51
|
Jiao L, Dai T, Lu J, Tao X, Jin M, Sun P, Zhou Q. Excess iron supplementation induced hepatopancreas lipolysis, destroyed intestinal function in Pacific white shrimp Litopenaeus vannamei. MARINE POLLUTION BULLETIN 2022; 176:113421. [PMID: 35183027 DOI: 10.1016/j.marpolbul.2022.113421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/08/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
So far, the adverse effects of excess Fe in shrimp have been ignored for years as it was thought that extra Fe supplementation was not needed in the practical diets. Nowadays, Fe concentration in commercial shrimp feed from feed enterprises could be around 301.34-545.5 mg/kg, which is mainly due to the fish meal containing up to 1500 mg/kg Fe. Therefore, the purpose of this experiment was to investigate the effects of Fe supplementation on the growth performance, tissue Fe deposition, hepatopancreas lipid metabolism, intestinal function in L. vannamei. The results showed that although growth performance was not influenced by the dietary Fe supplementation, excess Fe supplementation (955.00 mg/kg) significantly increased hepatopancreas Fe deposition and induced lipolysis. Moreover, excess Fe supplementation impaired intestinal immune function and disrupted microbiota homeostasis. These findings might provide partial theoretical evidence for the effect of dietary Fe supplementation on physiological metabolism in L. vannamei.
Collapse
Affiliation(s)
- Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Tianmeng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jingjing Lu
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xinyue Tao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
52
|
Kuwabara AM, Tenforde AS, Finoff JT, Fredericson M. Iron Deficiency in Athletes: A Narrative Review. PM R 2022; 14:620-642. [DOI: 10.1002/pmrj.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Anne M. Kuwabara
- Stanford University, Department of Physical Medicine and Rehabilitation, 450 Broadway Street, Pavilion C, 4th Floor Redwood City California United States
| | - Adam S. Tenforde
- Harvard Medical School, Department of Physical Medicine and Rehabilitation Assistant Professor of Physical Medicine and Rehabilitation
| | | | - Michael Fredericson
- Department of Physical Medicine and Rehabilitation Stanford University Medical Center
| |
Collapse
|
53
|
Frigerio J, Tedesco E, Benetti F, Insolia V, Nicotra G, Mezzasalma V, Pagliari S, Labra M, Campone L. Anticholesterolemic Activity of Three Vegetal Extracts (Artichoke, Caigua, and Fenugreek) and Their Unique Blend. Front Pharmacol 2021; 12:726199. [PMID: 34887750 PMCID: PMC8650624 DOI: 10.3389/fphar.2021.726199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic-related diseases, in particular hyperlipidemia and hypercholesterolemia, are a thorn on the side of the national health institutes around the globe. Indeed, liver lipid and cholesterol dysregulation could lead to atherosclerotic plaque formation and cardiovascular diseases. Currently, statin administration and monacolin K consumption are the main therapies proposed to counter this alarming connection, but relevant side effects are known. To overcome this issue, safe nutraceutical formulations and/or vegetal extracts, endowed with anticholesterolemic activity, could be instrumental in hypercholesterolemia prevention and treatment. In the present work, the anticholesterolemic efficacy of three vegetal extracts used in traditional medicine (artichoke, caigua, and fenugreek), their unique blend (ACFB), and the monacolin K-containing red yeast extract (RYR), was investigated with an in vitro approach based on hepatic cell line HepG2. The impact on cholesterol of the three extracts, their blend, and RYR were investigated by determining hepatocyte total and free cholesterol and bile acids biosynthesis. According to our results, the anticholesterolemic activity of the vegetal extracts was confirmed, and a novel choleretic activity of caigua extract was evidenced. ACFB showed to be safer than RYR while showing a similar effect on total and free cholesterol and bile acids synthesis compared to it. The anticholesterolemic activity of the blend was obtained with lower vegetal extract concentrations compared with the single vegetal extract, potentially indicating an additive effect between the extracts. In conclusion, the vegetal extracts and their blend, ACFB, are safe and are endowed with anticholesterolemic activity, potentially providing complementary therapies to the statin-based ones for hyperlipidemia and hypercholesterolemia-related complications.
