51
|
Anthony NG, Huchet G, Johnston BF, Parkinson JA, Suckling CJ, Waigh RD, Mackay SP. In silico footprinting of ligands binding to the minor groove of DNA. J Chem Inf Model 2006; 45:1896-907. [PMID: 16309297 DOI: 10.1021/ci050153b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sequence selectivity of small molecules binding to the minor groove of DNA can be predicted by "in silico footprinting". Any potential ligand can be docked in the minor groove and then moved along it using simple simulation techniques. By applying a simple scoring function to the trajectory after energy minimization, the preferred binding site can be identified. We show application to all known noncovalent binding modes, namely 1:1 ligand:DNA binding (including hairpin ligands) and 2:1 side-by-side binding, with various DNA base pair sequences and show excellent agreement with experimental results from X-ray crystallography, NMR, and gel-based footprinting.
Collapse
Affiliation(s)
- Nahoum G Anthony
- Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland
| | | | | | | | | | | | | |
Collapse
|
52
|
Mezei M, Filizola M. TRAJELIX: a computational tool for the geometric characterization of protein helices during molecular dynamics simulations. J Comput Aided Mol Des 2006; 20:97-107. [PMID: 16783601 DOI: 10.1007/s10822-006-9039-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 02/09/2006] [Indexed: 11/30/2022]
Abstract
We have developed a computer program with the necessary mathematical formalism for the geometric characterization of distorted conformations of alpha-helices proteins, such as those that can potentially be sampled during typical molecular dynamics simulations. This formalism has been incorporated into TRAJELIX, a new module within the SIMULAID framework (http://inka.mssm.edu/~mezei/simulaid/) that is capable of monitoring distortions of alpha-helices in terms of their displacement, global and local tilting, rotation around their axes, compression/extension, winding/unwinding, and bending. Accurate evaluation of these global and local structural properties of the helix can help study possible intramolecular and intermolecular changes in the helix packing of alpha-helical membrane proteins, as shown here in an application to the interacting helical domains of rhodopsin dimers. Quantification of the dynamic structural behavior of alpha-helical membrane proteins is critical for our understanding of signal transduction, and may enable structure-based design of more specific and efficient drugs.
Collapse
Affiliation(s)
- Mihaly Mezei
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, NYU, One Gustave L. Levy Place, Box 1218, New York, NY 10029, USA.
| | | |
Collapse
|
53
|
Khalid S, Hannon MJ, Rodger A, Rodger PM. Simulations of DNA Coiling around a Synthetic Supramolecular Cylinder That Binds in the DNA Major Groove. Chemistry 2006; 12:3493-506. [PMID: 16496427 DOI: 10.1002/chem.200501168] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this work we present the results of a molecular simulation study of the interaction between a tetracationic bis iron(II) supramolecular cylinder, [Fe2(C25H20N4)3]4+, and DNA. This supramolecular cylinder has been shown to bind in the major groove of DNA and to induce dramatic coiling of the DNA. The simulations have been designed to elucidate the interactions that lead the cylinder to target the major groove and that drive the subsequent DNA conformational changes. Three sets of multi-nanosecond simulations have been performed: one of the uncomplexed d(CCCCCTTTTTCC) d(GGAAAAAGGGGG) dodecamer; one of this DNA complexed with the cylinder molecule; and one of this DNA complexed with a neutralised version of the cylinder. Coiling of the DNA was observed in the DNA-cylinder simulations, giving insight into the molecular level nature of the supramolecular coiling observed experimentally. The cylinder charge was found not to be essential for the DNA coiling, which implies that the DNA response is moderated by the short range interactions that define the molecular shape. Cylinder charge did, however, affect the integrity of the DNA duplex, to the extent that, under some circumstances, the tetracationic cylinder induced defects in the DNA base pairing at locations adjacent to the cylinder binding site.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
54
|
Heavner S, Gannett PM. Molecular dynamics and free energy calculations of the B and Z forms of C8-arylguanine modified oligonucleotides. J Biomol Struct Dyn 2005; 23:203-20. [PMID: 16060694 DOI: 10.1080/07391102.2005.10507060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Arylhydrazines found in the mushroom Agaricus bisporus have been shown to be carcinogenic. Upon metabolic activation, arylhydrazines are transformed into aryl radicals, forming 8-arylpurines, which may play a role in arylhydrazine carcinogenesis. These adducts are poorly read and inhibit chain extension but do alter the conformational preferences of oligonucleotides. We have shown that C8-phenylguanine modification of d(CGCGCG*CGCG) (G*= 8-phenylguanine) stabilizes it in the Z-DNA conformation (B/Z-DNA=1:1, 200 mM NaCl, pH 7.4). Here we have conducted molecular dynamics and free energy calculations to determine the sources(s) of these conformational affects and to predict the affect of the related C8-tolyl and C8-hydroxymethylphenyl guanine adducts on B/Z-DNA equilibrium. Force field parameters for the modified guanines were first developed using Guassian98 employing the B3LYP method and the standard 6-31G* basis set and fit to the Cornell 94 force field with RESP. Molecular dynamics simulations and free energy calculations, using the suite of programs contained in Amber 6 and 7 with the Cornell 94 force field, were used to determine the structural and thermodynamic properties of the DNA. The principal factors that drive conformation are stacking of the aryl group over the 5'-cytosine in the phenyl and tolyl modified oligonucleotides while hydrogen bonding opposes stacking in the hydroxymethylphenyl derivative. The phenyl and tolyl-modified DNA's favored the Z-DNA form as did the hydroxymethylphenyl derivative when hydrogen bonding was not present. The B-DNA conformation was preferred by the unmodified oligonucleotide and by the hydroxymethylphenyl-modified oligonucleotide when hydrogen bonding was considered. Z-DNA stability was not found to directly correlated with carcinogenicity and additional biological factors, such as recognition and repair, may also need to be considered in addition to Z-DNA formation.
Collapse
Affiliation(s)
- Sue Heavner
- West Virginia University, Dept. of Basic Pharmaceutical Sciences, PO Box 9530, Morgantown, WV 26506, USA
| | | |
Collapse
|
55
|
Darian E, Gannett PM. Application of molecular dynamics simulations to spin-labeled oligonucleotides. J Biomol Struct Dyn 2005; 22:579-93. [PMID: 15702930 DOI: 10.1080/07391102.2005.10507028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The EPR study of spin labeled macromolecules has provided insight into structural and dynamical properties of DNA, proteins, and related systems. While spin labeling has been useful, it is experimentally difficult to determine if the spin label significantly alters the conformation of the macromolecule to which it is attached. Molecular modeling has proven to be a powerful tool for studying structure and dynamics of biologically important molecules. Here, we have conducted molecular dynamics (MD) studies of spin labeled oligonucleotides (ONs) bearing a five (5sp) or six (6sp) membered ring nitroxide, and the corresponding unmodified ON using the suite of programs contained in Amber 5.0 with the Cornell et al. 94 force field (Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, Jr., K. M. Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins and Nucleic Acids. J. Am. Chem. Soc. 117, 5179-5197 (1995)). Quantum mechanical calculations employing the B3LYP method with the standard 6-31G* basis set using Gaussian98 were performed and, together with available crystallographic data for analogous nitroxides, new parameters for the nitrogen, oxygen, nitroxide alpha-carbon, and sp-hybridized carbon atoms have been developed suitable for the Cornell et al. 94 force field. MD simulations on the double-stranded (ds) spin labeled ONs, along with the corresponding unmodified analogues, have been studied over the course of 4 ns and conformational properties of all ONs are described based on the analysis of the trajectories. The spin labels were found to alter the global conformation of the ONs to which they were attached to accommodate the spin labels. The major changes include widening the major groove, decreasing helical twist, and more negative X-displacement of the base pairs. The magnitude of the effect was dependent on the specific structure of the spin label. Average and 'most representative' structures derived from the molecular dynamics simulations correlate with the experimental data on the spin labeled ONs.
Collapse
Affiliation(s)
- Eva Darian
- Dept. of Basic Pharmaceutical Sciences, West Virginia University, P.O. Box 9530, Morgantown, WV 26506, USA
| | | |
Collapse
|
56
|
Abstract
DNA geometry depends on relative humidity. Using the CHARMM22 force field to push B-DNA to A-DNA, a molecular dynamics simulation of a mixed-sequence 24-basepair DNA double-stranded oligomer, starting from B-DNA, was carried out to explore both the mechanism of the transition and the evolution of hydration patterns on the surface of DNA. Over the 11-ns trajectory, the transition recapitulates the slide-first, roll-later mechanism, is opposed by DNA electrostatics, and is favored by an increasing amount of condensed sodium ions. Hydration was characterized by counting the hydrogen bonds between water and DNA, and by the number of water bridges linking two DNA atoms. The number of hydrogen bonds between water and DNA remains constant during the transition, but there is a 40% increase in the number of water bridges, in agreement with the principle of economy of hydration. Water bridges emerge as delicate sensors of both structure and dynamics of DNA. Both local flexibility and the frustration of the water network on the surface of DNA probably account for the low populations and short residence times of the bridges, and for the lubricant role of water in ligand-DNA interactions.
