51
|
Wang P, Lo Cascio F, Gao J, Kayed R, Huang X. Binding and neurotoxicity mitigation of toxic tau oligomers by synthetic heparin like oligosaccharides. Chem Commun (Camb) 2018; 54:10120-10123. [PMID: 30128457 PMCID: PMC6193484 DOI: 10.1039/c8cc05072d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined heparin like oligosaccharides up to decasaccharides were synthesized. It was discovered for the first time that heparin oligosaccharides, as short as tetrasaccharides, can bind with the most toxic tau species, i.e., tau oligomers with nM KD. The binding significantly reduced the cellular uptake of toxic tau oligomers and protected the cells from tau oligomer induced cytotoxicity.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, 77555, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, 90127, Palermo, Italy
| | - Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, 77555, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
52
|
Affiliation(s)
- Costantino Iadecola
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York.
| |
Collapse
|
53
|
Chen H, Liu S, Li S, Chen J, Ni J, Liu Q. Blocking the Thiol at Cysteine-322 Destabilizes Tau Protein and Prevents Its Oligomer Formation. ACS Chem Neurosci 2018; 9:1560-1565. [PMID: 29714059 DOI: 10.1021/acschemneuro.8b00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abnormal accumulation of tau protein into oligomers contributes to neuronal dysfunction. Reduction of tau level is potentially able to prevent its accumulation. Here we uncover a critical role of the free thiol at Cys-322 in determining tau stability. We found that the application of thiol-blocking agents like NEM or MMTS blocks this thiol, by which it destabilizes tau protein and prevents its oligomer formation. Furthermore, we identified a tau-interacting protein, selenoprotein W, which attenuates tau accumulation by forming disulfide linkage between SelW Cys-37 and tau Cys-322. These findings provide a promising strategy to prevent tau accumulation and oligomer formation.
Collapse
Affiliation(s)
- Hui Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jierui Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
54
|
Albayram O, Angeli P, Bernstein E, Baxley S, Gao Z, Lu KP, Zhou XZ. Targeting Prion-like Cis Phosphorylated Tau Pathology in Neurodegenerative Diseases. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:443. [PMID: 30197831 PMCID: PMC6122852 DOI: 10.4172/2161-0460.1000443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tau is a microtubule-associated protein heavily implicated in neurodegenerative diseases collectively known as tauopathies, including Alzheimer's disease and chronic traumatic encephalopathy. Phosphorylation of tau at Thr231 allows for the isomerization of phosphorylated tau (p-tau) into distinct cis and trans conformations. Cis, but not trans, p-tau is detectable not only in Alzheimer's disease and chronic traumatic encephalopathy, but also right after traumatic brain injury depending on injury severity and frequency both in humans and animal models. Cis p-tau is not only neurotoxic but also spreads from a neuron to another in a prion-like fashion, functioning as a primary driver of neurodegeneration, which can be effectively neutralized by cis p-tau antibody. This represents an exciting new opportunity for understanding disease development and developing early biomarkers and effective therapies of tauopathies.
Collapse
Affiliation(s)
- Onder Albayram
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Peter Angeli
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Elizabeth Bernstein
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Sean Baxley
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Ziang Gao
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| |
Collapse
|
55
|
Gouwens LK, Ismail MS, Rogers VA, Zeller NT, Garrad EC, Amtashar FS, Makoni NJ, Osborn DC, Nichols MR. Aβ42 Protofibrils Interact with and Are Trafficked through Microglial-Derived Microvesicles. ACS Chem Neurosci 2018. [PMID: 29543435 DOI: 10.1021/acschemneuro.8b00029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microvesicles (MVs) and exosomes comprise a class of cell-secreted particles termed extracellular vesicles (EVs). These cargo-holding vesicles mediate cell-to-cell communication and have recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD). The two types of EVs are distinguished by the mechanism of cell release and their size, with the smaller exosomes and the larger MVs ranging from 30 to 100 nm and 100 nm to 1 μm in diameter, respectively. MV numbers are increased in AD and appear to interact with amyloid-β peptide (Aβ), the primary protein component of the neuritic plaques in the AD brain. Because microglial cells play such an important role in AD-linked neuroinflammation, we sought to characterize MVs shed from microglial cells, better understand MV interactions with Aβ, and determine whether internalized Aβ may be incorporated into secreted MVs. Multiple strategies were used to characterize MVs shed from BV-2 microglia after ATP stimulation. Confocal images of isolated MVs bound to fluorescently labeled annexin-V via externalized phosphatidylserine revealed a polydisperse population of small spherical structures. Dynamic light scattering measurements yielded MV diameters ranging from 150 to 600 nm. Electron microscopy of resin-embedded MVs cut into thin slices showed well-defined uranyl acetate-stained ring-like structures in a similar diameter range. The use of a fluorescently labeled membrane insertion probe, NBD C6-HPC, effectively tracked MVs in binding experiments, and an Aβ ELISA confirmed a strong interaction between MVs and Aβ protofibrils but not Aβ monomers. Despite the lesser monomer interaction, MVs had an inhibitory effect on monomer aggregation. Primary microglia rapidly internalized Aβ protofibrils, and subsequent stimulation of the microglia with ATP resulted in the release of MVs containing the internalized Aβ protofibrils. The role of MVs in neurodegeneration and inflammation is an emerging area, and further knowledge of MV interaction with Aβ may shed light on extracellular spread and influence on neurotoxicity and neuroinflammation.