Collapse
Affiliation(s)
- Jessica Frigerio
- FEM2-Ambiente, Milano, Italy
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Erik Tedesco
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Federico Benetti
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | | | | | | | - Stefania Pagliari
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Massimo Labra
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Luca Campone
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
54
|
Liu L, Wang M, Gong N, Tian P, Deng H. Se improves GPX4 expression and SOD activity to alleviate heat-stress-induced ferroptosis-like death in goat mammary epithelial cells. Anim Cells Syst (Seoul) 2021; 25:283-295. [PMID: 34745435 PMCID: PMC8567913 DOI: 10.1080/19768354.2021.1988704] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Selenium (Se) is a vital element of life, which has an important impact on the growth, development, production performance and stress-tolerance of animals. However, it is not entirely clear that how exactly Se works during these processes. Herein, we investigate the role of Se in regulating the functions of goat mammary epithelial cells (GMECs) under heat-stress condition. We found that heat stress caused ferroptosis-like death in GMECs, manifested by a robust increase in iron ion concentration, reactive oxygen species (ROS) and cell death ratio, and a decrease in the activity of superoxide dismutase (SOD) and expression level of glutathione peroxidases 4 (GPX4). Se incubation had no obvious effect on GMEC viability, but alleviated heat-stress-induced ferroptosis-like cell death and improved GPX4 expression and SOD activity in a dose-dependent manner. Also, we found that overexpression of GPX4 could improve the activity of SOD. And Se incubation inhibited activation of mTOR signaling in heat-stress-induced GMECs, which could be eliminated by the mTOR activator MHY1485, and treatment with mTOR inhibitor AY-22989 had the same effect as Se. In conclusion, Se improves GPX4 expression and SOD activity and inhibits the activation of mTOR to alleviate heat-stress-induced ferroptosis-like death in GMECs, which may be a protective agent for heat stress in goats.
Collapse
Affiliation(s)
- Lu Liu
- College of Chemistry & Pharmacy, Northwest Agricultural & Forestry University, Yangling, People's Republic of China
| | - Manjiang Wang
- Fuping County Animal Epidemic Prevention Control Center, Xianyang, People's Republic of China
| | - Ning Gong
- College of Chemistry & Pharmacy, Northwest Agricultural & Forestry University, Yangling, People's Republic of China
| | - Peng Tian
- College of Chemistry & Pharmacy, Northwest Agricultural & Forestry University, Yangling, People's Republic of China
| | - Hongxia Deng
- College of Chemistry & Pharmacy, Northwest Agricultural & Forestry University, Yangling, People's Republic of China
| |
Collapse
|
55
|
Effects of Lipid Peroxidation-Mediated Ferroptosis on Severe Acute Pancreatitis-Induced Intestinal Barrier Injury and Bacterial Translocation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6644576. [PMID: 34257815 PMCID: PMC8245223 DOI: 10.1155/2021/6644576] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Ferroptosis is a recently recognized type of regulated cell death characterized by iron- and lipid peroxidation-mediated nonapoptotic cell death. However, whether ferroptosis is involved in severe acute pancreatitis- (SAP-) induced intestinal barrier injury is unknown. The aim of this study was to investigate whether ferroptosis is involved in SAP-induced intestinal barrier injury, particularly intestinal epithelial cell (IEC) death, and determine whether the inhibition of ferroptosis would ameliorate intestinal barrier injury and prevent bacterial translocation (BT). Sodium taurocholate (5%) was retrogradely perfused into the biliopancreatic duct to establish a rat model of SAP. The rats were divided into three groups: sham operation (SO), SAP-induced intestinal barrier injury (SAP), and ferroptosis inhibitor liproxstatin-1 (SAP + Lip). Serum indexes were measured in the rats. In addition, the biochemical and morphological changes associated with ferroptosis were observed, including iron accumulation in intestinal tissue, lipid peroxidation levels, and mitochondrial shrinkage. Hematoxylin staining and eosin staining were used to assess histological tissue changes. Western blot, RT-PCR, and immunofluorescent staining were performed to analyze the expression of ferroptosis-related proteins and genes as well as tight junction. BT was detected by 16S rDNA sequencing analysis. The results indicated that ferroptosis was significantly induced in the IECs from rats with SAP and ferroptosis was mediated by lipid peroxidation. The specific lipid peroxidation of IECs clearly upregulated ferroptosis and exacerbated intestinal barrier injury. Furthermore, treatment with liproxstatin-1 lowered the levels of serum damage markers, decreased lipid peroxidation, and alleviated intestinal and acute remote organ injury in SAP rats. In addition, inhibition of ferroptosis reduced BT. Our findings are the first to demonstrate that ferroptosis contributes to SAP-induced intestinal barrier injury via lipid peroxidation-mediated IEC death. These results suggest that ferroptosis is a potential therapeutic target for SAP-induced intestinal barrier injury.