Collapse
Affiliation(s)
- Nina Pastor
- Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
57
|
McAteer K, Aceves-Gaona A, Michalczyk R, Buchko GW, Isern NG, Silks LAP, Miller JH, Kennedy MA. Compensating bends in a 16-base-pair DNA oligomer containing a T(3)A(3) segment: A NMR study of global DNA curvature. Biopolymers 2005; 75:497-511. [PMID: 15526287 DOI: 10.1002/bip.20168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In-phase ligated DNA containing T(n)A(n) segments fail to exhibit the retarded polyacrylamide gel electrophoresis (PAGE) migration observed for in-phase ligated A(n)T(n) segments, a behavior thought to be correlated with macroscopic DNA curvature. The lack of macroscopic curvature in ligated T(n)A(n) segments is thought to be due to cancellation of bending in regions flanking the TpA steps. To address this issue, solution-state NMR, including residual dipolar coupling (RDC) restraints, was used to determine a high-resolution structure of [d(CGAGGTTTAAACCTCG)2], a DNA oligomer containing a T3A3 tract. The overall magnitude and direction of bending, including the regions flanking the central TpA step, was measured using a radius of curvature, Rc, analysis. The Rc for the overall molecule indicated a small magnitude of global bending (Rc = 138 +/- 23 nm) towards the major groove, whereas the Rc for the two halves (72 +/- 33 nm and 69 +/- 14 nm) indicated greater localized bending into the minor groove. The direction of bending in the regions flanking the TpA step is in partial opposition (109 degrees), contributing to cancellation of bending. The cancellation of bending did not correlate with a pattern of roll values at the TpA step, or at the 5' and 3' junctions, of the T3A3 segment, suggesting a simple junction/roll model is insufficient to predict cancellation of DNA bending in all T(n)A(n) junction sequence contexts. Importantly, Rc analysis of structures refined without RDC restraints lacked the precision and accuracy needed to reliably measure bending.
Collapse
Affiliation(s)
- Kathleen McAteer
- Department of Computer Science and Electrical Engineering, Washington State University Tri-Cities, Richland, WA 99352
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Wibowo FR, Trieb M, Rauch C, Wellenzohn B, Liedl KR. The N6-Methyl Group of Adenine Further Increases the BI Stability of DNA Compared to C5-Methyl Groups. J Phys Chem B 2004; 109:557-64. [PMID: 16851047 DOI: 10.1021/jp048519v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methylated DNA bases are natural modifications which play an important role in protein-DNA interactions. Recent experimental and theoretical results have shown an influence of the base modification on the conformational behavior of the DNA backbone. MD simulations of four different B-DNA dodecamers (d(GC)(6), d(AT)(6), d(G(5mCG)(5)C), and d(A(T6mA)(5)T)) have been performed with the aim to examine the influence of methyl groups on the B-DNA backbone behavior. An additional control simulation of d(AU)(6) has also been performed to examine the further influence of the C5-methyl group in thymine. Methyl groups in the major groove (as in C5-methylcytosine, thymine, or N6-methyladenine) decrease the BII substate population of RpY steps. Due to methylation a clearer distinction of the BI substate stability between YpR and RpY (CpG/GpC or TpA/ApT) steps arises. A positive correlation between the BII substate population and base stacking distances is seen only for poly(GC). A methyl group added into the major groove increases mean water residence times around the purine N7 atom, which may stabilize the BI substate by improving the hydration network between the DNA backbone and the major groove. The N6-methyl group also forms a water molecule bridge between the N6 and O4 atoms, and thus further stabilizes the BI substate.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
59
|
Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T, Mayer E, Liedl KR. Daunomycin Intercalation Stabilizes Distinct Backbone Conformations of DNA. J Biomol Struct Dyn 2004; 21:713-24. [PMID: 14769064 DOI: 10.1080/07391102.2004.10506961] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Daunomycin is a widely used antibiotic of the anthracycline family. In the present study we reveal the structural properties and important intercalator-DNA interactions by means of molecular dynamics. As most of the X-ray structures of DNA-daunomycin intercalated complexes are short hexamers or octamers of DNA with two drug molecules per doublehelix we calculated a self complementary 14-mer oligodeoxyribonucleotide duplex d(CGCGCGATCGCGCG)2 in the B-form with two putative intercalation sites at the 5'-CGA-3' step on both strands. Consequently we are able to look at the structure of a 1:1 complex and exclude crystal packing effects normally encountered in most of the X-ray crystallographic studies conducted so far. We performed different 10 to 20 ns long molecular dynamics simulations of the uncomplexed DNA structure, the DNA-daunomycin complex and a 1:2 complex of DNA-daunomycin where the two intercalator molecules are stacked into the two opposing 5'-CGA-3' steps. Thereby--in contrast to X-ray structures--a comparison of a complex of only one with a complex of two intercalators per doublehelix is possible. The chromophore of daunomycin is intercalated between the 5'-CG-3' bases while the daunosamine sugar moiety is placed in the minor groove. We observe a flexibility of the dihedral angle at the glycosidic bond, leading to three different positions of the ammonium group responsible for important contacts in the minor groove. Furthermore a distinct pattern of BI and BII around the intercalation site is induced and stabilized. This indicates a transfer of changes in the DNA geometry caused by intercalation to the DNA backbone.
Collapse
Affiliation(s)
- Michael Trieb
- Institute of General Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Transcription start site selection in eukaryotes is mediated through combinations of the TATA, initiator (Inr), and downstream promoter elements (DPE). In Trichomonas vaginalis, a parabasalian flagellate thought to represent an ancient eukaryote lineage, the Inr appears to be solely responsible for start site selection and is recognized by the initiator binding protein 39 kDa (IBP39). IBP39 contains an N-terminal Inr binding domain (IBD) connected via a flexible linker to a C-terminal domain (C domain). Here we present crystal structures of the apoIBD and IBD-Inr complexes and the C domain. The IBD structures reveal a winged-helix motif with prokaryotic and eukaryotic features and a scaffold similar to that of ETS-family proteins. The C domain structure and biochemical studies indicate that it interacts with the T. vaginalis RNAP II large subunit C-terminal domain. These data suggest that binding of IBP39 to the Inr directly recruits RNAP II and in this way initiates transcription.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
61
|
Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T, Liedl KR. Dynamics of DNA: BI and BII Phosphate Backbone Transitions. J Phys Chem B 2004. [DOI: 10.1021/jp037079p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Trieb
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Christine Rauch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Bernd Wellenzohn
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Fajar Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| |
Collapse
|
62
|
Wibowo FR, Rauch C, Trieb M, Wellenzohn B, Liedl KR. Water-mediated contacts in thetrp-repressor operator complex recognition process. Biopolymers 2004; 73:668-81. [PMID: 15048770 DOI: 10.1002/bip.20023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Water-mediated contacts are known as an important recognition tool in trp-repressor operator systems. One of these contacts involves two conserved base pairs (G(6).C(-6) and A(5). T(-5)) and three amino acids (Lys 72, Ile 79, and Ala 80). To investigate the nature of these contacts, we analyzed the X-ray structure (PDB code: 1TRO) of the trp-repressor operator complex by means of molecular dynamics simulations. This X-ray structure contains two dimers that exhibit structural differences. From these two different starting structures, two 10 ns molecular dynamics simulations have been performed. Both of our simulations show an increase of water molecules in the major groove at one side of the dimer, while the other side remains unchanged compared to the X-ray structure. Though the maximum residence time of the concerned water molecules decreases with an increase of solvent at the interface, these water molecules continue to play an important role in mediating DNA-protein contacts. This is shown by new stable amino acids-DNA distances and a long water residence time compared to free DNA simulation. To maintain stability of the new contacts, the preferential water binding site on O6(G6) is extended. This extension agrees with mutation experiment data on A5 and G6, which shows different relative affinity due to mutation on these bases [A. Joachimiak, T. E. Haran, P. B. Sigler, EMBO Journal 1994, Vol. 13, No. (2) pp. 367-372]. Due to the rearrangements in the system, the phosphate of the base G6 is able to interconvert to the B(II) substate, which is not observed on the other half side of the complex. The decrease of the number of hydrogen bonds between protein and DNA backbone could be the initial step of the dissociation process of the complex, or in other words an intermediate complex conformation of the association process. Thus, we surmise that these features show the importance of water-mediated contacts in the trp-repressor operator recognition process.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
63
|
Ojha RP, Tiwari RK. Triplex hydration: nanosecond molecular dynamics simulation of the solvated triplex formed by mixed sequences. Nucleic Acids Res 2003; 31:6373-80. [PMID: 14576325 PMCID: PMC275451 DOI: 10.1093/nar/gkg796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A theoretical model for the hydration pattern and motion of ions around the triple helical DNA with mixed sequences d(GACTGGTGAC)d(GTCACCAGTC)*d(GACTGGTGAC) in solution, during MD simulation, using the particle mesh Ewald sum method, is elaborated here. The AMBER 5.0 force field has been used during the simulation in solvent. The simulation studies support a dynamically stable atmosphere around the DNA triplex in solution over the entire length of the trajectory. The results have been compared with Hoogsteen triplexes and examined in the context of the observed behaviour of hydration in crystallographic data of duplexes. The dynamical organization of counterions and water molecules around the triplex formed by mixed sequences is described here. It has been observed that cations prefer to bind between two adjoining purines of the second and the third strands. The idea of localized complexes (mobile counterions in unspecific electronegative pockets around the DNA triplex with water molecules) may have important implications for understanding the specificity of the interactions of nucleic acids with proteins and other ligands.
