51
|
Blend of renewable bio-based polymers for oil encapsulation: Control of the emulsion stability and scaffolds of the microcapsule by the gummy exudate of Prosopis nigra. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
52
|
Magri A, Petriccione M, Cerqueira MA, Gutiérrez TJ. Self-assembled lipids for food applications: A review. Adv Colloid Interface Sci 2020; 285:102279. [PMID: 33070103 DOI: 10.1016/j.cis.2020.102279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in human nutrition. Several foodstuffs can be manufactured from the simple, compound and derived lipids. In particular, the use of self-assembled lipids (SLs, e.g. self-assembled L-α-lecithin) has brought great attention for the development of tailored, tuned and targeted colloidal structures loading degradation-sensitive substances with valuable antimicrobial, antioxidant and nutraceutical properties for food applications. For example, polyunsaturated fatty acids (PUFAs) and essential oils can be protected from degradation, thus improving their bioavailability in general terms in consumers. From a nanotechnological point of view, SLs allow the development of advanced and multifaceted architectures, in which each molecule of them are used as building blocks to obtain designed and ordered structures. It is important to note before beginning this review, that simple and compound lipids are the main SLs, while essential fatty acids and derived lipids in general have been considered by many research groups as the bulk loaded substances within several structures from self-assembled carbohydrates, proteins and lipids. However, this review paper is addressed on the analysis of the lipid-lipid self-assembly. Lipids can be self-assembled into various structures (micelles, vesicular systems, lyotropic liquid crystals, oleogels and films) to be used in different food applications: coatings, controlled and sustained release materials, emulsions, functional foods, etc. SLs can be obtained via non-covalent chemical interactions, primarily by hydrogen, hydrophilic and ionic bonding, which are influenced by the conditions of ionic strength, pH, temperature, among others. This manuscript aims to give an analysis of the specific state-of-the-art of SLs for food applications, based primarily on the literature reported in the past five years.
Collapse
|
53
|
Lombardo S, Villares A. Engineered Multilayer Microcapsules Based on Polysaccharides Nanomaterials. Molecules 2020; 25:E4420. [PMID: 32993007 PMCID: PMC7582779 DOI: 10.3390/molecules25194420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The preparation of microcapsules composed by natural materials have received great attention, as they represent promising systems for the fabrication of micro-containers for controlled loading and release of active compounds, and for other applications. Using polysaccharides as the main materials is receiving increasing interest, as they constitute the main components of the plant cell wall, which represent an ideal platform to mimic for creating biocompatible systems with specific responsive properties. Several researchers have recently described methods for the preparation of microcapsules with various sizes and properties using cell wall polysaccharide nanomaterials. Researchers have focused mostly in using cellulose nanomaterials as structural components in a bio-mimetic approach, as cellulose constitutes the main structural component of the plant cell wall. In this review, we describe the microcapsules systems presented in the literature, focusing on the works where polysaccharide nanomaterials were used as the main structural components. We present the methods and the principles behind the preparation of these systems, and the interactions involved in stabilizing the structures. We show the specific and stimuli-responsive properties of the reported microcapsules, and we describe how these characteristics can be exploited for specific applications.
Collapse
|
54
|
Effect of Microencapsulation Techniques on Physical and Chemical Characteristics of Functional Beverage Based on Red Betel Leaf Extract (Piper crocatum). JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.8.276-282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional drinks based on red betel leaf extract have antioxidant activity, but they still have a bitter taste. This study aims to determine the effect of microencapsulation on phenol content, antioxidant activity, and sensory quality of functional drinks based on betel leaf extract. Microencapsulation of functional drinks was made using maltodextrin coatings with concentrations of 10% and 20%. Antioxidant activity was tested by the CUPRAC method. The ready to drink (RTD) functional drink has a total phenolic content and antioxidant activity of 782.30 ± 2.54 mg GAE/g and 1660.19 ± 31.67 µmol Tr/g, respectively. These values are higher than microencapsulated functional drinks with maltodextrin (MM). The microencapsulated functional drink with 10% maltodextrin coating (MM10) is the chosen formulation since it has the smallest particle size (1.283 µm), total phenolic content of 12.90 ± 0.01 mg GAE/g and antioxidant activity of 189.41 ± 1.88 µmol Tr/g. Microencapsulated functional drinks provide sensory quality that is not significantly different (p <0.05) from ready to drink (RTD) drinks.