Collapse
|
56
|
Oral Iron Supplementation—Gastrointestinal Side Effects and the Impact on the Gut Microbiota. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron deficiency anaemia (IDA) is a worldwide healthcare problem affecting approximately 25% of the global population. The most common IDA treatment is oral iron supplementation, which has been associated with gastrointestinal (GI) side effects such as constipation and bloating. These can result in treatment non-adherence and the persistence of IDA. Intravenous iron does not cause GI side effects, which may be due to the lack of exposure to the intestinal lumen. Luminal iron can cause changes to the gut microbiota, aiding the promotion of pathogenic species and decreasing beneficial protective species. Iron is vital for methanogenic archaea, which rely on iron for growth and metabolism. Increased intestinal methane has been associated with slowing of intestinal transit, constipation, and bloating. Here we explore the literature to understand a potential link between iron and methanogenesis as a novel way to understand the mechanism of oral iron supplementation induced GI side effects.
Collapse
|
57
|
Ribeiro M, Fonseca L, Anjos JS, Capo-Chichi JCC, Borges NA, Burrowes J, Mafra D. Oral iron supplementation in patients with chronic kidney disease: Can it be harmful to the gut microbiota? Nutr Clin Pract 2021; 37:81-93. [PMID: 33979013 DOI: 10.1002/ncp.10662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have several pathophysiological alterations, including anemia, one of the first changes in CKD patients. More recently, researchers have observed that the intestinal microbiota alterations are also another complication in these patients. The most common treatment for anemia is oral (mainly ferrous sulfate) or intravenous iron supplementation. Despite being a necessary treatment, recent studies have reported that supplementation with oral iron may increase its availability in the intestine, leading to disturbance in the gut microbiota and also to oxidative stress in the enterocytes, which may change the permeability and the microbiota profile. Although it is a therapy routinely used in patients with CKD, supplementation with oral iron on the gut microbiota has been rarely studied in these patients. Thus, this review will discuss the relationship between iron and the gut microbiota and the possible effects of oral iron supplementation on gut microbiota in patients with CKD.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil
| | - Larissa Fonseca
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Juliana S Anjos
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Jean C C Capo-Chichi
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Natália A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
58
|
The emerging role of ferroptosis in intestinal disease. Cell Death Dis 2021; 12:289. [PMID: 33731703 PMCID: PMC7969743 DOI: 10.1038/s41419-021-03559-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a newly recognised type of regulated cell death (RCD) characterised by iron-dependent accumulation of lipid peroxidation. It is significantly distinct from other RCDs at the morphological, biochemical, and genetic levels. Recent reports have implicated ferroptosis in multiple diseases, including neurological disorders, kidney injury, liver diseases, and cancer. Ferroptotic cell death has also been associated with dysfunction of the intestinal epithelium, which contributes to several intestinal diseases. Research on ferroptosis may provide a new understanding of intestinal disease pathogenesis that benefits clinical treatment. In this review, we provide an overview of ferroptosis and its underlying mechanisms, then describe its emerging role in intestinal diseases, including intestinal ischaemia/reperfusion (I/R) injury, inflammatory bowel disease (IBD), and colorectal cancer (CRC).
