51
|
3D Printed Metal Oxide-Polymer Composite Materials for Antifouling Applications. NANOMATERIALS 2022; 12:nano12060917. [PMID: 35335730 PMCID: PMC8949573 DOI: 10.3390/nano12060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023]
Abstract
Current technology to prevent biofouling usually relies on the use of toxic, biocide-containing materials, which can become a serious threat to marine ecosystems, affecting both targeted and nontargeted organisms. Therefore, the development of broad-spectrum, less toxic antifouling materials is a challenge for researchers; such materials would be quite important in applications like aquaculture. In this respect, surface chemistry, physical properties, durability and attachment scheme can play a vital role in the performance of the materials. In this work, acrylonitrile butadiene styrene (ABS)/micro ZnO or nano ZnO composite lattices with different metal oxide contents were developed using 3D printing. Their antifouling behavior was examined with respect to aquaculture applications by monitoring growth on them of the diatoms Navicula sp. and the monocellular algae Chlorella sp. with image analysis techniques. As shown, the presence of metal oxides in the composite materials can bring about antifouling ability at particular concentrations. The present study showed promising results, but further improvements are needed.
Collapse
|
52
|
Quémener M, Kikionis S, Fauchon M, Toueix Y, Aulanier F, Makris AM, Roussis V, Ioannou E, Hellio C. Antifouling Activity of Halogenated Compounds Derived from the Red Alga Sphaerococcus coronopifolius: Potential for the Development of Environmentally Friendly Solutions. Mar Drugs 2021; 20:md20010032. [PMID: 35049887 PMCID: PMC8778584 DOI: 10.3390/md20010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Nowadays, biofouling is responsible for enormous economic losses in the maritime sector, and its treatment with conventional antifouling paints is causing significant problems to the environment. Biomimetism and green chemistry approaches are very promising research strategies for the discovery of new antifouling compounds. This study focused on the red alga Sphaerococcus coronopifolius, which is known as a producer of bioactive secondary metabolites. Fifteen compounds, including bromosphaerol (1), were tested against key marine biofoulers (five marine bacteria and three microalgae) and two enzymes associated with the adhesion process in macroalgae and invertebrates. Each metabolite presented antifouling activity against at least one organism/enzyme. This investigation also revealed that two compounds, sphaerococcinol A (4) and 14R-hydroxy-13,14-dihydro-sphaerococcinol A (5), were the most potent compounds without toxicity towards oyster larvae used as non-target organisms. These compounds are of high potential as they are active towards key biofoulers and could be produced by a cultivable alga, a fact that is important from the green chemistry point of view.
Collapse
Affiliation(s)
- Maxence Quémener
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
| | - Marilyne Fauchon
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Yannick Toueix
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Fanny Aulanier
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Antonios M. Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), 570 01 Thessaloniki, Greece;
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
- Correspondence: (E.I.); (C.H.)
| | - Claire Hellio
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
- Correspondence: (E.I.); (C.H.)
| |
Collapse
|
53
|
Blikra MJ, Altintzoglou T, Løvdal T, Rognså G, Skipnes D, Skåra T, Sivertsvik M, Noriega Fernández E. Seaweed products for the future: Using current tools to develop a sustainable food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
54
|
Kumar A, Al-Jumaili A, Bazaka O, Ivanova EP, Levchenko I, Bazaka K, Jacob MV. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. MATERIALS HORIZONS 2021; 8:3201-3238. [PMID: 34726218 DOI: 10.1039/d1mh01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine biofouling remains one of the key challenges for maritime industries, both for seafaring and stationary structures. Currently used biocide-based approaches suffer from significant drawbacks, coming at a significant cost to the environment into which the biocides are released, whereas novel environmentally friendly approaches are often difficult to translate from lab bench to commercial scale. In this article, current biocide-based strategies and their adverse environmental effects are briefly outlined, showing significant gaps that could be addressed through advanced materials engineering. Current research towards the use of natural antifouling products and strategies based on physio-chemical properties is then reviewed, focusing on the recent progress and promising novel developments in the field of environmentally benign marine antifouling technologies based on advanced nanocomposites, synergistic effects and biomimetic approaches are discussed and their benefits and potential drawbacks are compared to existing techniques.