Collapse
Affiliation(s)
- Lisa K. Gouwens
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Mudar S. Ismail
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Victoria A. Rogers
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Nathan T. Zeller
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Evan C. Garrad
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Fatima S. Amtashar
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Nyasha J. Makoni
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - David C. Osborn
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Michael R. Nichols
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| |
Collapse
|
56
|
Bittar A, Sengupta U, Kayed R. Prospects for strain-specific immunotherapy in Alzheimer's disease and tauopathies. NPJ Vaccines 2018; 3:9. [PMID: 29507776 PMCID: PMC5829136 DOI: 10.1038/s41541-018-0046-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
With increasing age, as the incidence of Alzheimer's disease is increasing, finding a therapeutic intervention is becoming critically important to either prevent or slow down the progression of the disease. Passive immunotherapy has been demonstrated as a successful way of reducing large aggregates and improving cognition in animal models of both tauopathies and Alzheimer's disease. However, with all the continuous attempts and significant success of immunotherapy in preclinical studies, finding a successful clinical therapy has been a great challenge, possibly indicating a lack of accuracy in targeting the toxic species. Both active and passive immunotherapy approaches in transgenic animals have been demonstrated to have pros and cons. Passive immunotherapy has been favored and many mechanisms have been shown to clear toxic amyloid and tau aggregates and improve memory. These mechanisms may differ depending on the antibodie's' target and administration route. In this regard, deciding on affinity vs. specificity of the antibodies plays a significant role in terms of avoiding the clearance of the physiological forms of the targeted proteins and reducing adverse side effects. In addition, knowing that a single protein can exist in different conformational states, termed as strains, with varying degrees of neurotoxicity and seeding properties, presents an additional level of complexity. Therefore, immunotherapy targeting specifically the toxic strains will aid in developing potential strategies for intervention. Moreover, an approach of combinatorial immunotherapies against different amyloidogenic proteins, at distinct levels of the disease progression, might offer an effective therapy in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
57
|
Wisniewski BT, Sharma J, Legan ER, Paulson E, Merrill SJ, Manogaran AL. Toxicity and infectivity: insights from de novo prion formation. Curr Genet 2018; 64:117-123. [PMID: 28856415 PMCID: PMC5777878 DOI: 10.1007/s00294-017-0736-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Prions are infectious misfolded proteins that assemble into oligomers and large aggregates, and are associated with neurodegeneration. It is believed that the oligomers contribute to cytotoxicity, although genetic and environmental factors have also been shown to have additional roles. The study of the yeast prion [PSI +] has provided valuable insights into how prions form and why they are toxic. Our recent work suggests that SDS-resistant oligomers arise and remodel early during the prion formation process, and lysates containing these newly formed oligomers are infectious. Previous work shows that toxicity is associated with prion formation and this toxicity is exacerbated by deletion of the VPS5 gene. Here, we show that newly made oligomer formation and infectivity of vps5∆ lysates are similar to wild-type strains. However using green fluorescent protein fusions, we observe that the assembly of fluorescent cytoplasmic aggregates during prion formation is different in vps5∆ strains. Instead of large immobile aggregates, vps5∆ strains have an additional population of small mobile foci. We speculate that changes in the cellular milieu in vps5∆ strains may reduce the cell's ability to efficiently recruit and sequester newly formed prion particles into central deposition sites, resulting in toxicity.
Collapse
Affiliation(s)
- Brett T Wisniewski
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Jaya Sharma
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Emily R Legan
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Emily Paulson
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Stephen J Merrill
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA.
| |
Collapse
|