51
|
Felley-Bosco E, MacFarlane M. Asbestos: Modern Insights for Toxicology in the Era of Engineered Nanomaterials. Chem Res Toxicol 2018; 31:994-1008. [PMID: 30156102 DOI: 10.1021/acs.chemrestox.8b00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asbestos fibers are naturally occurring silicates that have been extensively used in the past, including house construction, but because of their toxicity, their use has been banned in 63 countries. Despite this, more than one million metric tons of asbestos are still consumed annually in countries where asbestos use has not been banned. Asbestos-related disease incidence is still increasing in several countries, including those countries that banned the use of asbestos more than 30 years ago. We highlight here recent knowledge obtained in experimental models about the mechanisms leading to tumor development following asbestos exposure, including genetic and epigenetic changes. Importantly, the landscape of alterations observed experimentally in tumor samples is consistent with alterations observed in clinical tumor samples; therefore, studies performed on early/precancer stages should help inform secondary prevention, which remains crucial in the absence of an efficient primary prevention. Knowledge gathered on asbestos should also help address future challenges, especially in view of the increased production of new materials that may behave similarly to asbestos fibers.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology , University Hospital Zurich , Sternwartstrasse 14 , 8091 Zürich , Switzerland
| | - Marion MacFarlane
- MRC Toxicology Unit , University of Cambridge , Hodgkin Building, Leicester LE1 9HN , United Kingdom
| |
Collapse
|
52
|
Park EJ, Khaliullin TO, Shurin MR, Kisin ER, Yanamala N, Fadeel B, Chang J, Shvedova AA. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J Immunotoxicol 2018; 15:12-23. [PMID: 29237319 DOI: 10.1080/1547691x.2017.1414339] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With the rapid development of synthetic alternatives to mineral fibers, their possible effects on the environment and human health have become recognized as important issues worldwide. This study investigated effects of four fibrous materials, i.e. nanofibrillar/nanocrystalline celluloses (NCF and CNC), single-walled carbon nanotubes (CNTs), and crocidolite asbestos (ASB), on pulmonary inflammation and immune responses found in the lungs, as well as the effects on spleen and peripheral blood immune cell subsets. BALB/c mice were given NCF, CNC, CNT, and ASB on Day 1 by oropharyngeal aspiration. At 14 days post-exposure, the animals were evaluated. Total cell number, mononuclear phagocytes, polymorphonuclear leukocytes, lymphocytes, and LDH levels were significantly increased in ASB and CNT-exposed mice. Expression of cytokines and chemokines in bronchoalveolar lavage (BAL) was quite different in mice exposed to four particle types, as well as expression of antigen presentation-related surface proteins on BAL cells. The results revealed that pulmonary exposure to fibrous materials led to discrete local immune cell polarization patterns with a TH2-like response caused by ASB and TH1-like immune reaction to NCF, while CNT and CNC caused non-classical or non-uniform responses. These alterations in immune response following pulmonary exposure should be taken into account when testing the applicability of new nanosized materials with fibrous morphology.