Collapse
Affiliation(s)
- Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Medical Physics Department, College of Medical Sciences Techniques, The University of Mashreq, Baghdad, Iraq
| | - Olha Bazaka
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
55
|
Castro KL, Battini N, Giachetti CB, Trovant B, Abelando M, Basso NG, Schwindt E. Early detection of marine invasive species following the deployment of an artificial reef: Integrating tools to assist the decision-making process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113333. [PMID: 34329910 DOI: 10.1016/j.jenvman.2021.113333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/18/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Early detection and rapid response plans are a set of principles to reduce the establishment, spread and impact of invasive species and it is a critical step in management in marine ecosystems. Two potentially invasive ascidians attached to the hull of a recently sunk fishing vessel were early detected in Patagonia. With the aim of assisting in the management decision-making process during the early steps of a rapid response, we conducted several analyses through different approaches. First, we identified the species through classic taxonomical and genetic analyses. Then, we evaluated the regional and international shipping connectivity to study potential donor regions and finally, we used species distribution models (SDMs) to predict the potential distribution of these species. The potentially invasive ascidians were identified as Styela clava and Styela plicata, and this is the first record for both species in the Nuevo gulf, Patagonia Argentina. Both species have a widespread distribution around the world with strong ecological and economic impacts documented. Shipping traffic analysis suggested that S. plicata could have arrived by secondary spread from regional ports, while the arrival of S. clava was likely to be associated with international shipping traffic. Furthermore, the SDM predicted that S. clava has suitable coastal areas along the entire Southwestern Atlantic shoreline, where it is currently absent. On the contrary, the SDM predicted that further southward spread of S. plicata is unlikely, being limited by the minimum annual temperature. We discussed the different approaches, tools, and expertise integrated in this work in the light of the decision-making process for the early detection of marine invasive species in the Southwestern Atlantic. Moreover, we call attention to the increased creation of artificial habitats through the intentional sinking of ships and the potential consequences of these actions in the conservation of marine ecosystems.
Collapse
Affiliation(s)
- Karen Lidia Castro
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina; Centro Regional Universitario Bariloche, Universidad Nacional Del Comahue (CRUB, UNCo), Quintral 1250, San Carlos de Bariloche, Río Negro, Argentina.
| | - Nicolás Battini
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Clara Belen Giachetti
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Berenice Trovant
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9 de Julio 25, Trelew, Chubut, Argentina
| | - Mariana Abelando
- Dirección de Protección Ambiental, Prefectura Naval Argentina, Av. E. Madero 235, Ciudad Autónoma de Buenos Aires, Argentina; Instituto Universitario de Seguridad Marítima, Prefectura Naval Argentina, Av. Corrientes 345, Ciudad Autónoma de Buenos Aires, Argentina
| | - Néstor Guillermo Basso
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Evangelina Schwindt
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
56
|
Non-Indigenous Species on Artificial Coastal Environments: Experimental Comparison between Aquaculture Farms and Recreational Marinas. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Globally, there is growing concern regarding the effects of the increasing anthropogenic pressures in marine communities. Artificial structures such as marinas and aquaculture facilities serve as invasion hotspots; hence, monitoring fouling communities on these structures can be valuable for detecting new invasions. In the current study, 24 settlement PVC plates were deployed for three months to compare the recruitment ability of these two artificial environments along the south coast of the offshore island of Madeira (NE Atlantic). The results showed higher variations in the species richness between regions (SW vs. SE) than between artificial habitats (sea-cages vs. marinas), although the community composition differed. Cnidaria and Bryozoa were the most representative groups in the aquaculture systems, while Bryozoa and Chordata were in the marinas. A sum of 18 NIS was recorded for the study, accounting for between 21.88% and 54.84% of the total number of species in the aquaculture facilities and marinas, respectively. The higher NIS percentage from the marinas was even more explicit in the SE coast, where Cradoscrupocellaria bertholletii, Parasmittina alba, and Botrylloides niger distinctly dominated fouling populations. The results suggest that at least some particular NIS previously reported in the studied marinas successfully colonized sea-cages. Future assessments need to address the potential role of aquaculture facilities as drivers for the secondary spread of NIS. Additionally, two new records are considered for Madeira: Eudendrium capillare and Ericthonius punctatus.
