51
|
New lipopeptide produced by Corynebacterium aquaticum from a low-cost substrate. Bioprocess Biosyst Eng 2018; 41:1177-1183. [PMID: 29700657 DOI: 10.1007/s00449-018-1946-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
Abstract
Conventional biosurfactants have high production costs. Therefore, the use of low-cost carbon sources for their production is attractive for industry. The ability to remain stable under various environmental conditions further extends industrial application. Here we aimed to evaluate the stability of a new lipopeptide produced by Corynebacterium aquaticum using fish residue as an unconventional energy source. The biosurfactant was produced using 3% fish residue, 2% of the microorganism, and mineral medium. Biosurfactant characterization was performed by thin layer chromatography (TLC), as well as by testing its infrared, surface tension, emulsifying activity, and ionic character. The stability of the biosurfactant was evaluated by testing its surface tension at a range of temperatures, pH, and saline concentrations, as well as after 6 months of storage. The biosurfactant was characterized as a lipopeptide due to its retention time, which was coincident with the amino acid and lipid chains obtained in the TLC analysis, being confirmed by some regions of absorption verified in the infrared analysis. The surface tension and emulsifying activity of the biosurfactant were 27.8 mN/m and 87.6%, respectively, and showed anionic character. The biosurfactant was stable at temperatures of 20 to 121 °C, in saline concentrations of 1 to 7%, and at pH close to neutrality. Based on our findings, it is possible to use unconventional sources of energy to produce a lipopeptide biosurfactant that can act under various environments.
Collapse
|
52
|
Hamza F, Satpute S, Banpurkar A, Kumar AR, Zinjarde S. Biosurfactant from a marine bacterium disrupts biofilms of pathogenic bacteria in a tropical aquaculture system. FEMS Microbiol Ecol 2018; 93:4566513. [PMID: 29087455 DOI: 10.1093/femsec/fix140] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial infections are major constraints in aquaculture farming. These pathogens often adapt to the biofilm mode of growth and resist antibiotic treatments. We have used a non-toxic glycolipid biosurfactant (BS-SLSZ2) derived from a marine epizootic bacterium Staphylococcus lentus to treat aquaculture associated infections in an eco-friendly manner. We found that BS-SLSZ2 contained threose, a four-carbon sugar as the glycone component, and hexadecanoic and octadecanoic acids as the aglycone components. The critical micelle concentration of the purified glycolipid was 18 mg mL-1. This biosurfactant displayed anti-adhesive activity and inhibited biofilm formation by preventing initial attachment of cells onto surfaces. The biosurfactant (at a concentration of 20 μg) was able to inhibit Vibrio harveyi and Pseudomonas aeruginosa biofilms by 80.33 ± 2.16 and 82 ± 2.03%, respectively. At this concentration, it was also able to disrupt mature biofilms of V. harveyi (78.7 ± 1.93%) and P. aeruginosa (81.7 ± 0.59%). The biosurfactant was non-toxic towards Artemia salina. In vivo challenge experiments showed that the glycolipid was effective in protecting A. salina nauplii against V. harveyi and P. aeruginosa infections. This study highlights the significance of marine natural products in providing alternative biofilm controlling agents and decreasing the usage of antibiotics in aquaculture settings.
Collapse
Affiliation(s)
- Faseela Hamza
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Surekha Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Arun Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
53
|
Astuti DI, Purwasena IA, Putri FZ. Potential of Biosurfactant as an Alternative Biocide to Control Biofilm Associated Biocorrosion. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/jest.2018.104.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
54
|
Hamza F, Kumar AR, Zinjarde S. Efficacy of cell free supernatant from Bacillus licheniformis in protecting Artemia salina against Vibrio alginolyticus and Pseudomonas gessardii. Microb Pathog 2018; 116:335-344. [PMID: 29408316 DOI: 10.1016/j.micpath.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Bacterial diseases are widespread in aquaculture farms and causative agents often adapt to biofilm mode of growth. These biofilms are detrimental to aquaculture species as they resist antibiotics and other agents that are used to control them. Two bacterial pathogens isolated from infected prawn samples were identified as Vibrio alginolyticus and Pseudomonas gessardii on the basis of morphological features, biochemical characteristics, 16S r RNA gene sequencing and phylogenetic analysis. Their pathogenic nature was confirmed by performing in vivo challenge experiments using Artemia salina as a model system. Seven days post infection, the mortality observed with V. alginolyticus and P. gessardii was 97 ± 4.08% and 77.5 ± 5.24%, respectively. The isolates formed extensive biofilms on polystyrene and glass surfaces. These infections could be controlled in an effective manner by using the cell free supernatant (CFS) of a tropical marine epizoic strain of Bacillus licheniformis D1 that is earlier reported to contain an antimicrobial protein (BLDZ1). The CFS inhibited biofilms in an efficient manner (82.35 ± 1.69 and 82.52 ± 1.11% for V. alginolyticus and P. gessardii, respectively) on co-incubation. In addition, pre-formed biofilms of V. alginolyticus and P. gessardii were also removed (84.53 ± 1.26 and 67.08 ± 1.43%, respectively). Fluorescence and scanning electron microscopic studies confirmed the antibiofilm potential of this protein on glass surfaces. The antibiofilm nature was due to the anti-adhesion and antimicrobial properties exhibited by the CFS. Treatment of A. salina with CFS (6 h prior to infections) was effective in protecting larvae against infections by field isolates. This study highlights the significance of marine natural products in providing alternative biofilm controlling agents to tackle infections and decreasing the usage of antibiotics in aquaculture settings.