Collapse
Affiliation(s)
- Rajendra P Ojha
- Biophysics Unit, Department of Physics, DDU Gorakhpur University, Gorakhpur 273 009, India.
| | | |
Collapse
|
64
|
Miller JH, Fan-Chiang CCP, Straatsma TP, Kennedy MA. 8-Oxoguanine enhances bending of DNA that favors binding to glycosylases. J Am Chem Soc 2003; 125:6331-6. [PMID: 12785867 DOI: 10.1021/ja029312n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics (MD) simulations were carried out on the DNA oligonucleotide GGGAACAACTAG:CTAGTTGTTCCC in its native form and with guanine in the central G(19):C(6) base pair replaced by 8-oxoguanine (8oxoG). A box of explicit water molecules was used for solvation, and Na(+) counterions were added to neutralize the system. The direction and magnitude of global bending were assessed by a technique used previously to analyze simulations of DNA containing a thymine dimer. The presence of 8oxoG did not greatly affect the magnitude of DNA bending; however, bending into the major groove was significantly more probable when 8oxoG replaced G(19). Crystal structures of glycosylases bound to damaged-DNA substrates consistently show a sharp bend into the major groove at the damage site. We conclude that changes in bending dynamics that assist the formation of this kink are a part of the mechanism by which glycosylases of the base excision repair pathway recognize the presence of 8oxoG in DNA.
Collapse
Affiliation(s)
- John H Miller
- Washington State University Tri-Cities, Richland 99352, USA.
| | | | | | | |
Collapse
|
65
|
Yan S, Wu M, Patel DJ, Geacintov NE, Broyde S. Simulating structural and thermodynamic properties of carcinogen-damaged DNA. Biophys J 2003; 84:2137-48. [PMID: 12668423 PMCID: PMC1302781 DOI: 10.1016/s0006-3495(03)75020-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A pair of stereoisomeric covalent adducts to guanine in double-stranded DNA, derived from the reaction of mutagenic and tumorigenic metabolites of benzo[a]pyrene, have been well characterized structurally and thermodynamically. Both high-resolution NMR solution structures and an array of thermodynamic data are available for these 10S (+)- and 10R (-)-trans-anti -[BP]-N(2)-dG adducts in double-stranded deoxyoligonucleotides. The availability of experimentally well-characterized duplexes containing these two stereoisomeric guanine adducts provides an opportunity for evaluating the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for computing thermodynamic properties from molecular dynamics ensembles. We have carried out 3-ns molecular dynamics simulations, using NMR solution structures as the starting models for the 10S (+)- and 10R (-)-trans-anti-dG adducts in a DNA duplex 11-mer using AMBER 6.0. We employed the MM-PBSA method to compute the free energies, enthalpies, and entropies of the two adducts. Our complete thermodynamic analysis agrees quite well with the full experimental thermodynamic characterization of these adducts, showing essentially equal stabilities of the two adducts. We also calculated the nuclear Overhauser effect (NOE) distances from the molecular dynamics trajectories, and compared them against the experimental NMR-derived NOE distances. Our results showed that the simulated structures are in good agreement with the NMR experimental NOE data. Furthermore, the molecular dynamics simulations provided new structural and biological insights. Specifically, the puzzling observation that the BP aromatic ring system in the 10S (+)-trans-anti-dG adduct is more exposed to the aqueous solvent than the 10R (-)-trans-anti-dG adduct, is rationalized in terms of the adduct structures. The structural and thermodynamic features of these stereoisomeric adducts are also discussed in relation to their reported low susceptibilities to nucleotide excision repair.
Collapse
Affiliation(s)
- Shixiang Yan
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
66
|
Thorpe JH, Gale BC, Teixeira SCM, Cardin CJ. Conformational and hydration effects of site-selective sodium, calcium and strontium ion binding to the DNA Holliday junction structure d(TCGGTACCGA)(4). J Mol Biol 2003; 327:97-109. [PMID: 12614611 DOI: 10.1016/s0022-2836(03)00088-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na(+) and Ca(2+), and separately with Sr(2+) to resolutions of 1.85A and 1.65A, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na(+) sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca(2+) sites in the same structure are at the CG/CG steps in the minor groove. The Sr(2+) ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr(2+) derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4 degrees in the Ca(2+) and Na(+) containing structure, and 13.4 degrees in the Sr(2+) containing structure. The crossover angles at the junction are 39.3 degrees and 43.3 degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3A is observed for the Sr(2+) containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction.
Collapse
Affiliation(s)
- James H Thorpe
- School of Chemistry, The University of Reading, Whiteknights, Reading RG6 6AD, UK
| | | | | | | |
Collapse
|
67
|
Schaal TD, Mallet WG, McMinn DL, Nguyen NV, Sopko MM, John S, Parekh BS. Inhibition of human papilloma virus E2 DNA binding protein by covalently linked polyamides. Nucleic Acids Res 2003; 31:1282-91. [PMID: 12582248 PMCID: PMC150225 DOI: 10.1093/nar/gkg206] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 12/03/2002] [Accepted: 12/03/2002] [Indexed: 11/13/2022] Open
Abstract
Polyamides are a class of heterocyclic small molecules with the potential of controlling gene expression by binding to the minor groove of DNA in a sequence-specific manner. To evaluate the feasibility of this class of compounds as antiviral therapeutics, molecules were designed to essential sequence elements occurring numerous times in the HPV genome. This sequence element is bound by a virus-encoded transcription and replication factor E2, which binds to a 12 bp recognition site as a homodimeric protein. Here, we take advantage of polyamide:DNA and E2:DNA co-crystal structural information and advances in polyamide synthetic chemistry to design tandem hairpin polyamides that are capable of displacing the major groove-binding E2 homodimer from its DNA binding site. The binding of tandem hairpin polyamides and the E2 DNA binding protein to the DNA site is mutually exclusive even though the two ligands occupy opposite faces of the DNA double helix. We show with circular permutation studies that the tandem hairpin polyamide prevents the intrinsic bending of the E2 DNA site important for binding of the protein. Taken together, these results illustrate the feasibility of inhibiting the binding of homodimeric, major groove-binding transcription factors by altering the local DNA geometry using minor groove-binding tandem hairpin polyamides.
Collapse
Affiliation(s)
- Thomas D Schaal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, Building 41, Room B307, NCI, NIH, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Gerdeman MS, Henkin TM, Hines JV. Solution structure of the Bacillus subtilis T-box antiterminator RNA: seven nucleotide bulge characterized by stacking and flexibility. J Mol Biol 2003; 326:189-201. [PMID: 12547201 DOI: 10.1016/s0022-2836(02)01339-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The T-box transcription antitermination regulatory system is an important mechanism for regulation of expression of aminoacyl-tRNA synthetase, amino acid biosynthesis and transporter gene expression in Gram-positive bacteria. Antitermination is dependent on a complex set of interactions between uncharged tRNA and the leader region of the mRNA of the regulated gene. Here, we report the solution structure of a model RNA, based on the Bacillus subtilis tyrS antiterminator, determined to an rmsd of 3.47A for all nine converged structures and 2.66A for the seven structures representing the consensus family. The antiterminator is comprised of two short helices with an intervening 7nt bulge. The bulge region of the antiterminator, which ultimately interacts with the acceptor end of tRNA, exhibits extensive stacking at the 3' end (encompassing the highly conserved ACC residues) and is the site of a pronounced kink between the two flanking helices. The 5' end of the bulge exhibits evidence of conformational flexibility. On the basis of the structural studies, there is no indication that the bases at the 5' end of the bulge that ultimately base-pair with tRNA are pre-organized for binding. Instead, the data are consistent with a model in which the stacking-induced structure at the 3' end of the bulge may facilitate the pre-selection of a set of conformations for the tRNA to sample during binding.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Base Pairing
- Base Sequence
- Conserved Sequence
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Nucleotides/chemistry
- Nucleotides/genetics
- Pliability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Solutions
- Terminator Regions, Genetic/genetics
Collapse
Affiliation(s)
- Melinda S Gerdeman
- Division of Medicinal Chemistry, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
69
|
McAteer K, Kennedy MA. Force field dependence of NMR-Based, restrained molecular dynamics DNA structure calculations including an analysis of the influence of residual dipolar coupling restraints. J Biomol Struct Dyn 2003; 20:487-506. [PMID: 12529149 DOI: 10.1080/07391102.2003.10506867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Restrained molecular dynamics is widely used to calculate DNA structures from NMR data. Here, results of an in silico experiment show that the force field can be significant compared to the NMR restraints in driving the final structures to converge. Specifically, we observed that i) the influence of the force field leads to artificially tight convergence within final families of structures and ii) the precision and character of resulting structures depend on the choice of force field used in the calculations. A canonical B-DNA model was used as a target structure. Distances, dihedral angles, and simulated residual dipolar couplings were measured in the target structure and used as restraints. X-PLOR and Discover, which use force fields developed for CHARMM and AMBER programs, respectively, were tested and found to produce different final structures despite the use of identical distance and dihedral restraints. Incorporation of residual dipolar coupling restraints in X-PLOR improves convergence with the target structure and between families of structures indicating that the force field dependence can potentially be overcome if residual dipolar coupling restraints are employed.
