51
|
Shi Y, Liu X, Li R, Gao Y, Xu Z, Zhang B, Zhou Y. Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3055-69. [PMID: 24723395 PMCID: PMC4071826 DOI: 10.1093/jxb/eru150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ribosome is the basic machinery for translation, and biogenesis of ribosomes involves many coordinated events. However, knowledge about ribosomal dynamics in higher plants is very limited. This study chose a highly conserved trans-factor, the 60S ribosomal subunit nuclear export adaptor NMD3, to characterize the mechanism of ribosome biogenesis in the monocot plant Oryza sativa (rice). O. sativa NMD3 (OsNMD3) shares all the common motifs and shuttles between the nucleus and cytoplasm via CRM1/XPO1. A dominant negative form of OsNMD3 with a truncated nuclear localization sequence (OsNMD3(ΔNLS)) was retained in the cytoplasm, consequently interfering with the release of OsNMD3 from pre-60S particles and disturbing the assembly of ribosome subunits. Analyses of the transactivation activity and cellulose biosynthesis level revealed low protein synthesis efficiency in the transgenic plants compared with the wild-type plants. Pharmaceutical treatments demonstrated structural alterations in ribosomes in the transgenic plants. Moreover, global expression profiles of the wild-type and transgenic plants were investigated using the Illumina RNA sequencing approach. These expression profiles suggested that overexpression of OsNMD3(ΔNLS) affected ribosome biogenesis and certain basic pathways, leading to pleiotropic abnormalities in plant growth. Taken together, these results strongly suggest that OsNMD3 is important for ribosome assembly and the maintenance of normal protein synthesis efficiency.
Collapse
Affiliation(s)
- Yanyun Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaping Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
52
|
Cadmium toxicity induced alterations in the root proteome of green gram in contrasting response towards iron supplement. Int J Mol Sci 2014; 15:6343-55. [PMID: 24739807 PMCID: PMC4013632 DOI: 10.3390/ijms15046343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 01/02/2023] Open
Abstract
Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (−Fe/−Cd) or presence (−Fe/+Cd) of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd). The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (−Fe/−Cd) or presence (−Fe/+Cd) of cadmium but were well expressed in the presence of iron (+Fe/+Cd). Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.
Collapse
|
53
|
Verma JK, Gayali S, Dass S, Kumar A, Parveen S, Chakraborty S, Chakraborty N. OsAlba1, a dehydration-responsive nuclear protein of rice (Oryza sativa L. ssp. indica), participates in stress adaptation. PHYTOCHEMISTRY 2014; 100:16-25. [PMID: 24534105 DOI: 10.1016/j.phytochem.2014.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 05/13/2023]
Abstract
Alba proteins have exhibited great functional plasticity through the course of evolution and constitute a superfamily that spans across three domains of life. Earlier, we had developed the dehydration-responsive nuclear proteome of an indica rice cultivar, screening of which led to the identification of an Alba protein. Here we describe, for the first time, the complete sequence of the candidate gene OsAlba1, its genomic organization, and possible function/s in plant. Phylogenetic analysis showed its close proximity to other monocots as compared to dicot Alba proteins. Protein-DNA interaction prediction indicates a DNA-binding property for OsAlba1. Confocal microscopy showed the localization of OsAlba1-GFP fusion protein to the nucleus, and also sparsely to the cytoplasm. Water-deficit conditions triggered OsAlba1 expression suggesting its function in dehydration stress, possibly through an ABA-dependent pathway. Functional complementation of the yeast mutant ΔPop6 established that OsAlba1 also functions in oxidative stress tolerance. The preferential expression of OsAlba1 in the flag leaves implies its role in grain filling. Our findings suggest that the Alba components such as OsAlba1, especially from a plant where there is no evidence for a major chromosomal role, might play important function in stress adaptation.
Collapse
Affiliation(s)
- Jitendra Kumar Verma
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Suchismita Dass
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amit Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shaista Parveen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
54
|
Barkla BJ, Vera-Estrella R, Pantoja O. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 2014; 13:1801-15. [PMID: 23512887 DOI: 10.1002/pmic.201200401] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
55
|
Tripathi P, Rabara RC, Rushton PJ. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. PLANTA 2014; 239:255-66. [PMID: 24146023 DOI: 10.1007/s00425-013-1985-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/14/2013] [Indexed: 05/20/2023]
Abstract
Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.
