51
|
Hanafy SM, Abo-Ouf AM, Mohamed AF, Arafa MAA, Shawky LM. Triclosan treatment to pregnant albino rats affects offspring numbers and the liver of both the pregnant rats and their offspring, and these effects are ameliorated by co-treatment with bee honey. Anat Rec (Hoboken) 2020; 303:2213-2234. [PMID: 31922341 DOI: 10.1002/ar.24365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 11/09/2022]
Abstract
We have assessed the effects of the broad-spectrum bactericide triclosan on the liver of pregnant albino rats and their offspring, and evaluated the protective potential of bee honey, which has radical-scavenging properties. The study involved treatment of 72 pregnant rats followed by examination of the pregnant rats and their offspring. The pregnant rats were divided equally into six groups (I-VI), each of which was subdivided equally into two Subgroups (A and B). Rats in the A subgroups were gavaged with a daily dose of 1.26 ml distilled water (IA), 1 ml corn oil (IIA), 1.68 ml aqueous solution of Clover Blossom honey (IIIA), 0.3 mg triclosan (IVA), 13 mg triclosan (VA), or 1.68 ml aqueous solution of honey with 13 mg triclosan (VIA), throughout pregnancy. Rats in the B subgroups received the same treatments throughout pregnancy and for 14 days after delivery. At the end of the experiments, the offspring's numbers were recorded and blood samples were taken from the pregnant rats for analysis. The livers of the studied groups were subjected for; histological study, morphometric analysis, and biochemical estimation of markers of oxidative stress. The results showed that the acceptable daily intake of triclosan did not induce significant pathological changes in the liver while high dose of triclosan induced pathological changes in the livers and reduced the numbers of offspring. Co-administration of honey with triclosan ameliorated most pathological change. Therefore, decrease the exposure of the pregnant women to triclosan is encouraged or co-supplementation with bee honey if exposure could not be avoided.
Collapse
Affiliation(s)
- Safaa M Hanafy
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amany M Abo-Ouf
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amany F Mohamed
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Mona A A Arafa
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.,Dartment of Anatomy, Faculty of Medicine, University of Jeddah, Kingdom of Saudi Arabia, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Lamiaa M Shawky
- Department of Histology, Faculty of Medicine, Banha University, Banha, Egypt
| |
Collapse
|
52
|
Weitekamp CA, Phelps D, Swank A, McCord J, Sobus JR, Catron T, Keely S, Brinkman N, Zurlinden T, Wheaton E, Strynar M, McQueen C, Wood CE, Tal T. Triclosan-Selected Host-Associated Microbiota Perform Xenobiotic Biotransformations in Larval Zebrafish. Toxicol Sci 2019; 172:109-122. [PMID: 31504981 PMCID: PMC10461336 DOI: 10.1093/toxsci/kfz166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Microbiota regulate important physiologic processes during early host development. They also biotransform xenobiotics and serve as key intermediaries for chemical exposure. Antimicrobial agents in the environment may disrupt these complex interactions and alter key metabolic functions provided by host-associated microbiota. To examine the role of microbiota in xenobiotic metabolism, we exposed zebrafish larvae to the antimicrobial agent triclosan. Conventionally colonized (CC), microbe-free axenic (AX), or axenic colonized on day 1 (AC1) zebrafish were exposed to 0.16-0.30 µM triclosan or vehicle on days 1, 6, 7, 8, and 9 days post fertilization (dpf). After 6 and 10 dpf, host-associated microbial community structure and putative function were assessed by 16S rRNA gene sequencing. At 10 dpf, triclosan exposure selected for bacterial taxa, including Rheinheimera. Triclosan-selected microbes were predicted to be enriched in pathways related to mechanisms of antibiotic resistance, sulfonation, oxidative stress, and drug metabolism. Furthermore, at 10 dpf, colonized zebrafish contained 2.5-3 times more triclosan relative to AX larvae. Nontargeted chemical analysis revealed that, relative to AX larvae, both cohorts of colonized larvae showed elevations in 23 chemical features, including parent triclosan and putative triclosan sulfate. Taken together, these data suggest that triclosan exposure selects for microbes that harbor the capacity to biotransform triclosan into chemical metabolites with unknown toxicity profiles. More broadly, these data support the concept that microbiota modify the toxicokinetics of xenobiotic exposure.