Collapse
|
59
|
Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, Qiu Z, Xia Z. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones 2021; 27:149-164. [PMID: 35124772 PMCID: PMC8943074 DOI: 10.1007/s12192-022-01257-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
In patients with ischemic heart disease, myocardial ischemia-reperfusion injury (IRI) can aggravate their condition even worse, and diabetes increases their risk of myocardial IRI. Pathological pathways of common diseases and surgical operations like diabetes, obesity, coronary artery angioplasty, and heart transplantation entail disorders of iron metabolism. Ferroportin1 (FPN1) is the only mammalian protein associated with iron release and thus plays a vital role in iron homeostasis, while nuclear factor E2-related factor 2 (NRF2) controls the transcription of FPN1. Since the NRF2/FPN1 pathway may play a favorable role in the therapy of diabetic myocardial IRI, this work investigated the possible mechanism. In this study, we investigated the effects of ferroptosis in STZ-induced diabetic rats following myocardial IRI in vivo, and its alteration in glucose and hypoxia/reoxygenation-induced cardiomyocytes injury in vitro. Rats and H9c2 cardiomyocytes were randomly divided into 6 groups and treated with sulforaphane and erastin besides the establishment of diabetic myocardial IRI and hyperglycemic hypoxia-reoxygenation models. Cardiac functional and structural damage were detected by Evans blue/TTC double staining, echocardiography, HE staining, and serological indices. CCK-8 assay and ROS production were used to measure cardiomyocyte viability and oxidative stress level. Additionally, the changes in cell supernatant levels of Fe2+, SOD, MDA, and mRNA and protein expression of ferroptosis marker proteins confirmed the beneficial effects of the NRF2/FPN1 pathway on diabetic myocardial IRI related to iron metabolism and ferroptosis. Overall, these findings suggest that iron homeostasis-related ferroptosis plays an important role in aggravating myocardial IRI in diabetic rats, and NRF2/FPN1 pathway-mediated iron homeostasis and ferroptosis might be a promising therapeutic target against myocardial IRI in diabetes.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Yi Zhang
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Jie Tao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Lu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
| |
Collapse
|
60
|
Cotoraci C, Ciceu A, Sasu A, Hermenean A. Natural Antioxidants in Anemia Treatment. Int J Mol Sci 2021; 22:ijms22041883. [PMID: 33668657 PMCID: PMC7918704 DOI: 10.3390/ijms22041883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
- Correspondence:
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
61
|
Comparative Evaluation of Intestinal Absorption and Functional Value of Iron Dietary Supplements and Drug with Different Delivery Systems. Molecules 2020; 25:molecules25245989. [PMID: 33348818 PMCID: PMC7766776 DOI: 10.3390/molecules25245989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
Iron is a fundament micronutrient, whose homeostasis is strictly regulated. Iron deficiency anemia is among the most widespread nutritional deficiencies and its therapy, based on dietary supplement and drugs, may lead to severe side effects. With the aim of improving iron bioavailability while reducing iron oral therapy side effects, novel dietary supplements based on innovative technologies-microencapsulation, liposomes, sucrosomes-have been produced and marketed. In the present work, six iron dietary supplements for different therapeutic targets were compared in terms of bioaccessibility, bioavailability, and safety by using an integrated in vitro approach. For general-purpose iron supplements, ME + VitC (microencapsulated) showed a fast, burst intestinal iron absorption kinetic, which maintained iron bioavailability and ferritin expression constant over time. SS + VitC (sucrosomes), on the other side, showed a slower, time-dependent iron absorption and ferritin expression trend. ME + Folate (microencapsulated) showed a behavior similar to that of ME + VitC, albeit with a lower bioavailability. Among pediatric iron supplements, a time-dependent bioavailability increase was observed for LS (liposome), while PIC (polydextrose-iron complex) bioavailability is severely limited by its poor bioaccessibility. Finally, except for SS + VitC, no adverse effects on intestinal mucosa vitality and barrier integrity were observed. Considering obtained results and the different therapeutic targets, microencapsulation-based formulations are endowed with better performance compared to the other formulations. Furthermore, performances of microencapsulated products were obtained with a lower iron daily dose, limiting the potential onset of side effects.