Collapse
Affiliation(s)
- Prateek Tripathi
- Molecular and Computational Biology, Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, TRF 108, 3430 S Vermont Ave, Los Angeles, CA, 90089, USA,
| | | | | |
Collapse
|
56
|
Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 2014; 15:548. [PMID: 25464976 DOI: 10.1186/preaccept-3895766441330481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Fruits are unique to flowering plants and play a central role in seed maturation and dispersal. Molecular dissection of fruit ripening has received considerable interest because of the biological and dietary significance of fruit. To better understand the regulatory mechanisms underlying fruit ripening, we report here the first comprehensive analysis of the nuclear proteome in tomato fruits. RESULTS Nuclear proteins were isolated from tomatoes in different stages of ripening, and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. We show that the proteins whose abundances change during ripening stages are involved in various cellular processes. We additionally evaluate changes in the nuclear proteome in the ripening-deficient mutant, ripening-inhibitor (rin), carrying a mutation in the transcription factor RIN. A set of proteins were identified and particular attention was paid to SlUBC32 and PSMD2, the components of ubiquitin-proteasome pathway. Through chromatin immunoprecipitation and gel mobility shift assays, we provide evidence that RIN directly binds to the promoters of SlUBC32 and PSMD2. Moreover, loss of RIN function affects protein ubiquitination in nuclei. SlUBC32 encodes an E2 ubiquitin-conjugating enzyme and a genome-wide survey of the E2 gene family in tomatoes identified five more E2s as direct targets of RIN. Virus-induced gene silencing assays show that two E2s are involved in the regulation of fruit ripening. CONCLUSIONS Our results uncover a novel function of protein ubiquitination, identifying specific E2s as regulators of fruit ripening. These findings contribute to the unraveling of the gene regulatory networks that control fruit ripening.
Collapse
|
57
|
Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 2014; 15:548. [PMID: 25464976 PMCID: PMC4269173 DOI: 10.1186/s13059-014-0548-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/18/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fruits are unique to flowering plants and play a central role in seed maturation and dispersal. Molecular dissection of fruit ripening has received considerable interest because of the biological and dietary significance of fruit. To better understand the regulatory mechanisms underlying fruit ripening, we report here the first comprehensive analysis of the nuclear proteome in tomato fruits. RESULTS Nuclear proteins were isolated from tomatoes in different stages of ripening, and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. We show that the proteins whose abundances change during ripening stages are involved in various cellular processes. We additionally evaluate changes in the nuclear proteome in the ripening-deficient mutant, ripening-inhibitor (rin), carrying a mutation in the transcription factor RIN. A set of proteins were identified and particular attention was paid to SlUBC32 and PSMD2, the components of ubiquitin-proteasome pathway. Through chromatin immunoprecipitation and gel mobility shift assays, we provide evidence that RIN directly binds to the promoters of SlUBC32 and PSMD2. Moreover, loss of RIN function affects protein ubiquitination in nuclei. SlUBC32 encodes an E2 ubiquitin-conjugating enzyme and a genome-wide survey of the E2 gene family in tomatoes identified five more E2s as direct targets of RIN. Virus-induced gene silencing assays show that two E2s are involved in the regulation of fruit ripening. CONCLUSIONS Our results uncover a novel function of protein ubiquitination, identifying specific E2s as regulators of fruit ripening. These findings contribute to the unraveling of the gene regulatory networks that control fruit ripening.
Collapse
Affiliation(s)
- Yuying Wang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
| | - Weihao Wang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Jianghua Cai
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Yanrui Zhang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Guozheng Qin
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
| | - Shiping Tian
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| |
Collapse
|
58
|
Muneer S, Kim TH, Choi BC, Lee BS, Lee JH. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate-glutathione pathway to induce Fragaria×annasa as a hyperaccumulator. Redox Biol 2013; 2:91-8. [PMID: 25460723 PMCID: PMC4297940 DOI: 10.1016/j.redox.2013.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 12/23/2022] Open
Abstract
A study was conducted to determine the effect of carbon monoxide (CO), nitroxide (NOx) and sulfur dioxide (SO2) on ROS production, photosynthesis and ascorbate-glutathione pathway in strawberry plants. The results showed that both singlet oxygen (O2(-1)) and hydrogen peroxide (H2O2) content increased in CO, NOx and SO2 treated strawberry leaves. A drastic reduction of primary metabolism of plants (photosynthesis), with the closure of stomata, resulted in a reduction of protein, carbohydrate and sucrose content due to production of reactive oxygen species (ROS) under prolonged exposure of gas stress. The resulting antioxidant enzymes were increased under a low dose of gas stress, whereas they were decreased due to a high dose of gas stress. Our results indicate that increased ROS may act as a signal to induce defense responses to CO, NOx and SO2 gas stress. The increased level of antioxidant enzymes plays a significant role in plant protection due to which strawberry plants can be used as a hyperaccumulator to maintain environmental pollution, however, the defense capacity cannot sufficiently alleviate oxidative damage under prolonged exposure of CO, NOx and SO2 stress.