Collapse
Affiliation(s)
- Eun-Jung Park
- a Department of Brain Science , Ajou University School of Medicine , Suwon , Republic of Korea
| | - Timur O Khaliullin
- b Exposure Assessment Branch , NIOSH/CDC , Morgantown , WV , USA.,c Department of Physiology, Pharmacology and Neuroscience , West Virginia University , Morgantown , WV , USA
| | - Michael R Shurin
- d Department of Pathology and Immunology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Elena R Kisin
- b Exposure Assessment Branch , NIOSH/CDC , Morgantown , WV , USA
| | - Naveena Yanamala
- b Exposure Assessment Branch , NIOSH/CDC , Morgantown , WV , USA
| | - Bengt Fadeel
- e Division of Molecular Toxicology, Institute of Environmental Medicine , Karolinska Institute , Stockholm , Sweden
| | - Jaerak Chang
- a Department of Brain Science , Ajou University School of Medicine , Suwon , Republic of Korea.,f Graduate School of Biomedical Sciences , Ajou University School of Medicine , Suwon , Republic of Korea
| | - Anna A Shvedova
- b Exposure Assessment Branch , NIOSH/CDC , Morgantown , WV , USA.,c Department of Physiology, Pharmacology and Neuroscience , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
53
|
Beard JD, Erdely A, Dahm MM, de Perio MA, Birch ME, Evans DE, Fernback JE, Eye T, Kodali V, Mercer RR, Bertke SJ, Schubauer-Berigan MK. Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among U.S. workers. ENVIRONMENT INTERNATIONAL 2018; 116:214-228. [PMID: 29698898 PMCID: PMC5970999 DOI: 10.1016/j.envint.2018.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/01/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Carbon nanotubes and nanofibers (CNT/F) are increasingly used for diverse applications. Although animal studies suggest CNT/F exposure may cause deleterious health effects, human epidemiological studies have typically been small, confined to single workplaces, and limited in exposure assessment. OBJECTIVES We conducted an industrywide cross-sectional epidemiological study of 108 workers from 12 U.S. sites to evaluate associations between occupational CNT/F exposure and sputum and blood biomarkers of early effect. METHODS We assessed CNT/F exposure via personal breathing zone, filter-based air sampling to measure background-corrected elemental carbon (EC) (a CNT/F marker) mass and microscopy-based CNT/F structure count concentrations. We measured 36 sputum and 37 blood biomarkers. We used factor analyses with varimax rotation to derive factors among sputum and blood biomarkers separately. We used linear, Tobit, and unconditional logistic regression models to adjust for potential confounders and evaluate associations between CNT/F exposure and individual biomarkers and derived factors. RESULTS We derived three sputum and nine blood biomarker factors that explained 78% and 67%, respectively, of the variation. After adjusting for potential confounders, inhalable EC and total inhalable CNT/F structures were associated with the most sputum and blood biomarkers, respectively. Biomarkers associated with at least three CNT/F metrics were 72 kDa type IV collagenase/matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2'-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood, although directions of associations were not always as expected. CONCLUSIONS Inhalable rather than respirable CNT/F was more consistently associated with fibrosis, inflammation, oxidative stress, and cardiovascular biomarkers.
Collapse
Affiliation(s)
- John D Beard
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA; Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Matthew M Dahm
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Marie A de Perio
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - M Eileen Birch
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Douglas E Evans
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Joseph E Fernback
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Tracy Eye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stephen J Bertke
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Mary K Schubauer-Berigan
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| |
Collapse
|
54
|
Davis TA, Patberg SM, Sargent LM, Stefaniak AB, Holland LA. Capillary electrophoresis analysis of affinity to assess carboxylation of multi-walled carbon nanotubes. Anal Chim Acta 2018; 1027:149-157. [PMID: 29866264 DOI: 10.1016/j.aca.2018.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
Surface oxidation improves the dispersion of carbon nanotubes in aqueous solutions and plays a key role in the development of biosensors, electrochemical detectors and polymer composites. Accurate characterization of the carbon nanotube surface is important because the development of these nano-based applications depends on the degree of functionalization, in particular the amount of carboxylation. Affinity capillary electrophoresis is used to characterize the oxidation of multi-walled carbon nanotubes. A polytryptophan peptide that contains a single arginine residue (WRWWWW) serves as a receptor in affinity capillary electrophoresis to assess the degree of carboxylation. The formation of peptide-nanotube receptor-ligand complex was detected with a UV absorbance detector. Apparent dissociation constants (KD) are obtained by observing the migration shift of the WRWWWW peptide through background electrolyte at increasing concentrations of multi-walled carbon nanotubes. A 20% relative standard deviation in method reproducibility and repeatability is determined with triplicate analysis within a single sample preparation and across multiple sample preparations for a commercially available carbon nanotube. Affinity capillary electrophoresis is applied to assess differences in degree of carboxylation across two manufacturers and to analyze acid treated carbon nanotubes. The results of these studies are compared to X-ray photoelectron spectroscopy and zeta potential. Affinity capillary electrophoresis comparisons of carbon nanotube samples prepared by varying acid treatment time from 30 min to 3 h yielded significant differences in degree of carboxylation. X-ray photoelectron spectroscopy analysis was inconclusive due to potential acid contamination, while zeta potential showed no change based on surface charge. This work is significant to research involving carbon nanotube-based applications because it provides a new metric to rapidly characterize carbon nanotubes obtained from different vendors, or synthesized in laboratories using different procedures.