Collapse
Affiliation(s)
- Chelsea A. Weitekamp
- Oak Ridge Institute for Science and Education/U.S. EPA/ORD/NHEERL/ISTD, Research Triangle Park, North Carolina, 27711
| | - Drake Phelps
- Oak Ridge Institute for Science and Education/U.S. EPA/ORD/NHEERL/ISTD, Research Triangle Park, North Carolina, 27711
| | - Adam Swank
- U.S. EPA/ORD/NHEERL/RCU, Research Triangle Park, North Carolina, 27711
| | - James McCord
- Oak Ridge Institute for Science and Education/U.S. EPA/ORD/NHEERL/ISTD, Research Triangle Park, North Carolina, 27711
| | - Jon R. Sobus
- U.S. EPA/ORD/NERL/EMMD, Research Triangle Park, North Carolina, 27711
| | - Tara Catron
- Oak Ridge Institute for Science and Education/U.S. EPA/ORD/NHEERL/ISTD, Research Triangle Park, North Carolina, 27711
| | - Scott Keely
- U.S. EPA/ORD/NERL/SED, Cincinnati, Ohio, 45220
| | | | - Todd Zurlinden
- U.S. EPA/ORD/NCCT, Research Triangle Park, North Carolina, 27711
| | | | - Mark Strynar
- U.S. EPA/ORD/NERL/EMMD, Research Triangle Park, North Carolina, 27711
| | - Charlene McQueen
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, Arizona, 85721
| | - Charles E. Wood
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, Arizona, 85721
| | - Tamara Tal
- U.S. EPA/ORD/NHEERL/ISTD, Research Triangle Park, North Carolina, 27711
| |
Collapse
|
53
|
Bhardwaj P, Biswas GP, Bhunia B. Docking-based inverse virtual screening strategy for identification of novel protein targets for triclosan. CHEMOSPHERE 2019; 235:976-984. [PMID: 31561314 DOI: 10.1016/j.chemosphere.2019.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) is chemically designated as 5-chloro-2-(2,4-dichlorophenoxy) phenol and is considered as endocrine-disrupting chemical (EDC). The various diseases found due to exposure of TCS, have been linked with modulation of the human enoyl-acyl carrier protein-reductase (hER). However, the new protein targets for TCS other than hER, which are responsible for various diseases, are still unknown. In the present study, a bioinformatics approach was used to identify new possible targets for TCS. A text mining study was initially performed to understand the association of TCS in various biochemical processes. Discovery studio software 4.1 was used to carry out inverse virtual screening for 226 numbers of pathway proteins by docking study using CHARMm based docking tool, and twenty proteins were screened. CDOCKER energy values lower than -12.65 kcal/mol was considered for the screening of selected proteins. Three new proteins; Receptor-interacting protein 1 (RIP1), Apoptosis signal-regulating kinase 1 (ASK1) and B-cell lymphoma 2 (Bcl-2) from Apoptosis Signaling Pathway revealed best CDOCKER energy with triclosan which was -26.88, -23.34 and -22.96 kcal/mol respectively. The interaction of TCS with RIP1 and ASK1 were mostly hydrophobic; however, hydrogen bond type interaction was found in TCS/Bcl2 complex. Therefore, docking-based inverse virtual screening study suggests that TCS has other targets rather than hER, which can modulate various biochemical processes. The docking protocol was validated through evaluation of root-mean-square deviation (RMSD), key interaction score system (KISS) and the relationship between the docking energy and toxicity data available in ToxCast database. Low RMSD value (0.55 ˚A) and high KISS score (0.66) along with higher correlation (R2 = 0.9798) between docking affinity and toxicity indicated that docking protocol can be used to optimize the binding energetics.
Collapse
Affiliation(s)
- Prashant Bhardwaj
- Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, India; Department of Computer Science and Engineering, National Institute of Technology, Agartala, 799046, India.
| | - G P Biswas
- Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, India.