Collapse
Affiliation(s)
- Sowbiya Muneer
- Department of Horticulture, College of Agricultural Life Sciences, Chonnam National University, 300 Young Bong-Dong Buk-Gu, Gwangju 500-757, Republic of Korea
| | - Tae Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, 300 YoungBong-Dong Buk-Gu, Gwangju 500-757, Republic of Korea
| | - Byung Chul Choi
- School of Mechanical Systems Engineering, College of Engineering, Chonnam National, University, 300 Young Bong-Dong Buk-Gu, Gwangju 500-757, Republic of Korea
| | - Beom Seon Lee
- Dayung GS Co., Ltd., Damyang, Jeonnam 517-922, Republic of Korea
| | - Jeong Hyun Lee
- Department of Horticulture, College of Agricultural Life Sciences, Chonnam National University, 300 Young Bong-Dong Buk-Gu, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
59
|
Minh-Thu PT, Hwang DJ, Jeon JS, Nahm BH, Kim YK. Transcriptome analysis of leaf and root of rice seedling to acute dehydration. RICE (NEW YORK, N.Y.) 2013; 6:38. [PMID: 24341907 PMCID: PMC3878681 DOI: 10.1186/1939-8433-6-38] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Water deficiency is one of the most serious worldwide problems for agriculture. Recently, it has become more serious and outspread, which urgently requires the production of drought-tolerant plants. Microarray experiments using mRNA from air-dried leaves and roots of rice were performed in an attempt to study genes involved in acute dehydration response. RESULTS Set of 10,537 rice genes was significantly up- or down-regulated in leaves or roots under the treatment. Gene Ontology analysis highlighted gene expression during acute dehydration response depending on organ types and the duration of stress. Rice responded by down-regulating many processes which are mainly involved in inhibiting growth and development. On the other hand, phytohormones (ABA, cytokinin, brassinosteroid) and protective molecules were induced to answer to multiple stresses. Leaves induced more genes than roots but those genes were scattered in various processes, most significantly were productions of osmoprotectants and precursors for important pathways in roots. Roots up-regulated fewer genes and focused on inducing antioxidants and enhancing photosynthesis. Myb, zf-C3HC4, and NAM were most strongly affected transcription factors with the dominance of leaf over root. CONCLUSIONS Leaf and root tissues shared some common gene expression during stress, with the purpose of enhancing protective systems. However, these two tissues appeared to act differently in response to the different level of dehydration they experience. Besides, they can affect each other via the signaling and transportation system.
Collapse
Affiliation(s)
- Pham-Thi Minh-Thu
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido 449-728, South Korea
| | - Duk-Ju Hwang
- Rural Development Administration, National Academy of Agricultural Science, Suwon, Kyonggido 441-707, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Kyonggido 446-701, South Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido 449-728, South Korea
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido 449-728, South Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido 449-728, South Korea
| |
Collapse
|
60
|
Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 2013; 12:4769-84. [PMID: 23808807 DOI: 10.1021/pr4001898] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flooding is a serious problem for soybean cultivation because it markedly reduces growth. To investigate the role of phytohormones in soybean under flooding stress, gel-free proteomic technique was used. When 2-day-old soybeans were flooded, the content of abscisic acid (ABA) did not decrease in the root, though its content decreased in untreated plant. When ABA was added during flooding treatment, survival ratio was improved compared with that of soybeans flooded without ABA. When 2-day-old soybeans were flooded with ABA, the abundance of proteins related to cell organization, vesicle transport and glycolysis decreased compared with those in root of soybeans flooded without ABA. Furthermore, the nuclear proteins were analyzed to identify the transcriptional regulation. The abundance of 34 nuclear proteins such as histone deacetylase and U2 small nuclear ribonucleoprotein increased by ABA supplementation under flooding; however, 35 nuclear proteins such as importin alpha, chromatin remodeling factor, zinc finger protein, transducin, and cell division 5 protein decreased. Of them, the mRNA expression levels of cell division cycle 5 protein, C2H2 zinc finger protein SERRATE, CCCH type zinc finger family protein, and transducin were significantly down-regulated under the ABA treatment. These results suggest that ABA might be involved in the enhancement of flooding tolerance of soybean through the control of energy conservation via glycolytic system and the regulation on zinc finger proteins, cell division cycle 5 protein and transducin.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. J Proteomics 2013; 93:5-19. [DOI: 10.1016/j.jprot.2013.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
|
62
|
Agrawal L, Narula K, Basu S, Shekhar S, Ghosh S, Datta A, Chakraborty N, Chakraborty S. Comparative Proteomics Reveals a Role for Seed Storage Protein AmA1 in Cellular Growth, Development, and Nutrient Accumulation. J Proteome Res 2013; 12:4904-30. [DOI: 10.1021/pr4007987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lalit Agrawal
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Kanika Narula
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Swaraj Basu
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Shubhendu Shekhar
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Sudip Ghosh
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Asis Datta
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
63
|
Deswal R, Gupta R, Dogra V, Singh R, Abat JK, Sarkar A, Mishra Y, Rai V, Sreenivasulu Y, Amalraj RS, Raorane M, Chaudhary RP, Kohli A, Giri AP, Chakraborty N, Zargar SM, Agrawal VP, Agrawal GK, Job D, Renaut J, Rakwal R. Plant proteomics in India and Nepal: current status and challenges ahead. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:461-477. [PMID: 24431515 PMCID: PMC3781272 DOI: 10.1007/s12298-013-0198-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications.