Collapse
Affiliation(s)
- Faseela Hamza
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
55
|
Aleksic I, Petkovic M, Jovanovic M, Milivojevic D, Vasiljevic B, Nikodinovic-Runic J, Senerovic L. Anti-biofilm Properties of Bacterial Di-Rhamnolipids and Their Semi-Synthetic Amide Derivatives. Front Microbiol 2017; 8:2454. [PMID: 29276509 PMCID: PMC5727045 DOI: 10.3389/fmicb.2017.02454] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/27/2017] [Indexed: 12/23/2022] Open
Abstract
A new strain, namely Lysinibacillus sp. BV152.1 was isolated from the rhizosphere of ground ivy (Glechoma hederacea L.) producing metabolites with potent ability to inhibit biofilm formation of an important human pathogens Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and Serratia marcescens. Structural characterization revealed di-rhamnolipids mixture containing rhamnose (Rha)-Rha-C10-C10, Rha-Rha-C8-C10, and Rha-Rha-C10-C12 in the ratio 7:2:1 as the active principle. Purified di-rhamnolipids, as well as commercially available di-rhamnolipids (Rha-Rha-C10-C10, 93%) were used as the substrate for the chemical derivatization for the first time, yielding three semi-synthetic amide derivatives, benzyl-, piperidine-, and morpholine. A comparative study of the anti-biofilm, antibacterial and cytotoxic properties revealed that di-Rha from Lysinibacillus sp. BV152.1 were more potent in biofilm inhibition, both cell adhesion and biofilm maturation, than commercial di-rhamnolipids inhibiting 50% of P. aeruginosa PAO1 biofilm formation at 50 μg mL-1 and 75 μg mL-1, respectively. None of the di-rhamnolipids exhibited antimicrobial properties at concentrations of up to 500 μg mL-1. Amide derivatization improved inhibition of biofilm formation and dispersion activities of di-rhamnolipids from both sources, with morpholine derivative being the most active causing more than 80% biofilm inhibition at concentrations 100 μg mL-1. Semi-synthetic amide derivatives showed increased antibacterial activity against S. aureus, and also showed higher cytotoxicity. Therefore, described di-rhamnolipids are potent anti-biofilm agents and the described approach can be seen as viable approach in reaching new rhamnolipid based derivatives with tailored biological properties.
Collapse
Affiliation(s)
- Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Milos Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
56
|
Prasad YS, Miryala S, Lalitha K, Ranjitha K, Barbhaiwala S, Sridharan V, Maheswari CU, Srinandan CS, Nagarajan S. Disassembly of Bacterial Biofilms by the Self-Assembled Glycolipids Derived from Renewable Resources. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40047-40058. [PMID: 29096062 DOI: 10.1021/acsami.7b12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
More than 80% of chronic infections of bacteria are caused by biofilms. It is also a long-term survival strategy of the pathogens in a nonhost environment. Several amphiphilic molecules have been used in the past to potentially disrupt biofilms; however, the involvement of multistep synthesis, complicated purification and poor yield still remains a major problem. Herein, we report a facile synthesis of glycolipid based surfactant from renewable feedstocks in good yield. The nature of carbohydrate unit present in glycolipid influence the ring chain tautomerism, which resulted in the existence of either cyclic structure or both cyclic and acyclic structures. Interestingly, these glycolipids self-assemble into gel in highly hydrophobic solvents and vegetable oils, and displayed foam formation in water. The potential application of these self-assembled glycolipids to disrupt preformed biofilm was examined against various pathogens. It was observed that glycolipid 6a disrupts Staphylococcus aureus and Listeria monocytogenes biofilm, while the compound 6c was effective in disassembling uropathogenic E. coli and Salmonella enterica Typhimurium biofilms. Altogether, the supramolecular self-assembled materials, either as gel or as surfactant solution could be potentially used for surface cleansing in hospital environments or the food processing industries to effectively reduce pathogenic biofilms.