Collapse
Affiliation(s)
- Kathleen McAteer
- Environmental Molecular Sciences Lab., Pacific Northwest National Laboratory, P.O. Box 999, K8-98, Richland, WA 99352, USA
| | | |
Collapse
|
70
|
Wellenzohn B, Loferer MJ, Trieb M, Rauch C, Winger RH, Mayer E, Liedl KR. Hydration of hydroxypyrrole influences binding of ImHpPyPy-beta-Dp polyamide to DNA. J Am Chem Soc 2003; 125:1088-95. [PMID: 12537509 DOI: 10.1021/ja0277778] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligands which are able to recognize DNA sequence specifically are of fundamental interest as transcription controlling drugs. Recently a polyamide ligand was developed (ImHpPyPy-beta-Dp) which differentiates in a dimeric arrangement between all four possible base pair steps in the minor groove. This is a landmark for the design of DNA binding drugs because it was believed that such a recognition could only be possible in the major groove of DNA. Although the OH groups of the hydroxypyrrole (Hp) moieties of the ligands are responsible for this sequence discrimination, experiments showed that this OH group also reduces the absolute binding constant. We performed a free energy calculation by means of thermodynamic integration in order to find out the influence of this single hydroxyl on DNA binding. In our simulation, we found that the hydroxyl group reduces binding by about 1.3 kcal/mol, which is in excellent agreement with the experimentally determined value of 1.2 kcal/mol. In further MD simulations, the structural reasons for this reduction was estimated. The results of these simulations qualitatively agree with the X-ray structures, but in contrast, in the simulations both (ImHpPyPy-beta-Dp and ImPyPyPy-beta-Dp) ligand-DNA (d(CCAGTACTGG)(2)) complexes exhibit only slight structural differences. This is consistent with a recently published second pair of similar polyamide DNA crystal structures. Thus, we believe that the explanations resulting from the X-ray structures must be modified. We attribute the large structural differences between the two polyamide DNA complexes to a buffer molecule which binds only in the case of the ImHpPyPy-beta-Dp-DNA complex at the region of interest. We propose that the differential hydration of both ligands in the unbound state is responsible for the reduction of the binding constant. Additionally, we suggest an indirect readout of DNA, because of a lengthening of the Watson-Crick base pairs, which possibly contributes to the differentiation between T.A, A.T from G.C, C.G base pairs.
Collapse
Affiliation(s)
- Bernd Wellenzohn
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
71
|
Várnai P, Djuranovic D, Lavery R, Hartmann B. Alpha/gamma transitions in the B-DNA backbone. Nucleic Acids Res 2002; 30:5398-406. [PMID: 12490708 PMCID: PMC140057 DOI: 10.1093/nar/gkf680] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Revised: 10/17/2002] [Accepted: 10/17/2002] [Indexed: 11/13/2022] Open
Abstract
In the crystal structures of protein complexes with B-DNA, alpha and gamma DNA backbone torsion angles often exhibit non-canonical values. It is not known if these alternative backbone conformations are easily accessible in solution and can contribute to the specific recognition of DNA by proteins. We have analysed the coupled transition of the alpha and gamma torsion angles within the central GpC step of a B-DNA dodecamer by computer simulations. Five stable or metastable non-canonical alpha/gamma sub-states are found. The most favourable pathway from the canonical alpha/gamma structure to any unusual form involves a counter-rotation of alpha and gamma, via the trans conformation. However, the corresponding free energy indicates that spontaneous flipping of the torsions is improbable in free B-DNA. This is supported by an analysis of the available high resolution crystallographic structures showing that unusual alpha/gamma states are only encountered in B-DNA complexed to proteins. An analysis of the structural consequences of alpha/gamma transitions shows that the non-canonical backbone geometry influences essentially the roll and twist values and reduces the equilibrium dispersion of structural parameters. Our results support the hypothesis that unusual alpha/gamma backbones arise during protein-DNA complexation, assisting the fine structural adjustments between the two partners and playing a role in the overall complexation free energy.
Collapse
Affiliation(s)
- Péter Várnai
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, Paris 75005, France.
| | | | | | | |
Collapse
|
72
|
Wellenzohn B, Flader W, Winger RH, Hallbrucker A, Mayer E, Liedl KR. Influence of netropsin's charges on the minor groove width of d(CGCGAATTCGCG)2. Biopolymers 2002; 61:276-86. [PMID: 12115142 DOI: 10.1002/bip.10156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The exact understanding of the interaction of minor groove binding drugs with DNA is of interest due to their importance as transcription controlling drugs. In this study we performed four molecular dynamics simulations, one of the uncomplexed d(CGCGAATTCGCG)(2) dodecamer and three simulations of the DNA complexed with the minor groove binder netropsin. The charged guanidinium and amidinium ends of the small ligand were in one simulation formally uncharged, in the second one normally charged, and in the third simulation we doubled the charges of the two ends. So we are able to filter out the influence the charges exert on the DNA structure. The positive charges reduce the width of the minor groove showing that charges are able to modify the groove width by charge neutralization of the negative phosphate groups. The quality of the used force field was successfully tested by comparing the results of the uncomplexed dodecamer with already reported NMR and x-ray studies. Thus our simulations should be able to describe the minor groove width of DNA in a correct manner underlying the validity of the results.
Collapse
Affiliation(s)
- B Wellenzohn
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
73
|
Wu M, Yan S, Patel DJ, Geacintov NE, Broyde S. Relating repair susceptibility of carcinogen-damaged DNA with structural distortion and thermodynamic stability. Nucleic Acids Res 2002; 30:3422-32. [PMID: 12140327 PMCID: PMC137070 DOI: 10.1093/nar/gkf427] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Revised: 05/22/2002] [Accepted: 05/22/2002] [Indexed: 12/19/2022] Open
Abstract
A key issue in the nucleotide excision repair (NER) of bulky carcinogen-DNA adducts is the ability of the NER machinery to recognize and repair certain adducts while failing to repair others. Unrepaired adducts can survive to cause mutations that initiate the carcinogenic process. Benzo[c]phenanthrene (B[c]Ph), a representative fjord region polycyclic aromatic hydrocarbon, can be metabolically activated to the enantiomeric benzo[c]phenanthrene diol epoxides (B[c]PhDEs), (+)-(1S,2R,3R,4S)-3,4- dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene and the corresponding (-)-(1R,2S,3S,4R) isomer. These react predominantly with adenine residues in DNA to produce the stereoisomeric 1R (+)- and 1S (-)-trans-anti-B[c]Ph-N6-dA adducts. Duplexes containing the 1R (+) or 1S (-) B[c]Ph-dA adduct in codon 61 of the human N-ras mutational hotspot sequence CA*A, with B[c]Ph modification at A*, are not repaired by the human NER system. However, the analogous stereoisomeric DNA adducts of the bay region benzo[a]pyrene diol epoxide (B[a]PDE), 10S (+)- and 10R (-)-trans-anti-B[a]P-N6-dA, are repaired in the same base sequence. In order to elucidate structural and thermodynamic origins of this phenomenon, we have carried out a 2 ns molecular dynamics simulation for the 1R (+)- and 1S (-)-trans-anti-B[c]Ph-N6-dA adducts in an 11mer duplex containing the human N-ras codon 61 sequence, and compared these results with our previous study of the B[a]P-dA adducts in the same sequence. The molecular mechanics Poisson- Boltzmann surface area (MM-PBSA) method was applied to calculate the free energies of the pair of stereoisomeric B[c]Ph-dA adducts, and a detailed structural analysis was carried out. The different repair susceptibilities of the B[a]P-dA adducts and the B[c]Ph-dA adducts can be attributed to different degrees of distortion, stemming from combined effects of differences in the quality of Watson-Crick hydrogen bonding, unwinding, stretching and helix backbone perturbations. These differences are due to the different intrinsic topologies of the rigid, planar bay region adducts versus the twisted, sterically hindered fjord region adducts.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
74
|
Parvathy VR, Bhaumik SR, Chary KVR, Govil G, Liu K, Howard FB, Miles HT. NMR structure of a parallel-stranded DNA duplex at atomic resolution. Nucleic Acids Res 2002; 30:1500-11. [PMID: 11917010 PMCID: PMC101824 DOI: 10.1093/nar/30.7.1500] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA dodecamers have been designed with two cytosines on each end and intervening A and T stretches, such that the oligomers have fully complementary A:T base pairs when aligned in the parallel orientation. Spectroscopic (UV, CD and IR), NMR and molecular dynamics studies have shown that oligomers having the sequences d(CCATAATTTACC) and d(CCTATTAAATCC) form a parallel-stranded duplex when dissolved at 1:1 stoichiometry in aqueous solution. This is due to the C:C+ clamps on either end and extensive mismatches in the antiparallel orientation. The structure is stable at neutral and acidic pH. At higher temperatures, the duplex melts into single strands in a highly cooperative fashion. All adenine, cytosine and thymine nucleotides adopt the anti conformation with respect to the glycosidic bond. The A:T base pairs form reverse Watson-Crick base pairs. The duplex shows base stacking and NOEs between the base protons T(H6)/A(H8) and the sugar protons (H1'/H2'/H2") of the preceding nucleotide, as has been observed in antiparallel duplexes. However, no NOEs are observed between base protons H2/H6/H8 of sequential nucleotides, though such NOEs are observed between T(CH3) and A(H8). A three-dimensional structure of the parallel-stranded duplex at atomic resolution has been obtained using molecular dynamics simulations under NMR constraints. The simulated structures have torsional angles very similar to those found in B-DNA duplexes, but the base stacking and helicoid parameters are significantly different.