Collapse
Affiliation(s)
- Renu Deswal
- />Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Ravi Gupta
- />Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Vivek Dogra
- />Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Raksha Singh
- />Department of Plant Molecular Biology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Jasmeet Kaur Abat
- />Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Abhijit Sarkar
- />Department of Botany, Banaras Hindu University, Varanasi, India
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
| | - Yogesh Mishra
- />Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Vandana Rai
- />National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Yelam Sreenivasulu
- />Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Ramesh Sundar Amalraj
- />Plant Pathology Section, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Tamil Nadu, India
| | - Manish Raorane
- />Plant Molecular Biology Laboratory, Plant Breeding, Genetics and Biotechnology, International Rice Research Institute, Manila, Philippines
| | - Ram Prasad Chaudhary
- />Central Department of Botany, and Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur, Nepal
| | - Ajay Kohli
- />Plant Molecular Biology Laboratory, Plant Breeding, Genetics and Biotechnology, International Rice Research Institute, Manila, Philippines
| | - Ashok Prabhakar Giri
- />Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | - Sajad Majeed Zargar
- />School of Biotechnology, SK University of Agricultural Sciences and Technology, Chatha, Jammu, 180009 Jammu and Kashmir India
| | | | - Ganesh Kumar Agrawal
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
| | - Dominique Job
- />CNRS/Bayer Crop Science (UMR 5240) Joint Laboratory, Lyon, France
| | - Jenny Renaut
- />Department of Environment and Agrobiotechnologies, Centre de Recherche Public-Gabriel Lippmann, Belvaux, GD Luxembourg
| | - Randeep Rakwal
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
- />Organization for Educational Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- />Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 Japan
| |
Collapse
|
64
|
Badowiec A, Swigonska S, Weidner S. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:315-24. [PMID: 24012770 DOI: 10.1016/j.plaphy.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Amongst many factors restricting geographical distribution of plants and crop productivity, low temperature is one of the most important. To gain better understanding of the molecular response of germinating pea (Pisum sativum L.) to low temperature, we investigated the influence of long and short chilling stress as well as post-stress recovery on the alterations in the root proteomes. The impact of long stress was examined on the pea seeds germinating in the continuous chilling conditions of 10 °C for 8 days (LS). To examine the impact of short stress, pea seeds germinating for 72 h in the optimal temperature of 20 °C were subjected to 24-h chilling (SS). Additionally, both stress treatments were followed by 24 h of recovery in the optimal conditions (accordingly LSR and SR). Using the 2D gel electrophoresis and MALDI-TOF MS protein identification, it was revealed, that most of the proteins undergoing regulation under the applied conditions were implicated in metabolism, protection against stress, cell cycle regulation, cell structure maintenance and hormone synthesis, which altogether may influence root growth and development in the early stages of plant life. The obtained results have shown that most of detected alterations in the proteome patterns of pea roots are dependent on stress duration. However, there are some analogical response pathways which are triggered regardless of stress length. The functions of proteins which accumulation has been changed by chilling stress and post-stress recovery are discussed here in relation to their impact on pea roots development.
Collapse
Affiliation(s)
- Anna Badowiec
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland.
| | | | | |
Collapse
|
65
|
Sikorskaite S, Rajamäki ML, Baniulis D, Stanys V, Valkonen JPT. Protocol: Optimised methodology for isolation of nuclei from leaves of species in the Solanaceae and Rosaceae families. PLANT METHODS 2013; 9:31. [PMID: 23886449 PMCID: PMC3728069 DOI: 10.1186/1746-4811-9-31] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/24/2013] [Indexed: 05/22/2023]
Abstract
In this study, a protocol is described for rapid preparation of an enriched, reasonably pure fraction of nuclear proteins from the leaves of tobacco (Nicotiana tabacum), potato (Solanum tuberosum) and apple (Malus domestica). The protocol gives reproducible results and can be carried out quickly in 2 hours. Tissue extracts clarified with filtration were treated with non-ionic detergent (Triton X-100) to lyse membranes of contaminating organelles. Nuclei were collected from a 60% Percoll layer of density gradient following low-speed centrifugation. Western blot analysis using antibodies to marker proteins of organelles indicated that the nuclear protein fractions were highly enriched and free or nearly free of proteins from the endoplasmic reticulum and chloroplasts.