Collapse
|
62
|
Zhao N, Liu JM, Yang FE, Ji XM, Li CY, Lv SW, Wang S. A Novel Mediation Strategy of DSS-Induced Colitis in Mice Based on an Iron-Enriched Probiotic and In Vivo Bioluminescence Tracing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12028-12038. [PMID: 33052690 DOI: 10.1021/acs.jafc.0c05260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Iron deficiency (ID) caused by blood loss and/or reduced iron absorption is a serious problem influencing health in inflammatory bowel disease (IBD). However, traditional iron supplements may fail to meet no side effect demands for ID of IBD; thus, a new iron supplementation is highly desired to be developed. Herein, for the first time, probiotic Lactobacillus alimentarius NKU556 with an iron-enriching ability was screened from Chinese traditional fermented food then employed to intervene DSS-induced colitis with bioluminescence tracing in mice. As expected, oral administration with NKU556-Fe can remarkably enhance the expression of tight junction proteins and effectively reduce the pro-inflammatory cytokines as well as the oxidative stress on DSS-induced colitis in mice. Meanwhile, in comparison with the FeSO4 group, the intake of NKU556-Fe could suppress the expression of hepcidin derived from the liver and reduce the degradation of FPN1, thereby leading to the increase in the iron absorption of colitis in mice. According to the bioluminescence result, it was believed that the beneficial effects of oral administration with NKU556/NKU556-Fe on DSS-induced colitis in mice were hardly related to its metabolites but associated with its own function. These results concluded that the oral administration of NKU556-Fe could relieve colitis inflammation and increase iron absorption. In summary, current work not only proposed a novel mediation strategy for IBD but also offered some inspirations for future treatment of extraintestinal complications.
Collapse
Affiliation(s)
- Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Fei-Er Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue-Meng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
63
|
Abstract
CO2, HCO3-, and CO32- are present in all aqueous media at pH > 4 if no major effort is made to remove them. Usually the presence of CO2/HCO3-/CO32- is either forgotten or considered only as a buffer or proton transfer catalyst. Results obtained in the last decades point out that carbonates are key participants in a variety of oxidation processes. This was first attributed to the formation of carbonate anion radicals via the reaction OH• + CO32- → CO3•- + OH-. However, recent studies point out that the involvement of carbonates in oxidation processes is more fundamental. Thus, the presence of HCO3-/CO32- changes the mechanisms of Fenton and Fenton-like reactions to yield CO3•- directly even at very low HCO3-/CO32- concentrations. CO3•- is a considerably weaker oxidizing agent than the hydroxyl radical and therefore a considerably more selective oxidizing agent. This requires reconsideration of the sources of oxidative stress in biological systems and might explain the selective damage induced during oxidative stress. The lower oxidation potential of CO3•- probably also explains why not all pollutants are eliminated in many advanced oxidation technologies and requires rethinking of the optimal choice of the technologies applied. The role of percarbonate in Fenton-like processes and in advanced oxidation processes is discussed and has to be re-evaluated. Carbonate as a ligand stabilizes transition metal complexes in uncommon high oxidation states. These high-valent complexes are intermediates in electrochemical water oxidation processes that are of importance in the development of new water splitting technologies. HCO3- and CO32- are also very good hole scavengers in photochemical processes of semiconductors and may thus become key participants in the development of new processes for solar energy conversion. In this Account, an attempt to correlate these observations with the properties of carbonates is made. Clearly, further studies are essential to fully uncover the potential of HCO3-/CO32- in desired oxidation processes.