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| |
Collapse
|
54
|
Araújo MJ, Quintaneiro C, Soares AMVM, Monteiro MS. Effects of triclosan on early development of Solea senegalensis: from biochemical to individual level. CHEMOSPHERE 2019; 235:885-899. [PMID: 31284137 DOI: 10.1016/j.chemosphere.2019.06.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Harmful effects of triclosan (TCS) have been reported on several organisms; however, effects on early life stages of marine vertebrates are limited. Therefore, the objective of this work was to assess the effects of TCS during early development of the flatfish Solea senegalensis after initial characterization of cholinesterases (ChEs) and determination of selected biochemical markers baseline levels. Characterization of ChEs and determination of biochemical markers baseline levels of cholinergic activity, energy metabolism and oxidative stress were analysed in sole at 3 days after hatching (dah) and at the onset and end of metamorphosis. To assess TCS effects, fish were exposed during 96h to 30-500 μg L-1 TCS until 3 dah. Fish at 13 dah were exposed during 48h to 200-1,500 μg L-1 TCS and maintained until complete metamorphosis. Effects on survival, malformations, length, metamorphosis progression and biochemical markers were evaluated. The main ChE active form present in sole early life stages is acetylcholinesterase and baseline levels of oxidative stress and energy metabolism biomarkers changed according to fish developmental stage. Triclosan induced malformations (EC50 = 180 μg L-1 at 3 dah), decreased growth (95 μg L-1 at 3 dah; 548 μg L-1 at 24 dah) and affected metamorphosis progression (391 μg L-1 at 17 dah). Impairment of antioxidant system was observed, with TCS affecting catalase at the end of metamorphosis test, however, no oxidative damage on lipids was detected. Glutathione S-transferase was the most sensitive endpoint during early larval test (LOEC = 30 μg L-1). Exposure to TCS affected S. senegalensis at individual and sub-individual levels, both at early larval stage and during the critical period of metamorphosis.
Collapse
Affiliation(s)
- M J Araújo
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - C Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
55
|
Ma Z, Liu H, Yu H. Triclosan Affects Ca 2+ Regulatory Module and Musculature Development in Skeletal Myocyte during Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11988-11998. [PMID: 31532625 DOI: 10.1021/acs.est.9b03231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced technologies for toxicity tests are designed to identify biomarkers with superior predictive power or end points of the complex web of biological pathways. However, the data obtained need to be fully characterized for dose-response, physiological systems, and relevance to a system or (sub) population before biological interpretation and decision making. In this study, the toxicity of triclosan (TCS) on zebrafish was selected as a case study to correlate the observed morphological effects with existing data and identify the critical events by receptor activity sensitivity analysis. Triclosan exhibited weak acute toxicity against zebrafish and significantly affected the development of trunk muscles at 0.52, 1.04, and 1.73 μM. Through receptor-mediated screening, we found that the adverse effects of TCS induce Ryanodine receptor 1 (RyR1) activity and distort Ca2+ signaling. The trunk skeletal muscle abnormalities occurred only when the dihydropyridine receptor (DHPR) was blocked, demonstrating that TCS mainly influenced the Ca2+ regulatory module associated with signaling between DHPRs and RyR1; DHPRs mainly regulated the orthograde and retrograde signaling in skeletal muscles. This unexpected result could integrate the mode of action of TCS and provide insight for high-throughput screening and toxicity prediction using zebrafish.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
56
|
Bitencourt G, Fortunato ED, Panis C, Amorim EMP, de Arruda Amorim JP. Maternal exposure to triclosan causes fetal development restriction, deregulation of the oestrous cycle, and alters uterine tissue in rat offspring. ENVIRONMENTAL TOXICOLOGY 2019; 34:1105-1113. [PMID: 31240815 DOI: 10.1002/tox.22812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 05/20/2023]
Abstract
The aim of the present study was to evaluate the effects of maternal exposure to triclosan (TCS) during pregnancy and lactation on the uterine morphology of rat offspring. For this, 32 Wistar rat dams were distributed into four dose groups (eight mothers per group), and gavage daily, throughout pregnancy and lactation, as follows: Group I-control (GI): corn oil; Group II (GII): TCS diluted in corn oil at a dose of 75 mg/kg/d; Group III (GIII): TCS diluted in corn oil at a dose of 150 mg/kg/d; Group IV (GIV): TCS diluted in corn oil at a dose of 300 mg/kg/d. A female pup of each mother was selected, and at 90 days the pups were euthanized for weighing and collection of the uterus for histomorphometric analysis. The results showed that the mean litter weight was minor in all the groups treated with TCS, when compared with control. The levels thyroid hormones thyroxine (T4) and triiodothyronine (T3) in TCS mother rats were reduced; however the levels of thyroid stimulating hormone (TSH) were increases. The offspring of all groups exposed to TCS presented deregulation of the estrous cycle, compared with control. Analysis of the uterine histological structure demonstrated that all layers of the uterus were affected by the administration of TCS, and the morphometric analysis showed increased uterine layers thickness in the treated groups. We concluded that maternal exposure to TCS during pregnancy and lactation causes intrauterine development restriction, deregulation of the oestrous cycle, and alters uterine tissue in rat offspring.