Collapse
Affiliation(s)
- Sidona Sikorskaite
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st 30, Babtai, LT-54333, Kaunas, Lithuania
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Minna-Liisa Rajamäki
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st 30, Babtai, LT-54333, Kaunas, Lithuania
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st 30, Babtai, LT-54333, Kaunas, Lithuania
| | - Jari PT Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| |
Collapse
|
66
|
Subba P, Kumar R, Gayali S, Shekhar S, Parveen S, Pandey A, Datta A, Chakraborty S, Chakraborty N. Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 2013; 13:1973-92. [PMID: 23798506 DOI: 10.1002/pmic.201200380] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 11/11/2022]
Abstract
Water deficit or dehydration hampers plant growth and development, and shrinks harvest size of major crop species worldwide. Therefore, a better understanding of dehydration response is the key to decipher the regulatory mechanism of better adaptation. In recent years, nuclear proteomics has become an attractive area of research, particularly to study the role of nucleus in stress response. In this study, a proteome of dehydration-sensitive chickpea cultivar (ICCV-2) was generated from nuclei-enriched fractions. The LC-MS/MS analysis led to the identification of 75 differentially expressed proteins presumably associated with different metabolic and regulatory pathways. Nuclear localisation of three candidate proteins was validated by transient expression assay. The ICCV-2 proteome was then compared with that of JG-62, a tolerant cultivar. The differential proteomics and in silico analysis revealed cultivar-specific differential expression of many proteins involved in various cellular functions. The differential tolerance could be attributed to altered expression of many structural proteins and the proteins involved in stress adaptation, notably the ROS catabolising enzymes. Further, a comprehensive comparison on the abiotic stress-responsive nuclear proteome was performed using the datasets published thus far. These findings might expedite the functional determination of the dehydration-responsive proteins and their prioritisation as potential molecular targets for better adaptation.
Collapse
Affiliation(s)
- Pratigya Subba
- National Institute of Plant Genome Research, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Swamy BPM, Kumar A. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv 2013; 31:1308-18. [PMID: 23702083 DOI: 10.1016/j.biotechadv.2013.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/23/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022]
Abstract
Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in "-omics" are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential.
Collapse
|
68
|
Narula K, Datta A, Chakraborty N, Chakraborty S. Comparative analyses of nuclear proteome: extending its function. FRONTIERS IN PLANT SCIENCE 2013; 4:100. [PMID: 23637696 PMCID: PMC3636469 DOI: 10.3389/fpls.2013.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/30/2013] [Indexed: 05/20/2023]
Abstract
Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10-20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect.
Collapse
Affiliation(s)
| | | | | | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew Delhi, India
| |
Collapse
|
69
|
Casati P. Recent advances in maize nuclear proteomic studies reveal histone modifications. FRONTIERS IN PLANT SCIENCE 2012; 3:278. [PMID: 23248634 PMCID: PMC3520088 DOI: 10.3389/fpls.2012.00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/24/2012] [Indexed: 05/29/2023]
Abstract
The nucleus of eukaryotic organisms is highly dynamic and complex, containing different types of macromolecules including DNA, RNA, and a wide range of proteins. Novel proteomic applications have led to a better overall determination of nucleus protein content. Although nuclear plant proteomics is only at the initial phase, several studies have been reported and are summarized in this review using different plants species, such as Arabidopsis thaliana, rice, cowpea, onion, garden cress, and barrel clover. These include the description of the total nuclear or phospho-proteome (i.e., Arabidopsis, cowpea, onion), or the analysis of the differential nuclear proteome under different growth environments (i.e., Arabidopsis, rice, cowpea, onion, garden cress, and barrel clover). However, only few reports exist on the analysis of the maize nuclear proteome or its changes under various conditions. This review will present recent data on the study of the nuclear maize proteome, including the analysis of changes in posttranslational modifications in histone proteins.