Collapse
Affiliation(s)
- Yadavali Siva Prasad
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Sandeep Miryala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - K Ranjitha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Shehnaz Barbhaiwala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - C Uma Maheswari
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - C S Srinandan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, Tamil Nadu, India
| |
Collapse
|
57
|
Wang KL, Wu ZH, Wang Y, Wang CY, Xu Y. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs. Mar Drugs 2017; 15:E266. [PMID: 28846626 PMCID: PMC5618405 DOI: 10.3390/md15090266] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.
Collapse
Affiliation(s)
- Kai-Ling Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Ze-Hong Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou 510632, China.
| | - Yu Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
58
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
59
|
Gomes LC, Moreira JMR, Araújo JDP, Mergulhão FJ. Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion. AIMS Microbiol 2017; 3:613-628. [PMID: 31294179 PMCID: PMC6604997 DOI: 10.3934/microbiol.2017.3.613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC), both operated at the same average wall shear stress (0.07 Pa) as determined by computational fluid dynamics (CFD). It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%). These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time.
Collapse
Affiliation(s)
- Luciana C. Gomes
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana M. R. Moreira
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - José D. P. Araújo
- CEFT-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
60
|
Raie DS, Mhatre E, Thiele M, Labena A, El-Ghannam G, Farahat LA, Youssef T, Fritzsche W, Kovács ÁT. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:753-762. [DOI: 10.1016/j.msec.2016.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/15/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
|
61
|
Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK-47: Purification, characterization and its biological evaluation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
62
|
Antimicrobial activities of a promising glycolipid biosurfactant from a novel marine Staphylococcus saprophyticus SBPS 15. 3 Biotech 2016; 6:163. [PMID: 28330235 PMCID: PMC4978644 DOI: 10.1007/s13205-016-0478-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/01/2016] [Indexed: 10/31/2022] Open
Abstract
Biosurfactants have gained a renewed interest in the recent years for their commercial application in diverse research areas. Recent evidences suggest that the antimicrobial activities exhibited by biosurfactants make them promising molecules for the application in the field of therapeutics. Marine microbes are well known for their unique metabolic and functional properties; however, few reports are available till date regarding their biosurfactant production and antimicrobial potential. In an ongoing survey for bioactive microbial metabolites from microbes isolated from diverse ecological niches, a marine Staphylococcus saprophyticus SBPS 15 isolated from the petroleum hydrocarbon contaminated coastal site, Puducherry, India, was identified as a promising biosurfactant producer based on multiple screening methods. This bacterium exhibited growth-dependent biosurfactant production and the recorded yield was 1.345 ± 0.056 g/L (on dry weight basis). The biosurfactant was purified and chemically characterized as a glycolipid with a molecular mass of 606.7 Da, based on TLC, biochemical estimation methods, FT-IR spectrum and MALDI-TOF-MS analysis. Further, the estimated molecular mass was different from the earlier reports on biosurfactants. This new glycolipid biosurfactant exhibited a board range of pH and temperature stability. Furthermore, it revealed a promising antimicrobial activity against many tested human pathogenic bacterial and fungal clinical isolates. Based on these observations, the isolated biosurfactant from the marine S. saprophyticus revealed board physicochemical stabilities and possess excellent antimicrobial activities which proves its significance for possible use in various therapeutic and biomedical applications. To the best of our knowledge, this is the first report of a biosurfactant from the bacterium, S. saprophyticus.