Collapse
Affiliation(s)
- Tyler A Davis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Shannon M Patberg
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Linda M Sargent
- National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV 26505, USA
| | - Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, 1095 Willowdale Rd, Morgantown, WV 26505, USA
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
55
|
Mukherjee SP, Bondarenko O, Kohonen P, Andón FT, Brzicová T, Gessner I, Mathur S, Bottini M, Calligari P, Stella L, Kisin E, Shvedova A, Autio R, Salminen-Mankonen H, Lahesmaa R, Fadeel B. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci Rep 2018; 8:1115. [PMID: 29348435 PMCID: PMC5773626 DOI: 10.1038/s41598-018-19521-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are 'sensed' by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken together, these results imply that CNTs may be 'sensed' as pathogens by immune cells.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Olesja Bondarenko
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, 12618, Estonia
| | - Pekka Kohonen
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fernando T Andón
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Cellular Immunology, Humanitas Clinical and Research Institute, 20089, Rozzano-Milano, Italy
| | - Táňa Brzicová
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine AS CR, 14220, Prague, Czech Republic
| | - Isabel Gessner
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Sanjay Mathur
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00173, Italy.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Elena Kisin
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Anna Shvedova
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.,Department Pharmacology & Physiology, West Virginia University, Morgantown, WV, 26505, USA
| | - Reija Autio
- Faculty of Social Sciences, University of Tampere, 33014, Tampere, Finland
| | - Heli Salminen-Mankonen
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
56
|
Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A, Fessard V, Haas KH, Haase A, Hund-Rinke K, Jakubowski N, Kearns P, Lampen A, Rauscher H, Schoonjans R, Störmer A, Thielmann A, Mühle U, Luch A. Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 2018; 92:121-141. [PMID: 29273819 PMCID: PMC5773666 DOI: 10.1007/s00204-017-2144-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public.
Collapse
Affiliation(s)
- Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Christian Riebeling
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Otto Creutzenberg
- Department of Inhalation Toxicology, Fraunhofer-Institute for Toxicology and Experimental Medicine (ITEM), Nikolai Fuchs Strasse 1, 30625, Hannover, Germany
| | - Astrid Epp
- Department of Risk Communication, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Valérie Fessard
- Laboratoire de Fougères, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf Dem Aberg 1, 57392, Schmallenberg, Germany
| | - Norbert Jakubowski
- Division 1.1 Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Peter Kearns
- OECD Environment, Health and Safety Division 2, rue Andre-Pascal, 75775, Paris Cedex 16, France
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Hubert Rauscher
- Joint Research Centre (JRC) of the European Commission, Directorate Health, Consumers and Reference Materials, Via E. Fermi, 2749, 21027, Ispra, Italy
| | - Reinhilde Schoonjans
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1a, 43126, Parma, Italy
| | - Angela Störmer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354, Freising, Germany
| | - Axel Thielmann
- Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139, Karlsruhe, Germany
| | - Uwe Mühle
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277, Dresden, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
57
|
Ghosh M, Öner D, Poels K, Tabish AM, Vlaanderen J, Pronk A, Kuijpers E, Lan Q, Vermeulen R, Bekaert B, Hoet PH, Godderis L. Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace. Nanotoxicology 2017; 11:1195-1210. [PMID: 29191063 DOI: 10.1080/17435390.2017.1406169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study was designed to assess the epigenetic alterations in blood cells, induced by occupational exposure to multi-wall carbon nanotubes (MWCNT). The study population comprised of MWCNT-exposed workers (n=24) and unexposed controls (n=43) from the same workplace. We measured global DNA methylation/hydroxymethylation levels on the 5th cytosine residues using a validated liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. Sequence-specific methylation of LINE1 retrotransposable element 1 (L1RE1) elements, and promoter regions of functionally important genes associated with epigenetic regulation [DNA methyltransferase-1 (DNMT1) and histone deacetylase 4 (HDAC4)], DNA damage/repair and cell cycle pathways [nuclear protein, coactivator of histone transcription/ATM serine/threonine kinase (NPAT/ATM)], and a potential transforming growth factor beta (TGF-β) repressor [SKI proto-oncogene (SKI)] were studied using bisulfite pyrosequencing. Analysis of global DNA methylation levels and hydroxymethylation did not reveal significant difference between the MWCNT-exposed and control groups. No significant changes in Cytosine-phosphate-Guanine (CpG) site methylation were observed for the LINE1 (L1RE1) elements. Further analysis of gene-specific DNA methylation showed a significant change in methylation for DNMT1, ATM, SKI, and HDAC4 promoter CpGs in MWCNT-exposed workers. Since DNA methylation plays an important role in silencing/regulation of the genes, and many of these genes have been associated with occupational and smoking-induced diseases and cancer (risk), aberrant methylation of these genes might have a potential effect in MWCNT-exposed workers.