Collapse
Affiliation(s)
- Shanti Gopal Patra
- Department of Chemical Sciences, The Center for Radical Reactions and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ramat HaGolan Street, Ariel 40700, Israel
| | - Amir Mizrahi
- Department of Chemistry, Nuclear Research Centre Negev, Beer-Sheva 84190, Israel
| | - Dan Meyerstein
- Department of Chemical Sciences, The Center for Radical Reactions and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ramat HaGolan Street, Ariel 40700, Israel
- Department of Chemistry, Ben-Gurion University, Beer-Sheva 8410501, Israel
| |
Collapse
|
64
|
Zhang Y, Hai Y, Miao Y, Qi X, Xue W, Luo Y, Fan H, Yue T. The toxicity mechanism of different sized iron nanoparticles on human breast cancer (MCF7) cells. Food Chem 2020; 341:128263. [PMID: 33038805 DOI: 10.1016/j.foodchem.2020.128263] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023]
Abstract
The toxicity mechanism of superparamagnetic iron oxide nanoparticles (SPIONs) were examined multidimensionally to reduce the toxicity risks. A higher dosage and more suitable size of SPIONs enhanced the uptake amount into MCF7 cells, leading to a higher specific uptake rate of SPIONs with the formation of more reactive oxygen species (ROS). ROS was an intrinsic factor of cell death. Interestingly, the smaller SPIONs (S1) liked to produce more ROS in mitochondria to damage mitochondria, while the larger SPIONs (S2 and S3) promoted ROS yield in plasma to destroy cytomembrane. Furthermore, ROS synthesis pathways were the partial of cell death pathways, and ferroptosis pathway was the main contributor to mitochondrial and cytomembrane damage. Meanwhile, ROS amount was well coincided to gene expression level of these cell death pathways, which inferred RNA-seq might be a new method to evaluate the oxidative stress and potential toxicity of nanomaterials.
Collapse
Affiliation(s)
- Yuanxiao Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yu Hai
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yuqing Miao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiao Qi
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Quality and Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Beijing, China
| |
Collapse
|
65
|
Zhang L, Qi X, Ning W, Shentu L, Guo T, Zhang X, Li Y, Ma Y, Yu T, Knott JG, Cao Z, Zhang Y. Single-Cell Transcriptome Profiling Revealed That Vitrification of Somatic Cloned Porcine Blastocysts Causes Substantial Perturbations in Gene Expression. Front Genet 2020; 11:640. [PMID: 32793277 PMCID: PMC7394247 DOI: 10.3389/fgene.2020.00640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xin Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Ning
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Luyan Shentu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tenglong Guo
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangdong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yangyang Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tong Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
66
|
Li W, Li W, Leng Y, Xiong Y, Xia Z. Ferroptosis Is Involved in Diabetes Myocardial Ischemia/Reperfusion Injury Through Endoplasmic Reticulum Stress. DNA Cell Biol 2019; 39:210-225. [PMID: 31809190 DOI: 10.1089/dna.2019.5097] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemic disease affects the prognosis in perioperative patients. Diabetes can aggravate myocardial injury. The purpose of this research is to investigate the effect of ferroptosis in the process of diabetes mellitus (DM) myocardial ischemia/reperfusion (I/R) injury (IRI). Endoplasmic reticulum stress (ERS) is investigated whether aggravates cardiomyocytes injury. Rat DM+I/R (DIR), cell high glucose (HG), hypoxia reoxygenation (H/R), and high-glucose H/R (HH/R) models were established. Ferroptosis inhibitor Ferrostatin-1, ferroptosis agonist Erastin, ERS inhibitor Salubrinal, and ERS agonist Tunicamycin were administered. Serum creatine kinase-MB (CK-MB), cell viability, lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), reactive oxygen species (ROS), and cellular ferrous ion concentration were examined. The level of ACSL4, GPX4, ATF4, CHOP, BCL-2, and BAX was detected. Myocardial tissue pathological change was detected by hematoxylin-eosin staining. Cardiac function was monitored by invasive hemodynamic measurements. Evans Blue-triphenyltetrazolium chloride double staining was used to detect the myocardial infarct size. In DM+sham (DS) (or HG) and I/R (or H/R) models, cardiomyocytes were injured accompanied by increased level of ferroptosis and ERS. Moreover, the cell injury was more serious in rat DIR or cell HH/R models. Inhibition of ferroptosis in DIR model could reduce ERS and myocardial injury. Inhibition of ferroptosis in H9c2 cells HG, H/R, and HH/R models could reduce cell injury. Erastin could aggravate ERS and cell injury by stimulating ferroptosis in HH/R cell model. Meanwhile, inhibition of ERS could alleviate ferroptosis and cell injury. Ferroptosis is involved in DIR injury that is related to ERS. Moreover, inhibition of ferroptosis can alleviate DIR injury, which may provide a therapeutic regent for myocardial ischemic disease.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|