Collapse
|
63
|
Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4310-4320. [PMID: 27098847 DOI: 10.1002/jsfa.7759] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Rhamnolipids, trehalolipids, mannosylerythritol lipids and cellobiose lipids are among the most popular glycolipids. They have received much practical attention as biopesticides for controlling plant diseases and protecting stored products. As a result of their antifungal activity towards phytopathogenic fungi and larvicidal and mosquitocidal potencies, glycolipid biosurfactants permit the preservation of plants and plant crops from pest invasion. Also, as a result of their emulsifying and antibacterial activities, glycolipids have great potential as food additives and food preservatives. Furthermore, the valorization of food byproducts via the production of glycolipid biosurfactant has received much attention because it permits the bioconversion of byproducts on valuable compounds and decreases the cost of production. Generally, the use of glycolipids in many fields requires their retention from fermentation media. Accordingly, different strategies have been developed to extract and purify glycolipids. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Inès Mnif
- Unit Enzymes and Bioconversion, National School of Engineers, University of Sfax, Sfax, Tunisia
| | - Dhouha Ghribi
- Unit Enzymes and Bioconversion, National School of Engineers, University of Sfax, Sfax, Tunisia
- Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
64
|
Bioactivity of a Novel Glycolipid Produced by a Halophilic Buttiauxella sp. and Improving Submerged Fermentation Using a Response Surface Method. Molecules 2016; 21:molecules21101256. [PMID: 27669197 PMCID: PMC6273073 DOI: 10.3390/molecules21101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022] Open
Abstract
An antimicrobial glycolipid biosurfactant (GBS), extracted and identified from a marine bacterium, was studied to inhibit pathogenic microorganisms. Production of the GBS was optimized using a statistical method, a response surface method (RSM) with a central composite design (CCD) for obtaining maximum yields on a cost-effective substrate, molasses. The GBS-producing bacterium was identified as Buttiauxella Species in terms of biochemical and molecular characteristics. This compound showed a desirable antimicrobial activity against some pathogens such as E. coli, Bacillus subtilis, Bacillus cereus, Candida albicans, Aspergilus niger, Salmonella enterica. The rheological studies described the stability of the GBS at high values in a range of pH (7-8), temperature (20-60) and salinity (0%-3%). The statistical optimization of GBS fermentation was found to be pH 7, temperature 33 °C, Peptone 1%, NaCl 1% and molasses 1%. The potency of the GBS as an effective antimicrobial agent provides evidence for its use against food and human pathogens. Moreover, favorable production of the GBS in the presence of molasses as a cheap substrate and the feasibility of pilot scale fermentation using an RSM method could expand its uses in food, pharmaceutical products and oil industries.
Collapse
|
65
|
Markande AR, Nerurkar AS. Microcosm-based interaction studies between members of two ecophysiological groups of bioemulsifier producer and a hydrocarbon degrader from the Indian intertidal zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14462-14471. [PMID: 27068903 DOI: 10.1007/s11356-016-6625-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Isolates were obtained from intertidal zone site samples from all five western and one eastern coastal states of India and were screened. These ecophysiological groups of aerobic, mesophilic, heterotrophic, sporulating, and bioemulsifier-producing bacteria were from Planococcaceae and Bacillaceae. This is the first report of bioemulsifier production by Sporosarcina spp., Lysinibacillus spp., B. thuringiensis, and B. flexus. In this group, Solibacillus silvestris AM1 was found to produce the highest emulsification activity (62.5 %EI) and the sample that yielded it was used to isolate the ecophysiological group of non-bioemulsifier-producing, hydrocarbon-degrading bacteria (belonging to Chromatiales and Bacillales). These yielded hitherto unreported degrader, Rheinheimera sp. CO6 which was selected for the interaction studies (in a microcosm) with bioemulsifier-producing S. silvestris AM1. The gas chromatographic study of these microcosm experiments revealed increased degradation of benzene, toluene, and xylene (BTX) and the growth of Rheinheimera sp. CO6 in the presence of bioemulsifier produced by S. silvestris AM1. Enhancement of the growth of S. silvestris AM1 in the presence of Rheinheimera sp. CO6 was observed possibly due to reduced toxicity of BTX suggesting mutualistic association between the two. This study elucidates the presence and interaction between enhancers and degraders in a hydrocarbon-contaminated intertidal zone and contributes to the knowledge during application of the two in remediation processes.
Collapse
Affiliation(s)
- A R Markande
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002.
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Gujarat, India, 394 350.
| | - A S Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| |
Collapse
|
66
|
Application of nanoparticles derived from marine Staphylococcus lentus in sensing dichlorvos and mercury ions. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
Liu B, Liu J, Ju M, Li X, Yu Q. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil. MARINE POLLUTION BULLETIN 2016; 107:46-51. [PMID: 27114088 DOI: 10.1016/j.marpolbul.2016.04.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
In our previous research, a petroleum degrading bacteria strain Bacillus licheniformis Y-1 was obtained in Dagang Oilfield which had the capability of producing biosurfactant. This biosurfactant was isolated and purified in this work. The biosurfactant produced by strain Y-1 had the capability to decrease the surface tension of water from 74.66 to 27.26mN/m, with the critical micelle concentration (CMC) of 40mg/L. The biosurfactant performed not only excellent stabilities against pH, temperature and salinity, but also great emulsifying activities to different kinds of oil, especially the crude oil. According to the results of FT-IR spectrum and (1)H NMR spectrum detection, the surfactant was determined to be a cyclic lipopeptide. Furthermore, through the addition of surfactant, the effect of petroleum contaminated soil remediation by fungi got a significant improvement.