Collapse
Affiliation(s)
- V Rani Parvathy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | | | | | | | | | | | | |
Collapse
|
75
|
Premraj BJ, Raja S, Yathindra N. Structural basis for the unusual properties of 2',5' nucleic acids and their complexes with RNA and DNA. Biophys Chem 2002; 95:253-72. [PMID: 12062384 DOI: 10.1016/s0301-4622(02)00040-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To provide insights into the unusual properties of 2',5' nucleic acids (iso nucleic acids), that includes their rejection by Nature as information molecules, modeling studies have been carried out to examine if they indeed possess the stereochemical ability to form helical duplexes and triplexes, just as their 3',5' linked constitutional isomers. The results show that the formation of helical duplexes with 2',5' linkages demands a mandatory displacement of the Watson and Crick base pairs from the helical axis, as a direct consequence of the lateral shift of the sugar-phosphate backbone from the periphery towards the interior of the helix. Thus, both duplexes and triplexes formed with a 2',5'-sugar-phosphate backbone possess this intrinsic trait, manifested normally only in A type duplexes of DNA and RNA. It was found that only a 10-fold symmetric parallel triplex with isomorphous T.AT triplets is stereochemically favorable for isoDNA with 'extended' nucleotide repeats, unlike the 12-fold symmetric triplex favored by DNA. The wider nature of a 12-fold triplex, concomitant with mandatory slide requirement for helix formation in isoDNA, demands even larger displacement, especially with 'extended' nucleotide structural repeats, thereby violating symmetry. However, a symmetric triplex possessing higher twist, can be naturally formed for isoDNA with a 'compact' nucleotide repeat. Two nanosecond molecular dynamics simulation of a 2',5'-B DNA duplex, formed with an intrinsic base pair displacement of -3.3 A, does not seem to favor a total transition to a typical A type duplex, although enhanced slide, X-displacement, decrease in helical rise and narrowing of the major groove during simulation seem to indicate a trend. Modeling of the interaction between the chimeric isoDNA.RNA duplex and E. coli RNase H has provided a structural basis for the inhibitory action of the enzyme. Interaction of residues Gln 80, Trp 81, Asn 16 and Lys 99, of E. coli RNase H with DNA of the DNA.RNA hybrid, are lost when the DNA backbone is replaced by isoDNA. Based on modeling and experimental observations, it is argued that 2',5' nucleic acids possess restricted conformational flexibility for helical polymorphism. The inability of isoDNA to favor the biologically relevant B form duplex and the associated topological inadequacies related to nucleic acid compaction and interactions with regulatory proteins may be some of the factors that might have led to the rejection of 2',5' links.
Collapse
Affiliation(s)
- B J Premraj
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | |
Collapse
|
76
|
Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG. Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. EMBO J 2002; 21:1210-8. [PMID: 11867549 PMCID: PMC125875 DOI: 10.1093/emboj/21.5.1210] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Staphylococcus aureus multidrug-binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by multiple structurally dissimilar drugs. QacR is a member of the TetR/CamR family of transcriptional regulators, which share highly homologous N-terminal DNA-binding domains connected to seemingly non-homologous ligand-binding domains. Unlike other TetR members, which bind approximately 15 bp operators, QacR recognizes an unusually long 28 bp operator, IR1, which it appears to bind cooperatively. To elucidate the DNA-binding mechanism of QacR, we determined the 2.90 A resolution crystal structure of a QacR-IR1 complex. Strikingly, our data reveal that the DNA recognition mode of QacR is distinct from TetR and involves the binding of a pair of QacR dimers. In this unique binding mode, recognition at each IR1 half-site is mediated by a complement of DNA contacts made by two helix-turn-helix motifs. The inferred cooperativity does not arise from cross-dimer protein-protein contacts, but from the global undertwisting and major groove widening elicited by the binding of two QacR dimers.
Collapse
Affiliation(s)
| | | | - Steve Grkovic
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA and
School of Biological Sciences, A12, University of Sydney, Sydney, NSW 2006, Australia Corresponding author e-mail:
| | - Melissa H. Brown
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA and
School of Biological Sciences, A12, University of Sydney, Sydney, NSW 2006, Australia Corresponding author e-mail:
| | - Ronald A. Skurray
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA and
School of Biological Sciences, A12, University of Sydney, Sydney, NSW 2006, Australia Corresponding author e-mail:
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA and
School of Biological Sciences, A12, University of Sydney, Sydney, NSW 2006, Australia Corresponding author e-mail:
| |
Collapse
|
77
|
Konerding D, James TL, Trump E, Soto AM, Marky LA, Gmeiner WH. NMR structure of a gemcitabine-substituted model Okazaki fragment. Biochemistry 2002; 41:839-46. [PMID: 11790105 DOI: 10.1021/bi015678l] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gemcitabine (2'-deoxy-2',2'-difluorodeoxycytidine; dFdC) is a potent anticancer drug that exerts cytotoxic activity, in part, through incorporation of the nucleoside triphosphate dFdCTP into DNA and perturbations to DNA-mediated processes. The structure of a model Okazaki fragment containing a single dFdC substitution, [GEM], was determined using NMR spectroscopy and restrained molecular dynamics to understand structural distortions that may be induced in replicating DNA resulting from dFdC substitution. The electrostatic surface of [GEM] was also computed to determine how the geminal difluoro group of dFdC perturbs DNA electrostatics. The stability of [GEM] was investigated using temperature-dependent UV spectroscopy. dFdC adopted a C3'-endo conformation in [GEM] and decreased the melting temperature of the duplex by 4.3 degrees C. dFdC substitution did not decrease helical stacking among adjacent purines in the DNA duplex region. dFdC substitution substantially altered the electrostatic properties of the model Okazaki fragment, with increased electron density in the vicinity of the geminal difluoro group. The results are consistent with dFdC substitution altering the structural, electrostatic, and thermodynamic properties of DNA and interfering in DNA-mediated processes. Interference in DNA-mediated processes due to dFdC substitution likely contributes to the anticancer activity of dFdC.
Collapse
Affiliation(s)
- David Konerding
- Graduate Group in Biophysics and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
78
|
Dodson ML, Lloyd RS. Backbone dynamics of DNA containing 8-oxoguanine: importance for substrate recognition by base excision repair glycosylases. Mutat Res 2001; 487:93-108. [PMID: 11738936 DOI: 10.1016/s0921-8777(01)00109-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Except for the functional groups sited within the major or minor grooves, the bases of B-DNA are quite protected from the external environment. Enzymes that modify the bases often "flip out" the target into an extrahelical position before the chemistry step is carried out. Examples of this mechanism are the base excision repair glycosylases and the restriction enzyme methylases. The question arises about the mechanism of substrate recognition for these enzymes and how closely it is linked to the base flipping step. Molecular dynamics simulations (AMBER, PME electrostatics) of fully solvated, cation neutralized, DNA sequences containing 8-oxoguanine (8OG) and of appropriate normal (control) DNAs have been carried out. The dynamics trajectories were analyzed to identify those properties of the DNA structure in the vicinity of the altered base, or its dynamics, that could contribute to molecular discrimination between substrate and non-substrate DNA sites. The results predict that the FPG enzyme should flip out the cytosine base paired with the scissile 8OG, not the target base itself.
Collapse
Affiliation(s)
- M L Dodson
- The Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1071, USA.
| | | |
Collapse
|
79
|
Martínez JM, Elmroth SK, Kloo L. Influence of sodium ions on the dynamics and structure of single-stranded DNA oligomers: a molecular dynamics study. J Am Chem Soc 2001; 123:12279-89. [PMID: 11734028 DOI: 10.1021/ja0108786] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of sodium counterion presence and chain length on the structure and dynamics of single DNA strands of polythymidylate were studied by means of molecular dynamics simulations. The importance of the base-base stacking phenomenon increases with the chain length and partially reduces the flexibility of the strand. Sodium ions directly interact with the phosphate groups and keto oxygens of the thymine bases, complexes showing lifetimes below 400 ps. Simultaneous phosphate and keto complexes were observed for one of the sodium ions with lifetimes around 1 ns. The implications of such complexes in the folding process experienced by the strand are considered. Structurally, cation inner- and outer-sphere complexes were observed in the coordination of phosphate groups. For the inner-sphere complexes, the structural information retrieved from the simulations is in very good agreement with experimental data. The diffusion properties of the sodium ions also reflect both types of coordination modes.
Collapse
Affiliation(s)
- J M Martínez
- Department of Inorganic Chemistry, Royal Institute of Technology, Stockholm S-10044, Sweden
| | | | | |
Collapse
|
80
|
Flader W, Wellenzohn B, Winger RH, Hallbrucker A, Mayer E, Liedl KR. BI ⇌ BII Substate Transitions Induce Changes in the Hydration of B-DNA, Potentially Mediating Signal Transduction from the Minor to Major Groove. J Phys Chem B 2001. [DOI: 10.1021/jp004046q] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Wolfgang Flader
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Bernd Wellenzohn
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Rudolf H. Winger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Andreas Hallbrucker
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Erwin Mayer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| |
Collapse
|
81
|
Isaacs RJ, Spielmann HP. NMR evidence for mechanical coupling of phosphate B(I)-B(II) transitions with deoxyribose conformational exchange in DNA. J Mol Biol 2001; 311:149-60. [PMID: 11469864 DOI: 10.1006/jmbi.2001.4855] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conformational exchange of the phosphate and deoxyribose groups of the DNA oligomers d(GCGTACGC)(2) and d(CGCTAGCG)(2) have been investigated using a combination of homonuclear and heteronuclear NMR techniques. Two-state exchange between phosphate B(I) and B(II) conformations and deoxyribose N and S conformations was expressed as percent population of the major conformer, %B(I) or %S. Sequence context-dependent variations in %B(I) and %S were observed. The positions of the phosphate and deoxyribose equilibria provide a quantitative measure of the ps to ns timescale dynamic exchange processes in the DNA backbone. Linear correlations between %B(I), %S, and previously calculated model free (13)C order parameters (S(2)) were observed. The %B(I) of the phosphates were found to be correlated to the S(2) of the flanking C3' and C4' atoms. The %B(I) was also found to be correlated with the %S and C1' S(2) of the deoxyribose ring 5' of the phosphates. The %B(I) of opposing phosphates is correlated, while the %B(I) of sequential phosphates is anti-correlated. These correlations suggest that conformational exchange processes in DNA are coupled to each other and are modulated by DNA base sequence, which may have important implications for DNA-protein interactions.