Collapse
Affiliation(s)
| | | | - Carolina Panis
- State University of Western Parana (UNIOESTE), Cascavel, Paraná, Brazil
| | - Elaine M P Amorim
- State University of Western Parana (UNIOESTE), Cascavel, Paraná, Brazil
| | | |
Collapse
|
57
|
Nassan FL, Mínguez-Alarcón L, Williams PL, Dadd R, Petrozza JC, Ford JB, Calafat AM, Hauser R. Urinary triclosan concentrations and semen quality among men from a fertility clinic. ENVIRONMENTAL RESEARCH 2019; 177:108633. [PMID: 31421444 PMCID: PMC6717534 DOI: 10.1016/j.envres.2019.108633] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Triclosan, a widely-used antimicrobial in personal care products, has shown endocrine disrupting activity in experimental studies. However, there is limited evidence from epidemiologic studies on health effects. OBJECTIVE To examine the association between urinary triclosan concentrations and semen quality. METHODS A total of 262 men enrolled in the Environmental and Reproductive Health (EARTH) Study provided 581 paired urine and semen samples (2009-2017). Urinary triclosan concentrations were quantified and semen analysis was evaluated according to WHO guidelines. We used linear mixed regression models to estimate the associations between specific gravity-adjusted urinary triclosan concentrations with semen parameters, with a random intercept to account for multiple samples per man and adjusting for age, body mass index (BMI), smoking, physical activity, sexual abstinence time, and season and year of samples' collection. RESULTS Men had a mean (standard deviation) age of 36.6 (5.24) years and BMI of 27.9 (5.94) kg/m2. Seventy four percent of the samples had detectable (>2.3 μg/L) concentrations. We did not observe significant dose response trends between SG-adjusted urinary triclosan concentrations and semen parameters. However, in the adjusted analysis, compared to men with non-detectable triclosan concentrations in the lowest quartile, those in the second, third, and fourth quartiles had -1.32% (95%CI: -2.04, -0.59), -0.91% (95%CI: -1.63, -0.18), and -0.46% (95%CI: -1.25, 0.33) lower percent morphologically normal sperm, respectively. Similarly, a lower percentage of morphologically normal sperm was found among men with detectable triclosan concentrations, compared to men with non-detectable triclosan [-0.96% (95% CI: -1.57, -0.35)]. In sensitivity analyses, there was stronger negative associations on the percent morphologically normal sperm in the earlier time period due to the significant negative trend in detectable triclosan concentrations over time. CONCLUSION Despite the lack of observed dose response relationship, we found consistent patterns of lower percent morphologically normal sperm for men with urinary triclosan in the 2nd or 3rd quartile compared to undetectable concentrations.This association was stronger for samples obtained prior to 2013 when triclosan was more often detectable in urine.
Collapse
Affiliation(s)
- Feiby L Nassan
- Department of Environmental Health, Boston, MA, USA; Department of Nutrition, Boston, MA, USA.