Collapse
Affiliation(s)
- Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de RosarioRosario, Santa Fe, Argentina
| |
Collapse
|
70
|
Shaik R, Ramakrishna W. Bioinformatic analysis of epigenetic and microRNA mediated regulation of drought responsive genes in rice. PLoS One 2012; 7:e49331. [PMID: 23145152 PMCID: PMC3493535 DOI: 10.1371/journal.pone.0049331] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/09/2012] [Indexed: 12/02/2022] Open
Abstract
Drought stress response is a complex trait regulated at multiple levels. Changes in the epigenetic and miRNA regulatory landscape can dramatically alter the outcome of a stress response. However, little is known about the scope and extent of these regulatory factors on drought related cellular processes and functions. To this end, we selected a list of 5468 drought responsive genes (DRGs) of rice identified in multiple microarray studies and mapped the DNA methylation regions found in a genome wide methylcytosine immunoprecipitation and sequencing (mCIP-Seq) study to their genic and promoter regions, identified the chromatin remodeling genes and the genes that are targets of miRNAs. We found statistically significant enrichment of DNA methylation reads and miRNA target sequences in DRGs compared to a random set of genes. About 75% of the DRGs annotated to be involved in chromatin remodeling were downregulated. We found one-third of the DRGs are targeted by two-thirds of all known/predicted miRNAs in rice which include many transcription factors targeted by more than five miRNAs. Clustering analysis of the DRGs with epigenetic and miRNA features revealed, upregulated cluster was enriched in drought tolerance mechanisms while the downregulated cluster was enriched in drought resistance mechanisms evident by their unique gene ontologies (GOs), protein-protein interactions (PPIs), specific transcription factors, protein domains and metabolic pathways. Further, we analyzed the proteome of two weeks old young rice plants treated with a global demethylating agent, 5-azacytidine (5-azaC), subjected to drought stress and identified 56 protein spots that are differentially expressed. Out of the 56 spots, 35 were differently expressed in the sample with both demethylation and drought stress treatments and 28 (50%) were part of DRGs considered in the bioinformatic analysis.
Collapse
Affiliation(s)
- Rafi Shaik
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Wusirika Ramakrishna
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
71
|
Wardhan V, Jahan K, Gupta S, Chennareddy S, Datta A, Chakraborty S, Chakraborty N. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance. PLANT MOLECULAR BIOLOGY 2012; 79:479-93. [PMID: 22644439 DOI: 10.1007/s11103-012-9925-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/10/2012] [Indexed: 05/15/2023]
Abstract
Dehydration is the most crucial environmental constraint on plant growth and development, and agricultural productivity. To understand the underlying mechanism of stress tolerance, and to identify proteins for improving such important trait, we screened the dehydration-responsive proteome of chickpea and identified a tubby-like protein, referred to as CaTLP1. The CaTLP1 was found to predominantly bind to double-stranded DNA but incapable of transcriptional activation. We investigated the gene structure and organization and demonstrated, for the first time, that CaTLP1 may be involved in osmotic stress response in plants. The transcripts are strongly expressed in vegetative tissues but weakly in reproductive tissues. CaTLP1 is upregulated by dehydration and high salinity, and by treatment with abscisic acid (ABA), suggesting that its stress-responsive function might be associated with ABA-dependent network. Overexpression of CaTLP1 in transgenic tobacco plants conferred dehydration, salinity and oxidative stress tolerance along with improved shoot and root architecture. Molecular genetic analysis showed differential expression of CaTLP1 under normal and stress condition, and its preferential expression in the nucleus might be associated with enhanced stress tolerance. Our work suggests important roles of CaTLP1 in stress response as well as in the regulation of plant development.
Collapse
Affiliation(s)
- Vijay Wardhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | | | |
Collapse
|
72
|
Vairamani M, Prabhakar S. Mass spectrometry in India. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:1-35. [PMID: 22792611 DOI: 10.1255/ejms.1165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This review emphasizes the mass spectrometry research being performed at academic and established research institutions in India. It consists of three main parts covering the work done in organic, atomic and biological mass spectrometry. The review reveals that the use of mass spectrometry techniques started in the middle of the 20th century and was applied to research in the fields of organic, nuclear, geographical and atomic chemistry. Later, with the advent of soft and atmospheric ionization techniques it has been applied to pharmaceutical and biological research. In due course, several research centers with advanced mass spectrometry facilities have been established for specific areas of research such as gas-phase ion chemistry, ion-molecule reactions, proscribed chemicals, pesticide residues, pharmacokinetics, protein/peptide chemistry, nuclear chemistry, geochronological studies, archeology, petroleum industry, proteomics, lipidomics and metabolomics. Day-by-day the mass spectrometry centers/facilities in India have attracted young students for their doctoral research and other advanced research applications.