Collapse
Affiliation(s)
- R J Isaacs
- Department of Molecular and Cellular Biochemistry Department of Chemistry, & Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536-0084, USA
| | | |
Collapse
|
82
|
Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO. Beyond the "recognition code": structures of two Cys2His2 zinc finger/TATA box complexes. Structure 2001; 9:717-23. [PMID: 11587646 DOI: 10.1016/s0969-2126(01)00632-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Several methods have been developed for creating Cys2His2 zinc finger proteins that recognize novel DNA sequences, and these proteins may have important applications in biological research and gene therapy. In spite of this progress with design/selection methodology, fundamental questions remain about the principles that govern DNA recognition. One hypothesis suggests that recognition can be described by a simple set of rules--essentially a "recognition code"--but careful assessment of this proposal has been difficult because there have been few structural studies of selected zinc finger proteins. RESULTS We report the high-resolution cocrystal structures of two zinc finger proteins that had been selected (as variants of Zif268) to recognize a eukaryotic TATA box sequence. The overall docking arrangement of the fingers within the major groove of the DNA is similar to that observed in the Zif268 complex. Nevertheless, comparison of Zif268 and the selected variants reveal significant differences in the pattern of side chain-base interactions. The new structures also reveal side chain-side chain interactions (both within and between fingers) that are important in stabilizing the protein-DNA interface and appear to play substantial roles in recognition. CONCLUSIONS These new structures highlight the surprising complexity of zinc finger-DNA interactions. The diversity of interactions observed at the protein-DNA interface, which is especially striking for proteins that were all derived from Zif268, challenges fundamental concepts about zinc finger-DNA recognition and underscores the difficulty in developing any meaningful recognition code.
Collapse
Affiliation(s)
- S A Wolfe
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
83
|
Yan S, Shapiro R, Geacintov NE, Broyde S. Stereochemical, structural, and thermodynamic origins of stability differences between stereoisomeric benzo[a]pyrene diol epoxide deoxyadenosine adducts in a DNA mutational hot spot sequence. J Am Chem Soc 2001; 123:7054-66. [PMID: 11459484 DOI: 10.1021/ja0043035] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benzo[a]pyrene (BP), a prototype polycyclic aromatic hydrocarbon (PAH), can be metabolically activated to the enantiomeric benzo[a]pyrene diol epoxides (BPDEs), (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene and the (-)-(7S,8R,9R,10S) enantiomer. These can react with adenine residues in DNA, to produce the stereoisomeric 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts. High-resolution NMR solution studies indicate that in DNA duplexes the 10R (-) adduct is intercalated on the 5'-side of the modified adenine, while the 10S (+) adduct is disordered, exhibits multiple adduct conformations, and is positioned on the 3'-side of the modified adenine. Duplexes containing the 10S (+) adduct positioned at A within codon 61 of the human N-ras sequence CAA are thermodynamically less stable and more easily excised by human DNA repair enzymes than those containing the 10R (-) adduct. However, the molecular origins of these differences are not understood and represent a fascinating opportunity for elucidating structure-function relationships. We have carried out a computational investigation to uncover the structural and thermodynamic origins of these effects in the 11-mer duplex sequence d(CGGACAAGAAG).d(CTTCTTGTCCG) by performing a 2-ns molecular dynamics simulation using NMR solution structures as the basis for the starting models. Then, we applied the MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method to compute free energy differences between the stereoisomeric adducts. The 10R (-) isomer is more stable by approximately 13 kcal/mol, of which approximately 10 kcal/mol is enthalpic, which agrees quite well with their observed differences in thermodynamic stability. The lower stability of the 10S (+) adduct is due to diminished stacking by the BP moiety in the intercalation pocket, more helix unwinding, and a diminished quality of Watson-Crick base pairing. The latter stems from conformational heterogeneity involving a syn-anti equilibrium of the glycosidic bond in the modified adenine residue. The lower stability and conformational heterogeneity of the 10S (+) adduct may play a role in its enhanced susceptibility to nucleotide excision repair.
Collapse
Affiliation(s)
- S Yan
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | |
Collapse
|
84
|
Wellenzohn B, Flader W, Winger RH, Hallbrucker A, Mayer E, Liedl KR. Structural Flexibility of the d(CCAGTACTGG)2B-DNA Decamer and Its Complex with Two Polyamides. J Phys Chem B 2001. [DOI: 10.1021/jp003920c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Stefl R, Trantírek L, Vorlícková M, Koca J, Sklenár V, Kypr J. A-like guanine-guanine stacking in the aqueous DNA duplex of d(GGGGCCCC). J Mol Biol 2001; 307:513-24. [PMID: 11254379 DOI: 10.1006/jmbi.2001.4484] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used CD spectroscopy, NMR spectroscopy and unrestrained molecular dynamics to study conformational properties of a DNA duplex formed by the self-complementary octamer d(GGGGCCCC). Its unusual CD spectrum contains features indicating A-like stacking of half of the bases, whereas the other half stack in a B-like fashion. Unrestrained molecular dynamics simulations converged to a stable B-like double-helix of d(GGGGCCCC). However, the double-helix contained a central hole whose size was half of that occurring in structure A. In the canonical structure B, the hole does not exist at all because the base-pairs cross the double-helix centre. The cytosine bases were stacked in the duplex of d(GGGGCCCC) as in structure B, while stacking of the guanine bases displayed features characteristic for structure A. NMR spectroscopy revealed that the A-like guanine-guanine stacking was accompanied by an increased tendency of the deoxyribose rings attached to the guanine bases to be puckered in an A-like fashion. Otherwise, the duplex of d(GGGGCCCC) showed no clash, no bend and no other significant deviation from structure B. The present analysis demonstrates a remarkable propensity of the guanine runs to stack in an A-like fashion even within the B-DNA framework. This property explains why the oligo(dG). oligo(dC) tracts switch into structure A so easily. Secondly, this property may influence replication, because structure A is replicated more faithfully than structure B. Thirdly, the oligo(dG) runs might have played an important role in early evolution, when DNA took on functions that originally evolved on RNA. Fourthly, the present study extends the vocabulary of DNA secondary structures by the heteronomous duplex of d(GGGGCCCC) in which the B-like strand of oligo(dC) is bound to the A-like strand of oligo(dG).
Collapse
Affiliation(s)
- R Stefl
- Institute of Biophysics of the Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
86
|
MacDonald D, Herbert K, Zhang X, Pologruto T, Lu P, Polgruto T. Solution structure of an A-tract DNA bend. J Mol Biol 2001; 306:1081-98. [PMID: 11237619 DOI: 10.1006/jmbi.2001.4447] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of a DNA dodecamer d(GGCAAAAAACGG)/d(CCGTTTTTTGCC) containing an A-tract has been determined by NMR spectroscopy with residual dipolar couplings. The structure shows an overall helix axis bend of 19 degrees in a geometry consistent with solution and gel electrophoresis experiments. Fourteen degrees of the bending occurs in the GC regions flanking the A-tract. The remaining 5 degrees is spread evenly over its six AT base-pairs. The A-tract is characterized by decreasing minor groove width from the 5' to the 3' direction along the A strand. This is a result of propeller twist in the AT pairs and the increasing negative inclination of the adenine bases at the 3' side of the run of adenine bases. The four central thymine bases all have negative inclination throughout the A-tract with an average value of -6.1 degrees. Although this negative inclination makes the geometry of the A-tract different from all X-ray structures, the proton on N6 of adenine and the O4 of thymine one step down the helix are within distance to form bifurcated hydrogen bonds. The 5' bend of 4 degrees occurs at the junction between the GC flank and the A-tract through a combination of tilt and roll. The larger 3' bend, 10 degrees, occurs in two base steps: the first composed of tilt, -4.1 degrees, and the second a combination of tilt, -4.2 degrees, and roll, 6.0 degrees. This second step is a direct consequence of the change in inclination between an adjacent cytosine base, which has an inclination of -12 degrees, and the next base, a guanine, which has 3 degrees inclination. This bend is a combination of tilt and roll. The large change in inclination allows the formation of a hydrogen bond between the protons of N4 of the 3' cytosine and the O6 of the next 3' base, a guanine, stabilizing the roll component in the bend. These structural features differ from existing models for A-tract bends.For comparison, we also determined the structure of the control sequence, d(GGCAAGAAACGG)/d(CCGTTTCTTGCC), with an AT to GC transition in the center of the A-tract. This structure has no negative inclination in most of the bases within the A-tract, resulting in a bend of only 9 degrees. When ligated in phase, the control sequence has nearly normal mobility in gel electrophoresis experiments.
Collapse
Affiliation(s)
- D MacDonald
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | | | |
Collapse
|
87
|
Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol 2000; 304:55-68. [PMID: 11071810 DOI: 10.1006/jmbi.2000.4173] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hydroxyl radical footprint of the TATA-binding protein (TBP) bound to the high-affinity sequence TATAAAAG of the adenovirus 2 major late promoter has been quantitatively compared to a 2 ns molecular dynamics simulation of the complex in aqueous solution at room temperature using the CHARMM23 potential. The nucleotide-by-nucleotide analysis of the TBP-TATA hydroxyl radical footprint correlates with the solvent-accessible surface calculated from the dynamics simulation. The results suggest that local reactivity towards OH radicals results from the interplay between the local DNA geometry imposed by TBP binding, and the dynamics of the side-chains contacting the sugar hydrogen atoms. Analysis of the dynamics suggests that, over time, TBP forms stable interactions with the sugar-phosphate backbone through multiple contacts to different partners. This mechanism results in an enthalpic advantage to complex formation at a low entropic cost.