Collapse
|
57
|
Cherednichenko K, Kopitsyn D, Batasheva S, Fakhrullin R. Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations. Polymers (Basel) 2021; 13:3510. [PMID: 34685269 PMCID: PMC8538282 DOI: 10.3390/polym13203510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| |
Collapse
|
58
|
Piló D, Pereira F, Carvalho AN, Vasconcelos P, Cunha AM, Gaspar MB. Are non-indigenous species hitchhiking offshore farmed mussels? A biogeographic and functional approach. MARINE POLLUTION BULLETIN 2021; 171:112776. [PMID: 34385030 DOI: 10.1016/j.marpolbul.2021.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The epifauna associated to farmed mussels in southern Portugal coast was analysed, aiming at identifying the species with spreading potential through commercial transport. The presence of a relevant number of the species here found is not reported to at least one of the common mussel export/transposition countries. Indeed, important species biogeographic dissimilarities between the mussel farm area and the Greater North Sea and Western Mediterranean Sea sub-regions were detected, suggesting the potential transport of non-indigenous species (NIS) into other countries. Among them, fouling species such as the anemones Paractinia striata and Urticina felina, the acorn barnacles Balanus glandula and Balanus trigonus or the bryozoans Bugulina stolonifera and Schizoporella errata exhibit functional attributes that allow them to colonise and spread in new areas. This combined biogeographic and functional approach may contribute to clarify the role of aquaculture on the transport of NIS and to predict and prevent their spreading worldwide.
Collapse
Affiliation(s)
- D Piló
- Portuguese Institute for the Sea and Atmosphere (IPMA), Avenida 5 de Outubro, 8700-305 Olhão, Portugal; Center of Marine Sciences (CCMAR), University of Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal.
| | - F Pereira
- Portuguese Institute for the Sea and Atmosphere (IPMA), Avenida 5 de Outubro, 8700-305 Olhão, Portugal
| | - A N Carvalho
- Portuguese Institute for the Sea and Atmosphere (IPMA), Avenida 5 de Outubro, 8700-305 Olhão, Portugal
| | - P Vasconcelos
- Portuguese Institute for the Sea and Atmosphere (IPMA), Avenida 5 de Outubro, 8700-305 Olhão, Portugal
| | - A M Cunha
- Testa & Cunhas, Fishing and Aquaculture, Avenida Marginal, s/n, 3830-552 Gafanha da Nazaré, Portugal
| | - M B Gaspar
- Portuguese Institute for the Sea and Atmosphere (IPMA), Avenida 5 de Outubro, 8700-305 Olhão, Portugal; Center of Marine Sciences (CCMAR), University of Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
59
|
A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions. Microorganisms 2021; 9:microorganisms9091993. [PMID: 34576888 PMCID: PMC8468346 DOI: 10.3390/microorganisms9091993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The early colonization of surfaces and subsequent biofilm development have severe impacts in environmental, industrial, and biomedical settings since they entail high costs and health risks. To develop more effective biofilm control strategies, there is a need to obtain laboratory biofilms that resemble those found in natural or man-made settings. Since microbial adhesion and biofilm formation are strongly affected by hydrodynamics, the knowledge of flow characteristics in different marine, food processing, and medical device locations is essential. Once the hydrodynamic conditions are known, platforms for cell adhesion and biofilm formation should be selected and operated, in order to obtain reproducible biofilms that mimic those found in target scenarios. This review focuses on the most widely used platforms that enable the study of initial microbial adhesion and biofilm formation under controlled hydrodynamic conditions—modified Robbins devices, flow chambers, rotating biofilm devices, microplates, and microfluidic devices—and where numerical simulations have been used to define relevant flow characteristics, namely the shear stress and shear rate.