Collapse
Affiliation(s)
- Boqun Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jinpeng Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China
| | - Qilin Yu
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
68
|
Falanga A, Lombardi L, Franci G, Vitiello M, Iovene MR, Morelli G, Galdiero M, Galdiero S. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria. Int J Mol Sci 2016; 17:ijms17050785. [PMID: 27213366 PMCID: PMC4881601 DOI: 10.3390/ijms17050785] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022] Open
Abstract
The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, CIRPEB-University of Naples "Federico II", Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Lucia Lombardi
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Napoli, Italy.
| | - Gianluigi Franci
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Napoli, Italy.
| | - Mariateresa Vitiello
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Napoli, Italy.
| | - Maria Rosaria Iovene
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Napoli, Italy.
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPEB-University of Naples "Federico II", Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Napoli, Italy.
| | - Stefania Galdiero
- Department of Pharmacy, CIRPEB-University of Naples "Federico II", Via Mezzocannone 16, 80134 Napoli, Italy.
- John Felice Rome Center, Loyola University Chicago, Via Massimi 114, 00136 Roma, Italy.
| |
Collapse
|
69
|
Ettoumi B, Chouchane H, Guesmi A, Mahjoubi M, Brusetti L, Neifar M, Borin S, Daffonchio D, Cherif A. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea. Microbiol Res 2016; 186-187:71-80. [DOI: 10.1016/j.micres.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
|
70
|
Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: Mechanistic aspects and biological application. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.12.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
71
|
Mohite P, Apte M, Kumar AR, Zinjarde S. Biogenic Nanoparticles from Schwanniomyces occidentalis NCIM 3459: Mechanistic Aspects and Catalytic Applications. Appl Biochem Biotechnol 2016; 179:583-96. [DOI: 10.1007/s12010-016-2015-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/05/2016] [Indexed: 01/23/2023]
|
72
|
Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications. Mar Drugs 2016; 14:md14020038. [PMID: 26901207 PMCID: PMC4771991 DOI: 10.3390/md14020038] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.
Collapse
|
73
|
Abstract
In the biofilm form, bacteria are more resistant to various antimicrobial treatments. Bacteria in a biofilm can also survive harsh conditions and withstand the host's immune system. Therefore, there is a need for new treatment options to treat biofilm-associated infections. Currently, research is focused on the development of antibiofilm agents that are nontoxic, as it is believed that such molecules will not lead to future drug resistance. In this review, we discuss recent discoveries of antibiofilm agents and different approaches to inhibit/disperse biofilms. These new antibiofilm agents, which contain moieties such as imidazole, phenols, indole, triazole, sulfide, furanone, bromopyrrole, peptides, etc. have the potential to disperse bacterial biofilms in vivo and could positively impact human medicine in the future.
Collapse
|
74
|
Natural Sources as Innovative Solutions Against Fungal Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:105-25. [PMID: 27115410 DOI: 10.1007/5584_2016_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungal cells are capable of adhering to biotic and abiotic surfaces and form biofilms containing one or more microbial species that are microbial reservoirs. These biofilms may cause chronic and acute infections. Fungal biofilms related to medical devices are particularly responsible for serious infections such as candidemia. Nowadays, only a few therapeutic agents have demonstrated activities against fungal biofilms in vitro and/or in vivo. So the discovery of new anti-biofilm molecules is definitely needed. In this context, biodiversity is a large source of original active compounds including some that have already proven effective in therapies such as antimicrobial compounds (antibacterial or antifungal agents). Bioactive metabolites from natural sources, useful for developing new anti-biofilm drugs, are of interest. In this chapter, the role of molecules isolated from plants, lichens, algae, microorganisms, or from animal or human origin in inhibition and/or dispersion of fungal biofilms (especially Candida and Aspergillus biofilms) is discussed. Some essential oils, phenolic compounds, saponins, peptides and proteins and alkaloids could be of particular interest in fighting fungal biofilms.
Collapse
|
75
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Development of glycolipid biosurfactant for inducing apoptosis in HeLa cells. RSC Adv 2016. [DOI: 10.1039/c6ra00805d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel glycolipid biosurfactant produced fromStaphylococcus aureuswas used to induce apoptosis in HeLa cells.