Collapse
Affiliation(s)
- Manosij Ghosh
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Deniz Öner
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Katrien Poels
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Ali M Tabish
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Jelle Vlaanderen
- b Division of Environmental Epidemiology, Institute for Risk Assessment Sciences , Utrecht University , Utrecht , The Netherlands
| | - Anjoeka Pronk
- c TNO, Netherlands Organisation for Applied Scientific Research , Zeist , The Netherlands
| | - Eelco Kuijpers
- c TNO, Netherlands Organisation for Applied Scientific Research , Zeist , The Netherlands
| | - Qing Lan
- d Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics , National Cancer Institute , Bethesda , MD , USA
| | - Roel Vermeulen
- b Division of Environmental Epidemiology, Institute for Risk Assessment Sciences , Utrecht University , Utrecht , The Netherlands
| | - Bram Bekaert
- e Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology , University Hospitals Leuven , Leuven , Belgium
| | - Peter Hm Hoet
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Lode Godderis
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium.,f External Service for Prevention and Protection at Work , Idewe , Heverlee , Belgium
| |
Collapse
|
58
|
Catalán J, Stockmann-Juvala H, Norppa H. A theoretical approach for a weighted assessment of the mutagenic potential of nanomaterials. Nanotoxicology 2017; 11:964-977. [DOI: 10.1080/17435390.2017.1382601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Julia Catalán
- Work Environment, Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | - Helene Stockmann-Juvala
- Work Environment, Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Hannu Norppa
- Work Environment, Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|
59
|
Schmalz G, Hickel R, van Landuyt KL, Reichl FX. Nanoparticles in dentistry. Dent Mater 2017; 33:1298-1314. [PMID: 28951037 DOI: 10.1016/j.dental.2017.08.193] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Nanoparticles having a size from 1 to 100nm are present in nature and are successfully used in many products of daily life. Nanoparticles are also embedded per se or as byproducts from milling processes of larger filler particles in many dental materials. METHODS AND RESULTS Recently, possible adverse effects of nanoparticles have gained increased interest with the lungs being a main target organ. Exposure to nanoparticles in dentistry may occur in the dental laboratory, by processing gypsum type products or by grinding and polishing materials. In the dental practice virtually no exposure to nanoparticles occurs when handling unset materials. However, nanoparticles are produced by intraoral adjustment of set restorative materials through grinding/polishing regardless whether they contain nanoparticles or not. Nanoparticles may also be produced through wear of restorations or released from dental implants and they enter the environment when removing restorations. The risk for dental technicians is taken care of by legal regulations. Based on model worst case mass-based calculations, the exposure of dental practice personnel and patients to nanoparticles through intraoral grinding/polishing and wear is low to negligible. Accordingly, the additional risk due to nanoparticles exposure from present materials is considered to be low. However, more research is needed, especially on vulnerable groups (asthma or COPD). An assessment of risks for the environment is not possible due to the lack of data. SIGNIFICANCE Measures to reduce exposure to nanoparticles include intraorally grinding/polishing using water coolants, proper sculpturing to reduce the need for grinding and sufficient ventilation of treatment areas.