Collapse
|
60
|
Song F, Zhang L, Chen R, Liu Q, Liu J, Yu J, Liu P, Duan J, Wang J. Bioinspired Durable Antibacterial and Antifouling Coatings Based on Borneol Fluorinated Polymers: Demonstrating Direct Evidence of Antiadhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33417-33426. [PMID: 34250807 DOI: 10.1021/acsami.1c06030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Substituting natural products for traditional poison-killing antifouling agents is an efficient and promising method to alleviate the increasingly serious ecological crisis and aggravate the loss due to marine biofouling. Herein, the successful synthesis of poly(methyl methacrylate-co-ethyl acrylate-co-hexafluorobutyl methacrylate-co-isobornyl methacrylate) copolymer (PBAF) with borneol monomers and fluorine by a free radical polymerization method is reported. The PBA0.09F coating exhibits outstanding antibacterial and antifouling activity, achieving 98.2% and 92.3% resistance to Escherichia coli and Staphylococcus aureus, respectively, and the number of Halamphora sp. adhesion is only 26 (0.1645 mm2) in 24 h. This remarkable antibacterial and antifouling performance is attributed to the incorporation of fluorine components into the copolymer, which induces a low surface energy and hydrophobicity and the complex molecular structure of the natural nontoxic antifouling agent borneol. In addition, the results showed that the contents of the adhesion-related proteins mfp-3, mfp-5, and mfp-6 were significantly reduced, which proved that natural substances affect the secretion of biological proteins. Importantly, the PBAF coating exhibits excellent environmental friendliness and long-term stability. The antifouling mechanism is clarified, and an effective guide for an environmentally friendly antifouling coating design is proposed.
Collapse
Affiliation(s)
- Fan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Linlin Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - PeiLi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jizhou Duan
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
61
|
Silva ER, Tulcidas AV, Ferreira O, Bayón R, Igartua A, Mendoza G, Mergulhão FJM, Faria SI, Gomes LC, Carvalho S, Bordado JCM. Assessment of the environmental compatibility and antifouling performance of an innovative biocidal and foul-release multifunctional marine coating. ENVIRONMENTAL RESEARCH 2021; 198:111219. [PMID: 33965385 DOI: 10.1016/j.envres.2021.111219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The control of marine biofouling has raised serious environmental concerns, thus the continuous release of toxic and persistent biocidal agents applied as anti-biofouling coatings have triggered the search for non-toxic strategies. However, most of them still lack rigorous evaluation of their ecotoxicity and antifouling effects under real scenarios and their correlation with simulated assays. In this work, the biocide releasing risk and ecotoxicity of a biocidal and foul-release polydimethylsiloxane (PDMS)-based marine coating containing grafted Econea biocide (<0.6 wt.%) were evaluated under simulated real mechanical wear conditions at a pilot-scale system, and under extreme wear scenarios (washability settings). The coating system demonstrated low environmental impact against the model Vibrio fischeri bacterium and marine algae, associated with the effective biocide grafting in the coating matrix and subsequent biocide release minimization. This multifunctional coating system also showed auspicious antifouling (AF) effects, with an AF performance index significantly higher (API > 89) than a single foul-release system (AF < 40) after two and half years at a real immersion scenario in the Portuguese shore of the Atlantic Ocean. These field results corroborated the antibiofilm performance evaluated with Pseudoalteromonas tunicata at simulated dynamic marine conditions after seven-week assays. This eco-friendly multifunctional strategy, validated by both simulated testing conditions and real field tests, is believed to be a powerful tool for the development of AF technologies and a potential contribution to the quest for new environmentally friendly antifouling solutions.