Collapse
Affiliation(s)
- V. Ramalingam
- DNA Barcoding and Marine Genomics Lab
- Department of Marine Science
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| | - K. Varunkumar
- Cancer Biology Lab
- Department of Biochemistry
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| | - V. Ravikumar
- Cancer Biology Lab
- Department of Biochemistry
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| | - R. Rajaram
- DNA Barcoding and Marine Genomics Lab
- Department of Marine Science
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| |
Collapse
|
76
|
Kügler JH, Muhle-Goll C, Hansen SH, Völp AR, Kirschhöfer F, Kühl B, Brenner-Weiss G, Luy B, Syldatk C, Hausmann R. Glycolipids produced by Rouxiella sp. DSM 100043 and isolation of the biosurfactants via foam-fractionation. AMB Express 2015; 5:82. [PMID: 26698314 PMCID: PMC4689721 DOI: 10.1186/s13568-015-0167-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/11/2015] [Indexed: 11/10/2022] Open
Abstract
Microorganisms produce a great variety of secondary metabolites that feature surface active and bioactive properties. Those possessing an amphiphilc molecular structure are also termed biosurfactant and are of great interest due to their often unique properties. Rouxiella sp. DSM 100043 is a gram negative enterobacter isolated from peat-bog soil and described as a new biosurfactant producing species in this study. Rouxiella sp. produces glycolipids, biosurfactants with a carbohydrate moiety in its structure. This study characterizes the composition of glycolipids with different hydrophobicities that have been produced during cultivation in a bioreactor and been extracted and purified from separated foam. Using two dimensional nuclear magnetic resonance spectroscopy, the hydrophilic moieties are elucidated as glucose with various acylation sites and as talose within the most polar glycolipids. The presence of 3′ hydroxy lauroleic acid as well as myristic and myristoleic acid has been detected.
Collapse
|
77
|
Dalili D, Amini M, Faramarzi MA, Fazeli MR, Khoshayand MR, Samadi N. Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity. Colloids Surf B Biointerfaces 2015; 135:425-432. [DOI: 10.1016/j.colsurfb.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/16/2015] [Accepted: 07/01/2015] [Indexed: 01/19/2023]
|
78
|
Martínez Díaz Y, Vanegas Laverde G, Reina Gamba L, Mayorga Wandurraga H, Arévalo-Ferro C, Ramos Rodríguez F, Duque Beltrán C, Castellanos Hernández L. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
79
|
Reen FJ, Gutiérrez-Barranquero JA, Dobson ADW, Adams C, O’Gara F. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Mar Drugs 2015; 13:2924-54. [PMID: 25984990 PMCID: PMC4446613 DOI: 10.3390/md13052924] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions.
Collapse
Affiliation(s)
- F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - José A. Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mail:
| | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Fergal O’Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
- School of Biomedical Sciences, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
80
|
Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol 2015; 36:399-415. [PMID: 25641324 DOI: 10.3109/07388551.2014.979758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review.
Collapse
Affiliation(s)
- George Seghal Kiran
- a Department of Food Science and Technology , Pondicherry University , Puducherry , India
| | | | - Anuj Nishanth Lipton
- c Microbial Genomics Research Unit, Department of Microbiology , Pondicherry University , Puducherry , India , and
| | | | - Joseph Selvin
- c Microbial Genomics Research Unit, Department of Microbiology , Pondicherry University , Puducherry , India , and
| |
Collapse
|
81
|
Tawfik SM, Zaky MF. Synthesis, characterization and antimicrobial activity of N,N-bis(hydroxymethyl)-N-[(2-mercaptoacetoxy)methyl]alkyl ammonium bromide surfactant and their Co(II), Zn(II) and Sn(II) complexes. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1867-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
82
|
Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 2014; 98:9915-29. [DOI: 10.1007/s00253-014-6169-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
83
|
Fletcher MH, Jennings MC, Wuest WM. Draining the moat: disrupting bacterial biofilms with natural products. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
84
|
Padmavathi AR, Pandian SK. Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from gulf of mannar. Indian J Microbiol 2014; 54:376-82. [PMID: 25320434 DOI: 10.1007/s12088-014-0474-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/15/2014] [Indexed: 12/28/2022] Open
Abstract
Coral Associated Bacteria (CAB) (N = 22) isolated from the mucus of the coral Acropora digitifera were screened for biosurfactants using classical screening methods; hemolysis test, lipase production, oil displacement, drop collapse test and emulsifying activity. Six CAB (U7, U9, U10, U13, U14, and U16) were found to produce biosurfactants and were identified by 16S ribosomal RNA gene sequencing as Providencia rettgeri, Psychrobacter sp., Bacillus flexus, Bacillus anthracis, Psychrobacter sp., and Bacillus pumilus respectively. Their cell surface hydrophobicity was determined by Microbial adhesion to hydrocarbon assay and the biosurfactants produced were extracted and characterized by Fourier Transform Infrared spectroscopy. Since the biosurfactants are known for their surface modifying capabilities, antibiofilm activity of positive isolates was evaluated against biofilm forming Pseudomonas aeruginosa ATCC10145. Stability of the active principle exhibiting antibiofilm activity was tested through various temperature treatments ranging from 60 to 100 °C and Proteinase K treatment. CAB isolates U7 and U9 exhibited stable antibiofilm activity even after exposure to higher temperatures which is promising for the development of novel antifouling agents for diverse industrial applications. Further, this is the first report on biosurfactant production by a coral symbiont.