Collapse
Affiliation(s)
- M Vairamani
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad-500 007, Andhra Pradesh, India.
| | | |
Collapse
|
73
|
Hossain Z, Nouri MZ, Komatsu S. Plant Cell Organelle Proteomics in Response to Abiotic Stress. J Proteome Res 2011; 11:37-48. [DOI: 10.1021/pr200863r] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zahed Hossain
- National Institute of Crop Science, Tsukuba 305-8518, Japan
- Department of Botany, West Bengal State University, Kolkata-700126, West Bengal, India
| | - Mohammad-Zaman Nouri
- National Institute of Crop Science, Tsukuba 305-8518, Japan
- Rice Research Institute of Iran, Deputy of Mazandaran, Amol 46191-91951, Iran
| | | |
Collapse
|
74
|
Shu L, Lou Q, Ma C, Ding W, Zhou J, Wu J, Feng F, Lu X, Luo L, Xu G, Mei H. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics 2011; 11:4122-38. [PMID: 21818852 DOI: 10.1002/pmic.201000485] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 06/19/2011] [Accepted: 07/29/2011] [Indexed: 01/13/2023]
Abstract
We used proteomic analysis to determine the response of rice plant seedlings to drought-induced stress. The expression of 71 protein spots was significantly altered, and 60 spots were successfully identified. The greatest down-regulated protein functional category was translation. Up-regulated proteins were mainly related to protein folding and assembly. Additionally, many proteins involved in metabolism (e.g. carbohydrate metabolism) also showed differences in expression. cDNA microarray and GC-MS analysis showed 4756 differentially expressed mRNAs and 37 differentially expressed metabolites. Once these data were integrated with the proteomic analysis, we were able to elucidate the metabolic pathways affected by drought-induced stress. These results suggest that increased energy consumption from storage substances occurred during drought. In addition, increased expression of the enzymes involved in anabolic pathways corresponded with an increase in the content of six amino acids. We speculated that energy conversion from carbohydrates and/or fatty acids to amino acids was increased. Analysis of basic metabolism networks allowed us to understand how rice plants adjust to drought conditions.
Collapse
Affiliation(s)
- Liebo Shu
- Shanghai Agrobiological Gene Center, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Kota U, Goshe MB. Advances in qualitative and quantitative plant membrane proteomics. PHYTOCHEMISTRY 2011; 72:1040-60. [PMID: 21367437 DOI: 10.1016/j.phytochem.2011.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 05/08/2023]
Abstract
The membrane proteome consists of integral and membrane-associated proteins that are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are only expressed during certain developmental stages or in response to environmental stress. These proteins can undergo post-translational modifications in response to these different conditions, allowing them to transiently associate with the membrane or other membrane proteins. Along with their increased size, hydrophobicity, and the additional organelle and cellular features of plant cells relative to mammalian systems, the characterization of the plant membrane proteome presents unique challenges for effective qualitative and quantitative analysis using mass spectrometry (MS) analysis. Here, we present the latest advancements developed for the isolation and fractionation of plant organelles and their membrane components amenable to MS analysis. Separations of membrane proteins from these enriched preparations that have proven effective are discussed for both gel- and liquid chromatography-based MS analysis. In this context, quantitative membrane proteomic analyses using both isotope-coded and label-free approaches are presented and reveal the potential to establish a wider-biological interpretation of the function of plant membrane proteins that will ultimately lead to a more comprehensive understanding of plant physiology and their response mechanisms.
Collapse
Affiliation(s)
- Uma Kota
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|
77
|
Proteomics to identify pathogenesis-related proteins in rice roots under water deficit. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0054-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
78
|
Agrawal GK, Rakwal R. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics 2011; 11:1630-49. [DOI: 10.1002/pmic.201000696] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/05/2011] [Accepted: 01/24/2011] [Indexed: 12/13/2022]
|
79
|
Ganeshan S, Sharma P, Young L, Kumar A, Fowler DB, Chibbar RN. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance. PLANT MOLECULAR BIOLOGY 2011; 75:379-398. [PMID: 21267634 DOI: 10.1007/s11103-011-9734-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/09/2011] [Indexed: 05/30/2023]
Abstract
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
Collapse
Affiliation(s)
- Seedhabadee Ganeshan
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | | | | | | | | | | |
Collapse
|
80
|
Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 2010; 9:3443-64. [PMID: 20433195 DOI: 10.1021/pr901098p] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water-deficit or dehydration impairs almost all physiological processes and greatly influences the geographical distribution of many crop species. It has been postulated that higher plants rely mostly on induction mechanisms to maintain cellular integrity during stress conditions. Plant cell wall or extracellular matrix (ECM) forms an important conduit for signal transduction between the apoplast and symplast and acts as front-line defense, thereby playing a key role in cell fate decision under various stress conditions. To better understand the molecular mechanism of dehydration response in plants, four-week-old rice seedlings were subjected to progressive dehydration by withdrawing water and the changes in the ECM proteome were examined using two-dimensional gel electrophoresis. Dehydration-responsive temporal changes revealed 192 proteins that change their intensities by more than 2.5-fold, at one or more time points during dehydration. The proteomic analysis led to the identification of about 100 differentially regulated proteins presumably involved in a variety of functions, including carbohydrate metabolism, cell defense and rescue, cell wall modification, cell signaling and molecular chaperones, among others. The differential rice proteome was compared with the dehydration-responsive proteome data of chickpea and maize. The results revealed an evolutionary divergence in the dehydration response as well as organ specificity, with few conserved proteins. The differential expression of the candidate proteins, in conjunction with previously reported results, may provide new insight into the underlying mechanisms of the dehydration response in plants. This may also facilitate the targeted alteration of metabolic routes in the cell wall for agricultural and industrial exploitation.