Collapse
Affiliation(s)
- Elisabete R Silva
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; CERENA - Centro de Recursos Naturais e Ambientais, Instituto Superior Técnico, University of Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Ameessa V Tulcidas
- CERENA - Centro de Recursos Naturais e Ambientais, Instituto Superior Técnico, University of Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Olga Ferreira
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; CERENA - Centro de Recursos Naturais e Ambientais, Instituto Superior Técnico, University of Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Raquel Bayón
- Fundación Tekniker, c/Iñaki Goenaga, 5, 20600 Eibar, Spain
| | - Amaya Igartua
- Fundación Tekniker, c/Iñaki Goenaga, 5, 20600 Eibar, Spain
| | - Gemma Mendoza
- Fundación Tekniker, c/Iñaki Goenaga, 5, 20600 Eibar, Spain
| | - Filipe J M Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sara I Faria
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luciana C Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sílvia Carvalho
- CERENA - Centro de Recursos Naturais e Ambientais, Instituto Superior Técnico, University of Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal; CQB - Centro de Química Estrutural, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João C M Bordado
- CERENA - Centro de Recursos Naturais e Ambientais, Instituto Superior Técnico, University of Lisboa, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| |
Collapse
|
62
|
Substrate Selection of Ascidian Larva: Wettability and Nano-Structures. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9060634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ascidians are marine sessile chordates that comprise one of the major benthic animal groups in marine ecosystems. They sometimes cause biofouling problems on artificial structures underwater, and non-indigenous, invasive ascidian species can potentially and seriously alter native faunal communities. Ascidian larvae are usually tadpole-shaped, negatively phototactic, and adhere on substrates by secreting a glue from their adhesive organs. Although larvae often prefer hydrophobic surfaces, such as a silicone rubber, for settlement, hydrophobic materials are often used to reduce occurrence of fouling organisms on artificial structures. This inconsistency may indicate that an attractive surface for larvae is not always suitable for settlement. Micro-scale structures or roughness may enhance the settlement of ascidian larvae, but settlement is significantly reduced by a nano-scale nipple array (or moth-eye structure), suggesting functional properties of similar structures found on the body surfaces of various invertebrates. The substrate preferences of larvae should be one of the important bases in considering measures against biofouling, and this review also discusses the potential uses of materials to safely reduce the impacts of invasive species.
Collapse
|
63
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
64
|
Zabiegaj D, Hajirasouliha F, Duilio A, Guido S, Caserta S, Kostoglou M, Petala M, Karapantsios T, Trybala A. Wetting/spreading on porous media and on deformable, soluble structured substrates as a model system for studying the effect of morphology on biofilms wetting and for assessing anti-biofilm methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
Diggles BK. Biosecurity risks related to recycling of mollusc shell waste for shellfish reef restoration in Australia. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
66
|
Hopkins GA, Gilbertson F, Floerl O, Casanovas P, Pine M, Cahill P. Continuous bubble streams for controlling marine biofouling on static artificial structures. PeerJ 2021; 9:e11323. [PMID: 33987009 PMCID: PMC8092111 DOI: 10.7717/peerj.11323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Biofouling accumulation is not proactively managed on most marine static artificial structures (SAS) due to the lack of effective options presently available. We describe a series of laboratory and field trials that examine the efficacy of continuous bubble streams in maintaining SAS free of macroscopic biofouling and demonstrate that this treatment approach is effective on surface types commonly used in the marine environment. At least two mechanisms were shown to be at play: the disruption of settlement created by the bubble stream, and the scouring of recently settled larvae through shear stress. Field trials conducted over a one-year period identified fouling on diffusers as a major issue to long-term treatment applications. Field measurements suggest that noise associated with surface mounted air blowers and sub-surface diffusers will be highly localised and of low environmental risk. Future studies should aim to develop and test systems at an operational scale.
Collapse
Affiliation(s)
| | | | | | | | - Matt Pine
- Department of Biology, University of Victoria, B.C. Canada
| | | |
Collapse
|
67
|
Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SHE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs 2021; 19:246. [PMID: 33925365 PMCID: PMC8146879 DOI: 10.3390/md19050246] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
Collapse
Affiliation(s)
- Disha Varijakzhan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Rabiha Seboussi
- Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates;
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
68
|
Abstract
In this paper, the different possibilities and innovations related to sustainable aquaculture in the Mediterranean area are discussed, while different maricultural methods, and the role of Integrated Multi-Trophic Aquaculture (IMTA) in supporting the exploitation of the ocean’s resources, are also reviewed. IMTA, and mariculture in general, when carefully planned, can be suitable for environmental restoration and conservation purposes. Aquaculture, especially mariculture, is a sector that is progressively increasing in parallel with the increase in human needs; however, several problems still affect its development, mainly in relation to the choice of suitable sites, fodder production, and the impact on the surrounding environment. A current challenge that requires suitable solutions is the implementation of IMTA. Unfortunately, some criticisms still affect this approach, mostly concerning the commercialization of new products such as invertebrates and seaweeds, notwithstanding their environmentally friendly character. Regarding the location of a suitable site, mariculture plans are currently displaced from inshore to offshore, with the aim of reducing the competition for space with other human activities carried out within coastal waters. Moreover, in open water, waste loading does not appear to be a problem, but high-energy waters increase maintenance costs. Some suggestions are given for developing sustainable mariculture in the Mediterranean area, where IMTA is in its infancy and where the scarce nutrients that characterize offshore waters are not suitable for the farming of both filter feeder invertebrates and macroalgae. From the perspective of coupling mariculture activity with restoration ecology, the practices suggested in this review concern the implementation of inshore IMTA, creating artificially controlled gardens, as well as offshore mussel farming coupled with artificial reefs, while also hypothesizing the possibility of the use of artificially eutrophized areas.