Collapse
|
85
|
Biocidal and inhibitory activity screening of de novo synthesized surfactants against two eukaryotic and two prokaryotic microbial species. Colloids Surf B Biointerfaces 2013; 111:407-17. [DOI: 10.1016/j.colsurfb.2013.06.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/24/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022]
|
86
|
Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 2013; 3:32. [PMID: 23758863 PMCID: PMC3702394 DOI: 10.1186/2191-0855-3-32] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/03/2013] [Indexed: 11/27/2022] Open
Abstract
A psychrotrophic marine strain of the ascomycetous yeast Yarrowia lipolytica (NCYC 789) synthesized silver nanoparticles (AgNPs) in a cell-associated manner. These nanostructures were characterized by UV-Visible spectroscopy and scanning electron microscope-energy dispersive spectrometer (SEM-EDS) analysis. The brown pigment (melanin) involved in metal-interactions was obtained from the cells. This extracted pigment also mediated the synthesis of silver nanoparticles that were characterized by a variety of analytical techniques. The melanin-derived nanoparticles displayed antibiofilm activity. This paper thus reports the synthesis of AgNPs by the biotechnologically important yeast Y. lipolytica; proposes a possible mechanism involved in the synthetic process and describes the use of the bio-inspired nanoparticles as antibiofilm agents.
Collapse
|
87
|
Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes. Appl Microbiol Biotechnol 2013; 98:1309-20. [DOI: 10.1007/s00253-013-4991-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 02/05/2023]
|
88
|
Dusane DH, Damare SR, Nancharaiah YV, Ramaiah N, Venugopalan VP, Kumar AR, Zinjarde SS. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis. PLoS One 2013; 8:e64501. [PMID: 23691235 PMCID: PMC3655075 DOI: 10.1371/journal.pone.0064501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/14/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.
Collapse
Affiliation(s)
- Devendra H. Dusane
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, India
| | - Samir R. Damare
- Gene Laboratory, National Institute of Oceanography, Dona Paula, Goa, India
| | - Yarlagadda V. Nancharaiah
- Biofouling and Biofilm Process Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, India
| | - N. Ramaiah
- Gene Laboratory, National Institute of Oceanography, Dona Paula, Goa, India
| | - Vayalam P. Venugopalan
- Biofouling and Biofilm Process Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, India
| | - Smita S. Zinjarde
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, India
| |
Collapse
|
89
|
Golberg K, Pavlov V, Marks RS, Kushmaro A. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. BIOFOULING 2013; 29:669-82. [PMID: 23777289 DOI: 10.1080/08927014.2013.796939] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Marine biofouling, the settlement of microorganisms and macroorganisms on structures submerged in seawater, although economically detrimental, is a successful strategy for survival in hostile environments, where coordinated bacterial communities establish biofilms via the regulation of quorum sensing (QS) communication systems. The inhibition of QS activity among bacteria isolated from different coral species was investigated to gain further insight into its potency in the attenuation, or even the prevention, of undesirable biofouling on marine organisms. It is hypothesized that coral mucus/microorganism interactions are competitive, suggesting that the dominant communities secrete QS disruptive compounds. One hundred and twenty bacterial isolates were collected from healthy coral species and screened for their ability to inhibit QS using three bioreporter strains. Approximately 12, 11, and 24% of the isolates exhibited anti-QS activity against Escherichia coli pSB1075, Chromobacterium violaceum CV026, and Agrobacterium tumefaciens KYC55 indicator strains, respectively. Isolates with positive activity against the bioluminescent monitor strains were scanned via a cytotoxic/genotoxic, E. coli TV1061 and DPD2794 antimicrobial panel. Isolates detected by C. violaceum CV026 and A. tumefaciens KYC55 reporter strains were tested for their ability to inhibit the growth of these reporter strains, which were found to be unaffected. Tests of the Favia sp. coral isolate Fav 2-50-7 (>98% similarity to Vibrio harveyi) for its ability to attenuate the formation of biofilm showed extensive inhibitory activity against biofilms of Pseudomonas aeruginosa and Acinetobacter baumannii. To ascertain the stability and general structure of the active compound, cell-free culture supernatants exposed to an increasing temperature gradient or to digestion by proteinase K, were shown to maintain potent QS attenuation and the ability to inhibit the growth of biofilms. Mass spectrometry confirmed the presence of a low molecular mass compound. The anti-QS strategy exemplified in the coral mucus is a model with potentially wide applications, including countering the ecological threat posed by biofilms. Manipulating synchronized bacterial behavior by detecting new QS inhibitors will facilitate the discovery of new antifouling compounds.