Collapse
Affiliation(s)
- Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital, Regensburg, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany
| | | | - Franz-Xaver Reichl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany.
| |
Collapse
|
60
|
Møller P, Jacobsen NR. Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes. Crit Rev Toxicol 2017; 47:867-884. [DOI: 10.1080/10408444.2017.1367755] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | | |
Collapse
|
61
|
Lo LM, Tsai CSJ, Heitbrink WA, Dunn KH, Topmiller J, Ellenbecker M. Particle Emissions from Laboratory Activities Involving Carbon Nanotubes. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 18:293. [PMID: 29056867 PMCID: PMC5645031 DOI: 10.1007/s11051-017-3990-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30 nm diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high aspect ratio particles were identified as being released from some activities. The EC concentration at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating and cutting. Various sampling methods all indicated different levels of CNTs from the activities, however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.
Collapse
Affiliation(s)
- Li-Ming Lo
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Division of Applied Research and Technology (DART), Cincinnati, OH 45226
| | - Candace S.-J. Tsai
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, CO 80528
| | | | - Kevin H. Dunn
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Division of Applied Research and Technology (DART), Cincinnati, OH 45226
| | - Jennifer Topmiller
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Division of Applied Research and Technology (DART), Cincinnati, OH 45226
| | | |
Collapse
|
62
|
Stueckle TA, Davidson DC, Derk R, Wang P, Friend S, Schwegler-Berry D, Zheng P, Wu N, Castranova V, Rojanasakul Y, Wang L. Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology 2017; 11:613-624. [PMID: 28513319 DOI: 10.1080/17435390.2017.1332253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Functionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential. Using our established model, human primary small airway epithelial cells (pSAECs) were continuously exposed for 8 and 12 weeks at 0.06 μg/cm2 to three-month aged as-prepared-(pMWCNT), carboxylated-(MW-COOH), and aminated-MWCNTs (MW-NHx). Ultrafine carbon black (UFCB) and crocidolite asbestos (ASB) served as particle controls. fMWCNTs were characterized during storage, and exposed cells were assessed for several established cancer cell hallmarks. Characterization analyses conducted at 0 and 2 months of aging detected a loss of surface functional groups over time due to atmospheric oxidation, with MW-NHx possessing less oxygen and greater lung surfactant binding affinity. Following 8 weeks of exposure, all fMWCNT-exposed cells exhibited significant increased proliferation compared to controls at 7 d post-treatment, while UFCB- and ASB-exposed cells did not differ significantly from controls. UFCB, pMWCNT, and MW-COOH exposure stimulated significant transient invasion behavior. Conversely, aged MW-NHx-exposed cells displayed moderate increases in soft agar colony formation and morphological transformation potential, while UFCB cells showed a minimal effect compared to all other treatments. In summary, surface properties of aged fMWCNTs can impact cell transformation events in vitro following continuous, occupationally relevant exposures.
Collapse
Affiliation(s)
- Todd A Stueckle
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Donna C Davidson
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Ray Derk
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Peng Wang
- b Department of Pharmaceutical Sciences, School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Sherri Friend
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Diane Schwegler-Berry
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Peng Zheng
- c Department of Mechanical and Aerospace Engineering , West Virginia University , Morgantown , WV , USA
| | - Nianqiang Wu
- c Department of Mechanical and Aerospace Engineering , West Virginia University , Morgantown , WV , USA
| | - Vince Castranova
- b Department of Pharmaceutical Sciences, School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Yon Rojanasakul
- b Department of Pharmaceutical Sciences, School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Liying Wang
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
63
|
Vlaanderen J, Pronk A, Rothman N, Hildesheim A, Silverman D, Hosgood HD, Spaan S, Kuijpers E, Godderis L, Hoet P, Lan Q, Vermeulen R. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology 2017; 11:395-404. [DOI: 10.1080/17435390.2017.1308031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jelle Vlaanderen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anjoeka Pronk
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Allan Hildesheim
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Suzanne Spaan
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Eelco Kuijpers
- Risk Analysis for Products in Development (RAPID), TNO, Zeist, The Netherlands
| | - Lode Godderis
- Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
- External Service for Prevention and Protection at Work, IDEWE, Heverlee, Belgium
| | - Peter Hoet
- Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
64
|
Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice. Toxicology 2016; 371:29-40. [DOI: 10.1016/j.tox.2016.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 01/14/2023]
|