Collapse
|
69
|
ROV Navigation in a Fish Cage with Laser-Camera Triangulation. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9010079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aquaculture net cage inspection and maintenance is a central issue in fish farming. Inspection using autonomous underwater vehicles is a promising solution. This paper proposes laser-camera triangulation for pose estimation to enable autonomous net following for an autonomous vehicle. The laser triangulation 3D data is experimentally compared to a doppler velocity log (DVL) in an active fish farm. We show that our system is comparable in performance to a DVL for distance and angular pose measurements. Laser triangulation is promising as a short distance ranging sensor for autonomous vehicles at a low cost compared to acoustic sensors.
Collapse
|
70
|
Zhao L, Higuchi T, Kanamori M, Natsuike M, Misaka N, Murakami-Sugihara N, Tanaka K, Shirai K. Identification of timing of scallop morphological deformity and mortality from shell oxygen isotope records. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105149. [PMID: 33341038 DOI: 10.1016/j.marenvres.2020.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
The Yesso scallop, Patinopecten yessoensis (Jay), is one of the most important bivalve species in the Japanese and Chinese mariculture industry. In recent years, however, high incidences of scallop shell deformity and mortality have occurred with increasing frequency, but timing of onset and underlying causes are often unclear. Here, we proposed a promising δ18Oshell-based method for constraining the onset of shell deformity and mortality of P. yessoensis. Following six months of intermediate suspension culture in Funka Bay, Northern Japan, shells from healthy, deformed and dead scallops were randomly sampled. High-resolution seawater temperature time-series computed from healthy scallop shell δ18O profiles were precisely and temporally aligned to the instrumental temperature curve, thus allowing δ18Oshell-derived temperature time-series from deformed and dead scallops to be contextualized and allowing timing of scallop deformity and death to be retrieved. Irrespective of scallop shell length, onsets of deformity were anchored in February, and since then deformed scallops grew slowly in comparison to healthy individuals. Without exception, however, dead scallops had already ceased their shell building and died before February, indicating different underlying causes of scallop deformity and mortality. Perhaps most promisingly, considering that shells do not have any isotopic turn-over and once formed, temperature information is locked in. Thus, this approach holds great promise for identifying time anchor points (onsets of deformity and death) in archived scallops collected over different time scales, especially during massive mortality events.
Collapse
Affiliation(s)
- Liqiang Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Tomihiko Higuchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Makoto Kanamori
- Hokodate Fisheries Research Institute, Fisheries Research Department, Hokkaido Research Organization, Hokkaido, 040-0051, Japan
| | - Masafumi Natsuike
- Hokodate Fisheries Research Institute, Fisheries Research Department, Hokkaido Research Organization, Hokkaido, 040-0051, Japan
| | - Naoyuki Misaka
- Mariculture Fisheries Research Institute, Fisheries Research Department, Hokkaido Research Organization, Hokkaido, 051-0013, Japan
| | | | - Kentaro Tanaka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| |
Collapse
|
71
|
Kim D, Kang SM. Red Algae-Derived Carrageenan Coatings for Marine Antifouling Applications. Biomacromolecules 2020; 21:5086-5092. [PMID: 33201682 DOI: 10.1021/acs.biomac.0c01248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a facile approach for the fabrication of a marine antifouling coating using the red algae-derived polysaccharide, carrageenan (CAR). Because CAR is hydrophilic and negatively charged, we hypothesized that it would form strong hydration layers upon adsorption onto solid surfaces, thereby exhibiting marine antifouling properties. Although various types of CAR can be used for marine antifouling, a universally applicable coating method has not yet been developed; thus, a systematic study on the marine antifouling property of CAR coating is lacking. Here, we fabricated a versatile CAR coating via ZrIV-mediated multiple cross-linking reactions between the sulfate groups of CAR and metal ions and successfully deposited κ-, ι-, and λ-CAR onto solid surfaces. Specifically, λ-CAR showed superior marine antifouling performance, as evidenced by the results of the marine diatom adhesion assays.