Collapse
Affiliation(s)
- Aarti Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 2010; 9:2019-33. [PMID: 20525998 DOI: 10.1074/mcp.m110.000349] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The quality of cotton fiber is determined by its final length and strength, which is a function of primary and secondary cell wall deposition. Using a comparative proteomics approach, we identified 104 proteins from cotton ovules 10 days postanthesis with 93 preferentially accumulated in the wild type and 11 accumulated in the fuzzless-lintless mutant. Bioinformatics analysis indicated that nucleotide sugar metabolism was the most significantly up-regulated biochemical process during fiber elongation. Seven protein spots potentially involved in pectic cell wall polysaccharide biosynthesis were specifically accumulated in wild-type samples at both the protein and transcript levels. Protein and mRNA expression of these genes increased when either ethylene or lignoceric acid (C24:0) was added to the culture medium, suggesting that these compounds may promote fiber elongation by modulating the production of cell wall polymers. Quantitative analysis revealed that fiber primary cell walls contained significantly higher amounts of pectin, whereas more hemicellulose was found in ovule samples. Significant fiber growth was observed when UDP-L-rhamnose, UDP-D-galacturonic acid, or UDP-D-glucuronic acid, all of which were readily incorporated into the pectin fraction of cell wall preparations, was added to the ovule culture medium. The short root hairs of Arabidopsis uer1-1 and gae6-1 mutants were complemented either by genetic transformation of the respective cotton cDNA or by adding a specific pectin precursor to the growth medium. When two pectin precursors, produced by either UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase 4-reductase or by UDP-D-glucose dehydrogenase and UDP-D-glucuronic acid 4-epimerase successively, were used in the chemical complementation assay, wild-type root hair lengths were observed in both cut1 and ein2-5 Arabidopsis seedlings, which showed defects in C24:0 biosynthesis or ethylene signaling, respectively. Our results suggest that ethylene and C24:0 may promote cotton fiber and Arabidopsis root hair growth by activating the pectin biosynthesis network, especially UDP-L-rhamnose and UDP-D-galacturonic acid synthesis.
Collapse
Affiliation(s)
- Chao-You Pang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Hoang QT, Cho SH, McDaniel SF, Ok SH, Quatrano RS, Shin JS. An actinoporin plays a key role in water stress in the moss Physcomitrella patens. THE NEW PHYTOLOGIST 2009; 184:502-510. [PMID: 19674339 DOI: 10.1111/j.1469-8137.2009.02975.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
* Modern land plants arose from a green algae-like ancestor c. 480 million years ago. While several novel morphological features were critical for survival in the aerial environment, physiological innovation undoubtedly played a key role in the colonization of terrestrial habitats. Recently, actinoporin genes, a small group of pore-forming toxins from sea anemones, have been found in the bryophyte and lycophyte lineages of land plants where they are upregulated in water-stressed tissues. * The bryoporin gene in the moss Physcomitrella patens (PpBP) was functionally characterized by RNA blot analyses and overexpression in P. patens. In order to examine functional homology between PpBP and sea anemone actinoporins, the recombinant PpBP was subjected to hemolytic analysis of pig blood cells, which is one of the specific activities of actinoporins. * PpBP was upregulated by various abiotic stresses, in particular most strongly by dehydration stress. Overexpression of the bryoporin gene heightens drought tolerance in P. patens significantly. In addition, PpBP shared the highest structural homology with actinoporins in a three-dimensional structural database and showed hemolytic activity. * These results suggest that this phylogenetic distribution may have resulted from an ancient horizontal gene transfer and actinoporins may have played an important role in early land plants.
Collapse
Affiliation(s)
- Quoc Truong Hoang
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Sung Hyun Cho
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
- Biology Department, Washington University, St Louis, MO 63130, USA
| | | | - Sung Han Ok
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Ralph S Quatrano
- Biology Department, Washington University, St Louis, MO 63130, USA
| | - Jeong Sheop Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|