Collapse
Affiliation(s)
- N Pastor
- Facultad de Ciencias, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México.
| | | | | | | |
Collapse
|
88
|
Winger RH, Liedl KR, Pichler A, Hallbrucker A, Mayer E. B-DNA's BII Conformer Substate Population Increases with Decreasing Water Activity. 1. A Molecular Dynamics Study of d(CGCGAATTCGCG)2. J Phys Chem B 2000. [DOI: 10.1021/jp001842n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rudolf H. Winger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Arthur Pichler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Andreas Hallbrucker
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Erwin Mayer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| |
Collapse
|
89
|
Guliaev AB, Sági J, Singer B. Sequence-dependent conformational perturbation in DNA duplexes containing an epsilonA.T mismatch using molecular dynamics simulation. Carcinogenesis 2000; 21:1727-36. [PMID: 10964105 DOI: 10.1093/carcin/21.9.1727] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous experiments from this laboratory showed that 1, N:(6)-ethenoadenine (epsilonA) in 15mer DNA oligonucleotide duplexes with GGepsilonAGG and CCepsilonACC central sequences is repaired 3-5-fold more efficiently than in duplexes containing AAepsilonAAA and TTepsilonATT central sequences. This sequence dependence in repair rates appeared to correlate with the observed thermodynamic stability of these duplexes [Hang et al. (1998) J. Biol. Chem., 273, 33406-33413]. In the present work, unrestrained molecular dynamics was used to evaluate the sequence-dependent structural features of these duplexes. Explicit solvent and the particle mesh Ewald method were applied for the accurate representation of the electrostatic interactions. The differences observed in the axis- and intra-base pair parameters were primarily localized at the epsilonA*T mismatch in all sequences and indicate conformational diversity between the structures. However, all four structures remained in the B-conformational family. In the tip, tilt and propeller twist parameters for the five central base pairs, larger perturbations were found for the two duplexes with epsilonA flanked by A or T bases than for duplexes with epsilonA flanked by G or C bases. As a result of these perturbations, the average global curvature of the AAepsilonAAA and TTvarepsilonATT DNA duplexes was larger by approximately 12 degrees than that of the duplexes with the GGepsilonAGG and CCepsilonACC central sequences. The observed conformational differences between the duplexes containing A or T and G or C neighbors of epsilonA may contribute to the observed differential enzymatic repair of the same sequences.
Collapse
Affiliation(s)
- A B Guliaev
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
90
|
Smith JA, Bifulco G, Case DA, Boger DL, Gomez-Paloma L, Chazin WJ. The structural basis for in situ activation of DNA alkylation by duocarmycin SA. J Mol Biol 2000; 300:1195-204. [PMID: 10903864 DOI: 10.1006/jmbi.2000.3887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duocarmycin SA is a member of a growing class of interesting lead compounds for chemotherapy, distinguished by the manner in which they bind to and react with DNA substrates. The first three-dimensional structure of a DNA adduct of an unnatural enantiomer from this family has been determined by (1)H NMR methods. Comparison to the previously determined structure of the natural enantiomer bound in the same DNA-binding site provides unique insights into the similarities and critical distinctions producing the respective alkylation products and site selectivities. The results also support the hypothesis that the duocarmycin SA alkylation reaction is catalyzed by the binding to DNA, and provide a deeper understanding of the structural basis for this unique mode of activation.
Collapse
Affiliation(s)
- J A Smith
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
91
|
Štefl R, Koča J. Unrestrained Molecular Dynamics Simulations of [d(AT)5]2 Duplex in Aqueous Solution: Hydration and Binding of Sodium Ions in the Minor Groove. J Am Chem Soc 2000. [DOI: 10.1021/ja9912170] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard Štefl
- Laboratory of Biomolecular Structure and Dynamics, Department of Theoretical and Physical Chemistry, and Department of Organic Chemistry, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
| | - Jaroslav Koča
- Laboratory of Biomolecular Structure and Dynamics, Department of Theoretical and Physical Chemistry, and Department of Organic Chemistry, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
| |
Collapse
|
92
|
Trantírek L, Stefl R, Vorlícková M, Koca J, Sklenár V, Kypr J. An A-type double helix of DNA having B-type puckering of the deoxyribose rings. J Mol Biol 2000; 297:907-22. [PMID: 10736226 DOI: 10.1006/jmbi.2000.3592] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA usually adopts structure B in aqueous solution, while structure A is preferred in mixtures of trifluoroethanol (TFE) with water. However, the octamer d(CCCCGGGG) and other d(C(n)G(n)) fragments of DNA provide CD spectra that suggest that the base-pairs are stacked in an A-like fashion even in aqueous solution. Yet, d(CCCCGGGG) undergoes a cooperative TFE-induced transition into structure A, indicating that an important part of the aqueous duplex retains structure B. NMR spectroscopy shows that puckering of the deoxyribose rings is of the B-type. Hence, combination of the information provided by CD spectroscopy and NMR spectroscopy suggests an unprecedented double helix of DNA in which A-like base stacking is combined with B-type puckering of the deoxyribose rings. In order to determine whether this combination is possible, we used molecular dynamics to simulate the duplex of d(CCCCGGGG). Remarkably, the simulations, completely unrestrained by the experimental data, provided a very stable double helix of DNA, exhibiting just the intermediate B/A features described above. The double helix contained well-stacked guanine bases but almost unstacked cytosine bases. This generated a hole in the double helix center, which is a property characteristic for A-DNA, but absent from B-DNA. The minor groove was narrow at the double helix ends but wide at the central CG step where the Watson-Crick base-pairs were buckled in opposite directions. The base-pairs stacked tightly at the ends but stacking was loose in the duplex center. The present double helix, in which A-like base stacking is combined with B-type sugar puckering, is relevant to replication and transcription because both of these phenomena involve a local B-to-A transition.
Collapse
Affiliation(s)
- L Trantírek
- Institute of Biophysics of the Academy of Sciences of the Czech Republic, Královopolská 135, Brno, CZ-612 65, Czech Republic
| | | | | | | | | | | |
Collapse
|
93
|
Tsui V, Case DA. Molecular Dynamics Simulations of Nucleic Acids with a Generalized Born Solvation Model. J Am Chem Soc 2000. [DOI: 10.1021/ja9939385] [Citation(s) in RCA: 362] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vickie Tsui
- Contribution from the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - David A. Case
- Contribution from the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
94
|
Coggan DZM, Haworth IS, Bates PJ, Robinson A, Rodger A. DNA Binding of Ruthenium Tris(1,10-phenanthroline): Evidence for the Dependence of Binding Mode on Metal Complex Concentration. Inorg Chem 1999; 38:4486-4497. [PMID: 11671161 DOI: 10.1021/ic990654c] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction with calf thymus DNA, poly(dA-dT)(2) and poly(dG-dC)(2) of the two enantiomers (Lambda and Delta) of [Ru(1,10-phenanthroline)(3)](2+), denoted PHEN, and of [Ru(4,7-dimethyl-1,10-phenanthroline)(3)](2+), denoted [4,7], [Ru(5,6-dimethyl-1,10-phenanthroline)(3)](2+), denoted [5,6], and [Ru(3,4,7,8-tetramethyl-1,10-phenanthroline)(3)](2+), denoted [3,4,7,8], has been investigated by normal absorption, linear dichroism (LD), circular dichroism (CD), and computer modeling. These studies have been performed at the saturated binding limit and the "isolated" limit where the DNA is in excess. The binding mode is dependent upon the enantiomer (Lambda or Delta), the DNA base sequence, the ring substituent pattern, and, for the Delta enantiomer, the relative concentrations of DNA and metal complex. Both the Lambda and Delta enantiomers of PHEN and [4,7] show at least two binding regimes. One binding regime operates below a metal complex:DNA phosphate mixing ratio, R, of 1:4-6. The average site size (number of DNA bases per bound metal complex) also decreases from 8-12 bases per metal complex at low R to 3 bases at high R. The average angle (alpha(eff)) between the metal complex 3-fold axis and the DNA helical axis was derived from the LD. At high R (saturated metal complex binding) for both enantiomers of both compounds, this angle is 55 degrees +/- 3 degrees. For low R (isolated metal complex binding), the average binding orientations for the enantiomers are different for PHEN (Lambda, alpha(eff) = 59 degrees; Delta, alpha(eff) = 38 degrees ) and for [4,7] (Lambda, alpha(eff) = 84 degrees; Delta, alpha(eff) = 42 degrees ). Under the low-R conditions the Delta enantiomer of both compounds binds to calf thymus DNA more strongly than the Lambda enantiomer. [3,4,7,8] binds to DNA but is not oriented in the LD experiment. There is no evidence that [5,6] binds to DNA. To explain the LD results for PHEN several possible binding orientations were considered in computer modeling studies. These have the metal complex located with (i) a single phenanthroline chelate approximately parallel to the base pair planes in the major groove (referred to as partially inserted); (ii) a single chelate along the minor groove (referred to as slotted); (iii) two chelates in the minor groove (referred to as minor facial). Using orientations adopted in energy-minimized complexes it was possible to deduce the approximate relative occupancy of the different modes. For Lambda-PHEN the partially inserted mode is favored at all mixing ratios. For Delta-PHEN at low-R minor groove binding is preferred for most sequences with most metal complexes adopting a minor facial orientation. However, at high R (close packed metal complexes) the slotted mode becomes more favorable and some major groove partial insertion also occurs. For both Delta- and Lambda-[4,7] the minor facial mode is favored at low R. As R increases, the slotted mode becomes more favorable for both enantiomers of [4,7].