Collapse
Affiliation(s)
- Dahee Kim
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
72
|
Al-Belushi MA, Myint MTZ, Kyaw HH, Al-Naamani L, Al-Mamari R, Al-Abri M, Dobretsov S. ZnO nanorod-chitosan composite coatings with enhanced antifouling properties. Int J Biol Macromol 2020; 162:1743-1751. [DOI: 10.1016/j.ijbiomac.2020.08.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 01/23/2023]
|
73
|
Jeong Y, Kang SM. Catechol‐conjugated Dextran for Marine Antifouling Applications: The Adverse Effects of High Catechol Content. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| | - Sung Min Kang
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| |
Collapse
|
74
|
An Innovative IMTA System: Polychaetes, Sponges and Macroalgae Co-Cultured in a Southern Italian In-Shore Mariculture Plant (Ionian Sea). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this paper, we report data from the first year of rearing of a set of filter feeder bioremediator organisms: macrobenthic invertebrates (sabellid polychaetes and sponges), coupled with macroalgae, realized in a mariculture fish farm. This innovative integrated multi-trophic aquaculture (IMTA) system was realized at a preindustrial level in the Gulf of Taranto (southern Italy, northern Ionian Sea), within the framework of the EU Remedia Life project. Long lines containing different collector typologies were placed around the fish breeding cages. Vertical collectors were utilized for both polychaetes and sponges, whilst macroalgae were cultivated in horizontal collectors. Data on the growth and mortality of the target species after the first year of rearing and cultivation are given together with their biomass estimation. Polychaete biomass was obtained from natural settlement on ropes previously hung in the system, while sponges and macroalgae were derived from explants and/or inocules inserted in the collectors. The description of the successional pattern occurring on collectors used for settling until reaching a “stable” point is also described, with indications of additional filter feeder macroinvertebrates other than polychaetes and sponges that are easily obtainable and useful in the system as bioremediators as well. The results demonstrate an easy, natural obtaining of large biomass of sabellid polychaetes settling especially from about a 4 to 10 m depth. Sponges and macroalgae need to be periodically cleaned from the fouling covering. The macroalgae cycle was different from that of invertebrates and requires the cultivation of two different species with about a 6-month cycle for each one. The present study represents one of the first attempts at IMTA in the Mediterranean area where invertebrates and macroalgae are co-cultured in an inshore fish farm. Possible utilization of the produced biomass is also suggested.
Collapse
|
75
|
Recent Advances in Mussel-Inspired Synthetic Polymers as Marine Antifouling Coatings. COATINGS 2020. [DOI: 10.3390/coatings10070653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic oligomers and polymers inspired by the multifunctional tethering system (byssus) of the common mussel (genus Mytilus) have emerged since the 1980s as a very active research domain within the wider bioinspired and biomimetic materials arena. The unique combination of strong underwater adhesion, robust mechanical properties and self-healing capacity has been linked to a large extent to the presence of the unusual α-amino acid derivative l-DOPA (l-3,4-dihydroxyphenylalanine) as a building block of the mussel byssus proteins. This paper provides a short overview of marine biofouling, discussing the different marine biofouling species and natural defenses against these, as well as biomimicry as a concept investigated in the marine antifouling context. A detailed discussion of the literature on the Mytilus mussel family follows, covering elements of their biology, biochemistry and the specific measures adopted by these mussels to utilise their l-DOPA-rich protein sequences (and specifically the ortho-bisphenol (catechol) moiety) in their benefit. A comprehensive account is then given of the key catechol chemistries (covalent and non-covalent/intermolecular) relevant to adhesion, cohesion and self-healing, as well as of some of the most characteristic mussel protein synthetic mimics reported over the past 30 years and the related polymer functionalisation strategies with l-DOPA/catechol. Lastly, we review some of the most recent advances in such mussel-inspired synthetic oligomers and polymers, claimed as specifically aimed or intended for use in marine antifouling coatings and/or tested against marine biofouling species.