Collapse
|
55
|
Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol 2020; 153:1035-1046. [DOI: 10.1016/j.ijbiomac.2019.10.233] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
|
56
|
Formulation of Lipoprotein Microencapsulated Beadlets by Ionic Complexes in Algae-Based Carbohydrates. COATINGS 2020. [DOI: 10.3390/coatings10030302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study aims to produce sustained-release algae-based carbohydrate microbeadlets of lipoproteins rich-in carotenoids extracted from organic sea buckthorn fruits. β-carotene represented the major compound of the lipoproteins extracts. Emulsification and algae-based carbohydrates, such as sodium-alginate and kappa-carrageenan, provide an inert environment, allowing the embedded targeted bioactive compounds—lipoproteins rich in carotenoids in our case—to maintain greater biological activity and to have a better shelf life. Furthermore, the microbeadlets prepared from sodium-alginate–kappa-carrageenan (0.75%:0.75% w/v) crosslinked with calcium ions showing 90% encapsulation efficiency have been utilized in HPMC capsules using beadlets-in-a-capsule technology, to use as a delivery system for the finished product. The GI simulated tests performed under laboratory conditions suggested that the sodium-alginate–kappa–carrageenan combination could be useful for the formulation-controlled release of microbeadlets containing lipoproteins rich in carotenoids.
Collapse
|
57
|
Norambuena-Contreras J, Arteaga-Perez LE, Guadarrama-Lezama AY, Briones R, Vivanco JF, Gonzalez-Torre I. Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials. MATERIALS 2020; 13:ma13061446. [PMID: 32235753 PMCID: PMC7143033 DOI: 10.3390/ma13061446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/25/2023]
Abstract
Asphalt self-healing by encapsulated rejuvenating agents is considered a revolutionary technology for the autonomic crack-healing of aged asphalt pavements. This paper aims to explore the use of Bio-Oil (BO) obtained from liquefied agricultural biomass waste as a bio-based encapsulated rejuvenating agent for self-healing of bituminous materials. Novel BO capsules were synthesized using two simple dripping methods through dropping funnel and syringe pump devices, where the BO agent was microencapsulated by external ionic gelation in a biopolymer matrix of sodium alginate. Size, surface aspect, and elemental composition of the BO capsules were characterized by optical and scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermal stability and chemical properties of BO capsules and their components were assessed through thermogravimetric analysis (TGA-DTG) and Fourier-Transform Infrared spectroscopy (FTIR-ATR). The mechanical behavior of the capsules was evaluated by compressive and low-load micro-indentation tests. The self-healing efficiency over time of BO as a rejuvenating agent in cracked bitumen samples was quantified by fluorescence microscopy. Main results showed that the BO capsules presented an adequate morphology for the asphalt self-healing application, with good thermal stability and physical-chemical properties. It was also proven that the BO can diffuse in the bitumen reducing the viscosity and consequently self-healing the open microcracks.