Collapse
Affiliation(s)
- Delia Z. M. Coggan
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K., Department of Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033, and Department of Medicine, Division of Hematology/Oncology, 1824 Sixth Avenue South, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | | | | | |
Collapse
|
95
|
Winger RH, Liedl KR, Pichler A, Hallbrucker A, Mayer E. Helix morphology changes in B-DNA induced by spontaneous B(I)<==>B(II) substrate interconversion. J Biomol Struct Dyn 1999; 17:223-35. [PMID: 10563572 DOI: 10.1080/07391102.1999.10508355] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Investigations of spontaneous, i.e. not forced, B-DNA's B(I)<==>B(II) substate transitions are carried out on the d(CGCGAATTCGCG)2 EcoRI dodecamer sequence using Molecular Dynamics Simulations. Analysis of the resulting transition processes with respect to the backbone angles reveals concerted changes not only for backbone angles epsilon, zeta, and beta, but also for the 5'-delta and 5'-chi angles. For alpha and delta inside the interconverting base step, a change is seen in short lived B(II) conformers. With respect to base morphology distinct changes are observed for buckle, propeller twist, shift, roll and twist, as well as x-displacement and tip. The base mainly involved in the changes is identified as the base preceding the interconverting phosphate. Altogether single B(I)<==>B(II) interconversions result only in local distortions represented by the larger spread of most parameters. Comparison of the atomic positional fluctuations derived from the simulation with those obtained from the static X-ray structure results in striking similarities.
Collapse
Affiliation(s)
- R H Winger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
96
|
Sen S, Nilsson L. Structure, interaction, dynamics and solvent effects on the DNA-EcoRI complex in aqueous solution from molecular dynamics simulation. Biophys J 1999; 77:1782-800. [PMID: 10512803 PMCID: PMC1300464 DOI: 10.1016/s0006-3495(99)77024-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A 0.7-ns molecular dynamics simulation of the DNA-EcoRI complex in a 7.0-A solvent shell indicated a stable behavior of the system. No significant evaporation or smearing of the solvent's outer boundary occurred. The structure and the intermolecular interactions were found to be well maintained during the simulation. The interaction pattern in the simulation was found to be very similar to that in the crystal structure. Most of the specific interactions between the DNA and the protein were found to be enhanced in the simulation compared to that in the crystal structure as a result of improved interaction geometry. The nonspecific interactions were found to be stronger than the specific ones. The specific interactions between the N7 atoms of Gua(4) or Ade(5) or Ade(6) and the protein were found to be present over almost the entire time of the simulation, whereas hydrogen bonds involving the amino groups of the Ade(5) and Ade(6) with the protein were found to be relatively weaker, with lower probability and shorter lifetime. The time evolution of the root mean square deviations of the DNA and the protein were highly correlated even at the later part of the simulation, showing the tight binding between them. Several long-lived water bridges were found between the DNA backbone atoms and the protein and also between the two protein monomers, which increased the overall stability of the complex. The two protein monomers were found to interact strongly with each other. The energy of the DNA kink deformation was estimated as approximately 31 kcal/mol.
Collapse
Affiliation(s)
- S Sen
- Center for Structural Biochemistry, Karolinska Institute, Department of Biosciences, Huddinge, Sweden
| | | |
Collapse
|
97
|
Kosztin D, Gumport RI, Schulten K. Probing the role of structural water in a duplex oligodeoxyribonucleotide containing a water-mimicking base analog. Nucleic Acids Res 1999; 27:3550-6. [PMID: 10446246 PMCID: PMC148600 DOI: 10.1093/nar/27.17.3550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular dynamics simulations were performed on models of the dodecamer DNA double-stranded segment, [d(CGCGAATTCGCG)](2), in which each of the adenine residues, individually or jointly, was replaced by the water-mimicking analog 2'-deoxy-7-(hydroxy-methyl)-7-deazaadenosine (hm(7)c(7)dA) [Rockhill, J.K., Wilson,S.R. and Gumport,R.I. (1996) J. Am. Chem. Soc.,118, 10065-10068]. The simulations, when compared with those of the dodecamer itself, show that incorporation of the analog affects neither the overall DNA structure nor its hydrogen-bonding and stacking interactions when it replaces a single individual base. Furthermore, the water molecules near the bases in the singly-substituted oligonucleotides are similarly unaffected. Double substitutions lead to differences in all the aforementioned parameters with respect to the reference sequence. The results suggest that the analog provides a good mimic of specific 'ordered' water molecules observed in contact with DNA itself and at the interface between protein and DNA in specific complexes.
Collapse
Affiliation(s)
- D Kosztin
- Department of Chemistry, University of Illinois, Urbana, Champaign, 61801, USA
| | | | | |
Collapse
|
98
|
Komeiji Y, Uebayasi M. Change in conformation by DNA-peptide association: molecular dynamics of the Hin-recombinase-hixL complex. Biophys J 1999; 77:123-38. [PMID: 10388745 PMCID: PMC1300317 DOI: 10.1016/s0006-3495(99)76877-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Hin-DNA complex is a molecular complex formed by the C-terminal 52mer peptide of the Hin-recombinase and a synthetic 13-bp hixL DNA. The peptide has three alpha-helices, the second and third of which form the helix-turn-helix motif to bind to the major groove. Both termini of the peptide reside within the minor groove. Three molecular dynamics simulations were performed based on the crystal structure of the Hin-DNA complex: one for the free Hin peptide, one for the free hixL DNA, and one for the complex. Analyses of the trajectories revealed that the dynamic fluctuations of both the Hin peptide and the hixL DNA were lowered by the complex formation. The simulation supported the experimental observation that the N-terminus and the helix-turn-helix motif were critical for formation of the complex, but the C-terminus played only a supportive role in DNA recognition. The simulations strongly suggested that the binding reaction should proceed by the induced fit mechanism. The ion and solvent distributions around the molecules were also examined.
Collapse
Affiliation(s)
- Y Komeiji
- National Institute for Advanced Interdisciplinary Research, Electrotechnical Laboratory, AIST, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
99
|
Pastor N, MacKerell AD, Weinstein H. TIT for TAT: the properties of inosine and adenosine in TATA box DNA. J Biomol Struct Dyn 1999; 16:787-810. [PMID: 10217450 DOI: 10.1080/07391102.1999.10508293] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The sequence dependent conformation, flexibility and hydration properties of DNA molecules constitute selectivity determinants in the formation of protein-DNA complexes. TATA boxes in which AT basepairs (bp) have been substituted by IC bp (TITI box) allow for probing these selectivity determinants for the complexation with the TATA box-binding protein (TBP) with different sequences but identical chemical surfaces. The reference promoter Adenovirus 2 Major Late Promoter (mlp) is formed by the apposition of two sequences with very different dynamic properties: an alternating TATA sequence and an A-tract. For a comparative study, we carried out molecular dynamics simulations of two DNA oligomers, one containing the mlp sequence (2 ns), and the other an analog where AT basepairs were substituted by IC basepairs (1 ns). The simulations, carried out with explicit solvent and counterinons, yield straight purine tracts, the A-tract being stiffer than the I-tract, an alternating structure for the YRYR tracts, and hydration patterns that differ between the purine tracts and the alternating sequence tracts. A detailed analysis of the proposed interactions responsible for the stiffness of the purine tracts indicates that the stacking between the bases bears the strongest correlation to stiffness. The hydration properties of the minor groove in the two oligomers are distinctly different. Such differences are likely to be responsible for the stronger binding of TBP to mlp over the inosine-substituted variant. The calculations were made possible by the development, described here, of a new set of forcefield parameters for inosine that complement the published CHARMM all-hydrogen nucleic acid parametrization.
Collapse
Affiliation(s)
- N Pastor
- Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | |
Collapse
|
100
|
Cheatham TE, Cieplak P, Kollman PA. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn 1999; 16:845-62. [PMID: 10217454 DOI: 10.1080/07391102.1999.10508297] [Citation(s) in RCA: 809] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have examined some subtle parameter modifications to the Cornell et al. force field, which has proven quite successful in reproducing nucleic acid properties, but whose C2'-endo sugar pucker phase and helical repeat for B DNA appear to be somewhat underestimated. Encouragingly, the addition of a single V2 term involving the atoms C(sp3)-O-(sp3)-C(sp3)-N(sp2), which can be nicely rationalized because of the anomeric effect (lone pairs on oxygen are preferentially oriented relative to the electron withdrawing N), brings the sugar pucker phase of C2'-endo sugars to near perfect agreement with ab initio calculations (W near 162 degrees). Secondly, the use of high level ab initio calculations on entire nucleosides (in contrast to smaller model systems necessitated in 1994-95 by computer limitations) lets one improve the chi torsional potential for nucleic acids. Finally, the O(sp3)-C(sp3)- C(sp3)-O(sp3) V2 torsional potential has been empirically adjusted to reproduce the ab initio calculated relative energy of C2'-endo and C3'-endo nucleosides. These modifications are tested in molecular dynamics simulations of mononucleosides (to assess sugar pucker percentages) and double helices of DNA and RNA (to assess helical and sequence specific structural properties). In both areas, the modified force field leads to improved agreement with experimental data.
Collapse
Affiliation(s)
- T E Cheatham
- Laboratory of Biophysical Chemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-5626, USA
| | | | | |
Collapse
|