Collapse
|
76
|
Tsagdi A, Druvari D, Panagiotaras D, Avramidis P, Bekiari V, Kallitsis JK. Polymeric Coatings Based on Water-Soluble Trimethylammonium Copolymers for Antifouling Applications. Molecules 2020; 25:molecules25071678. [PMID: 32268518 PMCID: PMC7180454 DOI: 10.3390/molecules25071678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/12/2023] Open
Abstract
Crosslinked polymeric materials based on a quaternary trimethylammonium compound were developed and evaluated as potential antifouling coatings. For this purpose, two water-soluble random copolymers, poly(4-vinylbenzyltrimethylammonium chloride-co-acrylic acid) P(VBCTMAM-co-AAx) and poly(N,N-dimethylacrylamide-co-glycidylmethacrylate) P(DMAm-co-GMAx), were synthesized via free radical polymerization. A water based approach for the synthesis of P(VBCTMAM-co-AAx) copolymer was used. Coatings of the complementary reactive copolymers in different compositions were obtained by curing at 120 °C for one day and were used to coat aquaculture nets. These nets were evaluated in respect to their release rate using Total Organic Carbon (TOC) and Total Nitrogen (TN) measurements. Finally, the antifouling efficacy of these newly-composed durable coatings was investigated for 14 days in accelerated conditions. The results showed that this novel polymeric material provides contact-killing antifouling activity for a short time period, whereas it functions efficiently in biofouling removal after high-pressure cleaning.
Collapse
Affiliation(s)
- Artemis Tsagdi
- Department of Chemistry, University of Patras, GR–26504 Patras, Greece; (A.T.); (D.D.)
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR–26504 Patras, Greece; (A.T.); (D.D.)
| | - Dionisios Panagiotaras
- Department of Environment, Ionian University, M. Minotou-Giannopoulou 26, Zakynthos 29100, Greece;
- Department of Geology, University of Patras, GR-26504 Patras, Greece;
| | - Pavlos Avramidis
- Department of Geology, University of Patras, GR-26504 Patras, Greece;
| | - Vlasoula Bekiari
- Department of Animal Production, Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece;
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR–26504 Patras, Greece; (A.T.); (D.D.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-265 04 Rio-Patras, Greece
- Correspondence: ; Tel.: (+302610) 962952; Fax: (+302610) 997122
| |
Collapse
|
77
|
Bloecher N, Frank K, Bondø M, Ribicic D, Endresen PC, Su B, Floerl O. Testing of novel net cleaning technologies for finfish aquaculture. BIOFOULING 2019; 35:805-817. [PMID: 31538816 DOI: 10.1080/08927014.2019.1663413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
To avoid the negative impacts caused by biofouling development, aquaculture nets around the world are periodically cleaned using high-pressure washers. Net cleaning is labour-intense and costly, can damage antifouling coatings on the nets, and pose contamination as well as fish health and welfare risks. To support the environmental sustainability of the growing aquaculture sector, novel net cleaning methods are needed. This study examined low-pressure-, cavitation-, and suction-based cleaning technologies as alternatives to conventional high-pressure cleaning. Using field experiments, cleaning efficacy, cleaning waste generation, and the impact of cleaning on coating integrity and net strength were evaluated. Cavitation and high-pressure cleaning achieved considerably higher cleaning efficacy than low-pressure and suction cleaning. However, a single high-pressure treatment caused up to 53% coating degradation, compared to 2% for cavitation. All technologies produced similar cleaning waste and neither reduced net strength significantly. This study identifies cavitation cleaning as promising technology for biofouling control on aquaculture nets.
Collapse
Affiliation(s)
| | | | | | | | | | - Biao Su
- SINTEF Ocean , Trondheim , Norway
| | - Oliver Floerl
- SINTEF Ocean , Trondheim , Norway
- Cawthron Institute , Nelson , New Zealand
| |
Collapse
|