Collapse
Affiliation(s)
- Jose Norambuena-Contreras
- LabMAT, Department of Civil and Environmental Engineering, Universidad del Bío-Bío, Avenida Collao 1202, Concepción, Chile;
- Correspondence: ; Tel.: +56-41-311-1657
| | - Luis E. Arteaga-Perez
- LPTC, Laboratory on Thermal and Catalytic Processes, Department of Wood Engineering, Universidad del Bío-Bío, Avenida Collao 1202, Concepción, Chile;
| | - Andrea Y. Guadarrama-Lezama
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón 50120, Toluca 50000, Estado de México, Mexico;
| | - Rodrigo Briones
- CIPA, Centro de Investigación de Polímeros Avanzados, Avenida Collao 1202, Concepción, Chile;
| | - Juan F. Vivanco
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562340, Chile;
| | - Irene Gonzalez-Torre
- LabMAT, Department of Civil and Environmental Engineering, Universidad del Bío-Bío, Avenida Collao 1202, Concepción, Chile;
| |
Collapse
|
58
|
Mou CL, Deng QZ, Hu JX, Wang LY, Deng HB, Xiao G, Zhan Y. Controllable preparation of monodisperse alginate microcapsules with oil cores. J Colloid Interface Sci 2020; 569:307-319. [PMID: 32126344 DOI: 10.1016/j.jcis.2020.02.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/23/2023]
Abstract
Here we report a novel strategy for controllable preparation monodisperse alginate microcapsules with oil cores, where the thickness of the alginate shells, as well as the number and diversity of the oil cores can be tailored precisely. Monodisperse oil-in-water-in-oil (O/W/O) emulsions are generated in a microfluidic device as templates, which contain alginate molecules and a water-soluble calcium complex in the middle aqueous phase. Alginate microcapsules are produced by gelling O/W/O emulsions in oil solution with acetic acid, where the pH decreasing will trigger the calcium ions being released from calcium complex and cross-linking with alginate molecules. Increasing the alginate molecule concentration in emulsion templates affects little on the thickness of the microcapsules but improves their stability in DI water. The strength of alginate microcapsules can be reinforced by post cross-linking in calcium chloride, polyetherimide, or chitosan solution. Typical payloads, such as thyme essential oil, lavender essential oil and W/O emulsions are encapsulated in alginate microcapsules successfully. Furthermore, tailoring the thickness of the alginate shells, as well as the number and the diversity of the oil cores precisely by manipulation the emulsion templates with microfluidics is also demonstrated. The proposed method shows excellent controllability in designing alginate microcapsules with oil cores.
Collapse
Affiliation(s)
- Chuan-Lin Mou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| | - Qi-Zheng Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Jia-Xin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Lin-Yuan Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Hong-Bo Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Guoqing Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yingqing Zhan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| |
Collapse
|
59
|
Comparative technoeconomic process analysis of industrial-scale microencapsulation of bioactives in cross-linked alginate. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
60
|
Fathi M, Vinceković M, Jurić S, Viskić M, Režek Jambrak A, Donsì F. Food-Grade Colloidal Systems for the Delivery of Essential Oils. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1687514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Marko Vinceković
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Slaven Jurić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Marko Viskić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Anet Režek Jambrak
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
61
|
|
62
|
Abstract
The aim of this study was to encapsulate the oleoresins rich in carotenoids extracted from sea buckthorn (Hippophae rhamnoides) fruits into a blend of sodium-alginate and κ-carrageenan microbeads (2% w/v) coated by a sodium-alginate (2% w/v) layer prepared using an ionotropic gelation technique with calcium chloride (2% w/v) by dropping method. The fresh obtained coated microbeads had a “fried eggs” like appearance with a size distribution ranging from 4 to 6 mm. The coated microbeads were analyzed for their SEM and fluorescence. The encapsulation efficiency was 92%. Their stability was investigated by evaluation of the physical integrity performance in aqueous media with different pH to mimic the gastrointestinal tract for 24 h at 37 °C under laboratory conditions. The results demonstrated the limitation of the coated microbeads swelling ability under pH 7. The coated microbeads could be a good tool to guarantee oleoresins rich in carotenoids stability and colon delivery. The present study shows an attractive encapsulation system of oleoresins, in order to obtain stable products for further applications.
Collapse
|
63
|
Chen L, Gnanaraj C, Arulselvan P, El-Seedi H, Teng H. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of Type 2 Diabetes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
64
|
BÖGER BR, GEORGETTI SR, KUROZAWA LE. Microencapsulation of grape seed oil by spray drying. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.04417] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|