Collapse
Affiliation(s)
- Karina Golberg
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
90
|
Cortés-Sánchez ADJ, Hernández-Sánchez H, Jaramillo-Flores ME. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 2012; 168:22-32. [PMID: 22959834 DOI: 10.1016/j.micres.2012.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/01/2012] [Accepted: 07/07/2012] [Indexed: 02/01/2023]
Abstract
Several biological processes in prokaryotic and eukaryotic organisms require the presence of glycolipids (biosurfactants), compounds with both hydrophilic and hydrophobic groups in their structure. They constitute the backbone of different metabolic functions and biological structures such as cell membranes. Besides being structural components, glycolipids show surface activity in the interfaces and are mainly produced by microorganisms. Interest in biosurfactants has increased considerably in recent times due to their applications in the environmental, oil, food, and pharmaceutical industries, since they have unique properties such as low toxicity, high biodegradability, environmentally friendly, foaming capacity, high selectivity and specificity at extreme temperatures, pH and salinity, as well as biological activity. All of these properties are considered advantages over other chemical surfactants, and therefore glycolipids are considered a good alternative, given the current interest on sustainable development. The present work shows a general view of bio-surfactants of microbial origin, particularly of glycolipids, referring to several studies on their biological activity that have revealed their great potential in the medical-biological field, discovering interesting possibilities for their therapeutic application in the near future.
Collapse
Affiliation(s)
- Alejandro de Jesús Cortés-Sánchez
- Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, CP 11340, México, D.F., Mexico
| | | | | |
Collapse
|
91
|
Jung J, Yu KO, Ramzi AB, Choe SH, Kim SW, Han SO. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol Bioeng 2012; 109:2349-56. [DOI: 10.1002/bit.24524] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/12/2012] [Accepted: 04/04/2012] [Indexed: 11/07/2022]
|
92
|
Rendueles O, Ghigo JM. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 2012; 36:972-89. [PMID: 22273363 DOI: 10.1111/j.1574-6976.2012.00328.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/17/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
Multi-species biofilm communities are environments in which complex but ill understood exchanges between bacteria occur. Although monospecies cultures are still widely used in the laboratory, new approaches have been undertaken to study interspecies interactions within mixed communities. This review describes our current understanding of competitive relationships involving nonbiocidal biosurfactants, enzymes, and metabolites produced by bacteria and other microorganisms. These molecules target all steps of biofilm formation, ranging from inhibition of initial adhesion to matrix degradation, jamming of cell-cell communications, and induction of biofilm dispersion. This review presents available data on nonbiocidal molecules and provides a new perspective on competitive interactions within biofilms that could lead to antibiofilm strategies of potential biomedical interest.
Collapse
Affiliation(s)
- Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
| | | |
Collapse
|
93
|
Quinn GA, Maloy AP, McClean S, Carney B, Slater JW. Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms. BIOFOULING 2012; 28:1151-1166. [PMID: 23113815 DOI: 10.1080/08927014.2012.738292] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Although biofilms are recognised as important in microbial colonisation, solutions to their inhibition are predominantly based on planktonic assays. These solutions have limited efficacy against biofilms. Here, a series of biofilm-orientated tests were used to identify anti-biofilm compounds from marine micro-flora. This led to the isolation of a complex of anti-biofilm compounds from an extract of Paenibacillus polymyxa (PPE). A combination of rpHPLC and mass spectrometry identified the principle components of PPE as fusaricidin B (LI-FO4b) and polymyxin D1, with minor contributions from surfactins. This complex (PPE) reduced the biofilm biomass of Bacillus subtilis, Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus bovis. In contrast, ampicillin was only effective against S. aureus. PPE also inhibited a self-assembling marine biofilm (SAMB) in co-incubation assays by 99.3% ± 1.9 and disrupted established SAMB by 72.4% ± 4.4, while ampicillin showed no significant reduction. The effectiveness of this complex of lipopeptides against single and multispecies biofilms suggests a future role in biofilm prevention strategies.
Collapse
Affiliation(s)
- Gerry A Quinn
- Centre of Applied Marine Biotechnology, Letterkenny Institute of Technology, Letterkenny, County Donegal, Republic of Ireland.
| | | | | | | | | |
Collapse
|