collapse
|
68
|
Boyd RS, Dyer MJS, Cain K. Proteomic analysis of B-cell malignancies. J Proteomics 2010; 73:1804-22. [PMID: 20346427 DOI: 10.1016/j.jprot.2010.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
Abstract
The identification of proteins aberrantly expressed in malignant B-cells can potentially be used to develop new diagnostic, prognostic or therapeutic targets. Proteomic studies of B-cell malignancies have made significant progress, but further studies are needed to increase our coverage of the B-cell malignant proteome. To achieve this goal we stress the advantages of using sub-cellular fractionation, protein separation, quantitation and affinity purification techniques to identify hitherto unidentified signalling and regulatory proteins. For example, proteomic analysis of B-cell plasma membranes isolated from patients with mantle cell lymphoma (MCL) identified the voltage-gated proton channel (HVCN1,[1]). This protein has now been characterised as a key modulator of B-cell receptor (BCR) signalling and abrogation of HVCN1 function could have a role in the treatment of B-cell malignancies dependent on maintained BCR signalling [2]. Similarly, proteomic studies on cell lysates from prognostic subtypes of CLL, distinguished by the absence (UM-CLL) or presence (M-CLL) of somatic hypermutation of the immunoglobulin heavy chain locus identified nucleophosmin 1 (NMP1) as a potential prognostic marker [3,4]. Thus, targeted proteomic analysis on selected organelles or sub-cellular compartments can identify novel proteins with unexpected localisation or function in malignant B-cells that could be developed for clinical purposes.
Collapse
Affiliation(s)
- Robert S Boyd
- MRC Toxicology Unit, Hodgkin Building, Lancaster Rd, University of Leicester, Leicester, LE1 9HN, UK
| | | | | |
Collapse
|
69
|
Hammadi M, Pers JO, Berthou C, Youinou P, Bordron A. A new approach to comparing anti-CD20 antibodies: importance of the lipid rafts in their lytic efficiency. Onco Targets Ther 2010; 3:99-109. [PMID: 20616960 PMCID: PMC2895776 DOI: 10.2147/ott.s9774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Indexed: 01/10/2023] Open
Abstract
The view that B lymphocytes are pathogenic in diverse pathological settings is supported by the efficacy of B-cell-ablative therapy in lymphoproliferative disorders, autoimmune diseases and graft rejection. Anti-B-cell antibodies (Abs) directed against CD20 have therefore been generated, and of these, rituximab was the first anti-CD20 monoclonal Ab (mAb) to be applied. Rituximab-mediated apoptosis, complement-dependent cytotoxicity and Ab-dependent cellular cytotoxicity differ from one disease to another, and, for the same disease, from one patient to another. This knowledge has prompted the development of new anti-CD20 mAbs in the hope of improving B-cell depletion. The inclusion of CD20/anti-CD20 complexes in large lipid rafts (LRs) enhances the results of some, but not all, anti-CD20 mAbs, and it may be possible to include smaller LRs. Lipid contents of membrane may be abnormal in malignant B-cells, and could explain resistance to treatment. The function of these mAbs and the importance of LRs warrant further investigation. A detailed understanding of them will increase results for B-cell depletion in lymphoproliferative diseases.
Collapse
Affiliation(s)
- Mariam Hammadi
- Centre Hospitalier Universitaire EA2216 and IFR148, Université de Bretagne Occidentale and Université Européenne de Bretagne, BP824, 29609 Brest cedex, France
| | | | | | | | | |
Collapse
|
70
|
Rådmark O, Samuelsson B. Regulation of the activity of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis. Biochem Biophys Res Commun 2010; 396:105-10. [PMID: 20494120 DOI: 10.1016/j.bbrc.2010.02.173] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 01/22/2023]
Abstract
5-Lipoxygenase (5LO) catalyzes two steps in the biosynthesis of leukotrienes (LTs), lipid mediators of inflammation derived from arachidonic acid. LTs function in normal host defense, and have pathophysiological roles in chronic inflammatory diseases as asthma and atherosclerosis. Also, possible effects of 5LO products in relation to tumorigenesis have been described. Thus, insight regarding the biochemistry of 5LO is relevant for better understanding of normal physiology, and for development of therapy.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | |
Collapse
|
71
|
Capasso M, Bhamrah MK, Henley T, Boyd RS, Langlais C, Cain K, Dinsdale D, Pulford K, Khan M, Musset B, Cherny VV, Morgan D, Gascoyne RD, Vigorito E, DeCoursey TE, MacLennan ICM, Dyer MJS. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat Immunol 2010; 11:265-72. [PMID: 20139987 PMCID: PMC3030552 DOI: 10.1038/ni.1843] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/12/2010] [Indexed: 11/09/2022]
Abstract
Voltage-gated proton currents regulate generation of reactive oxygen species (ROS) in phagocytic cells. In B cells, stimulation of the B cell antigen receptor (BCR) results in the production of ROS that participate in B cell activation, but the involvement of proton channels is unknown. We report here that the voltage-gated proton channel HVCN1 associated with the BCR complex and was internalized together with the BCR after activation. BCR-induced generation of ROS was lower in HVCN1-deficient B cells, which resulted in attenuated BCR signaling via impaired BCR-dependent oxidation of the tyrosine phosphatase SHP-1. This resulted in less activation of the kinases Syk and Akt, impaired mitochondrial respiration and glycolysis and diminished antibody responses in vivo. Our findings identify unanticipated functions for proton channels in B cells and demonstrate the importance of ROS in BCR signaling and downstream metabolism.
Collapse
Affiliation(s)
- Melania Capasso
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
DeCoursey TE. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology (Bethesda) 2010; 25:27-40. [PMID: 20134026 PMCID: PMC3023998 DOI: 10.1152/physiol.00039.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1-S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
73
|
|