| | | | - Paige L Williams
- Department of Biostatistics, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ramace Dadd
- Department of Environmental Health, Boston, MA, USA
| | - John C Petrozza
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Russ Hauser
- Department of Environmental Health, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
58
|
Neurobehavioral toxicity of triclosan in mice. Food Chem Toxicol 2019; 130:154-160. [DOI: 10.1016/j.fct.2019.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/17/2019] [Accepted: 05/15/2019] [Indexed: 01/20/2023]
|
59
|
Freitas R, Coppola F, Costa S, Manzini C, Intorre L, Meucci V, Soares AMVM, Pretti C, Solé M. Does salinity modulates the response of Mytilus galloprovincialis exposed to triclosan and diclofenac? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:756-765. [PMID: 31121540 DOI: 10.1016/j.envpol.2019.04.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
In the present study Mytilus galloprovincialis mussels were exposed for 28 days to three salinities: 30 (control), 25 and 35. Simultaneously, organisms at each salinity were exposed to either the antimicrobial agent Triclosan (TCS) or the pharmaceutical drug Diclofenac (DIC) at 1 μg/L. Salinity alone and exposure to PPCPs changed mussel's metabolic capacity and oxidative status, but no additive or synergetic effects resulting from the combined exposures were observed. Overall, the metabolic capacity of mussels was decreased when exposed to TCS and DIC under control salinity, which was less pronounced at salinities out of the control level. TCS had a notorious effect over glutathione peroxidase activity while DIC exposure enhanced catalase response. Such defence mechanisms were able to prevent cellular damage but still a clear reduction in GSH/GSSG ratio after PPCPs exposures indicates oxidative stress which could compromise bivalve's performance to further stressing events.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Chiara Manzini
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy; Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| |
Collapse
|
60
|
Liu M, Ai W, Sun L, Fang F, Wang X, Chen S, Wang H. Triclosan-induced liver injury in zebrafish (Danio rerio) via regulating MAPK/p53 signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:108-117. [PMID: 31048017 DOI: 10.1016/j.cbpc.2019.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022]
Abstract
Long-term exposure of triclosan (TCS), an important antimicrobial agent, can lead to deleterious effects on liver growth and development. However, the related mechanisms on TCS-induced hepatocyte injury remain unclear. Herein, we found that after long-time TCS exposure to adult zebrafish (Danio rerio) from 6 hpf (hours post-fertilization) to 90 dpf (days post-fertilization), the body weight and hepatic weight were significantly increased in concomitant with a large amount of lipid droplet accumulation in liver. Also, TCS exposure resulted in occurrence of oxidative stress by increasing the concentrations of malondialdehyde and reducing the activity of superoxide dismutase both in zebrafish larvae (120 hpf) and adult liver. By H&E staining, we observed a series of abnormal phenomena such as severely hepatocellular atrophy and necrosis, as well as prominently increased hepatic plate gap in TCS-exposure treatment groups. Through AO staining, TCS induced obvious apoptosis in larval heart and liver; through TUNEL assay, a concentration-dependent apoptosis was found to mainly occur in adult liver and its surrounding tissues. The mRNA and protein expression of anti-apoptotic protein Bcl-2 decreased, while that of pro-apoptosis protein Bax significantly increased, identifying that liver injury was closely related to hepatocyte apoptosis. The significant up-regulation of MAPK and p53 at both mRNA and protein levels proved that TCS-induced hepatocyte apoptosis was closely related to activating the MAPK/p53 signaling pathway. These results strongly suggest that long-term TCS-exposure may pose a great injury to zebrafish liver development by means of activating MAPK/p53 apoptotic signaling pathway, also lay theoretical foundation for further assessing TCS-induced ecological healthy risk.
Collapse
Affiliation(s)
- Mi Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Fang Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shaobo Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Zhejiang Mariculture Research Institute, Wenzhou 325005, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
61
|
Dubey D, Srivastav AK, Singh J, Chopra D, Qureshi S, Kushwaha HN, Singh N, Ray RS. Photoexcited triclosan induced DNA damage and oxidative stress via p38 MAP kinase signaling involving type I radicals under sunlight/UVB exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:270-282. [PMID: 30844667 DOI: 10.1016/j.ecoenv.2019.02.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS) is an antimicrobial preservative used in personal care products. Here, we have studied the phototoxicity, photogenotoxicity of TCS and its molecular mechanism involving p38 mitogen activated protein kinase (MAPK) pathway under UVB/sunlight exposure. We found that TCS showed photodegradation and photoproducts formation under UVB/sunlight. In silico study suggests that photosensitized TCS loses its preservative property due to the formation of its photoproducts. Photosensitized TCS induces significant O2•-, •OH generation and lipid peroxidation via type-I photochemical reaction mechanism under UVB/sunlight exposure. We performed intracellular study of TCS on human skin keratinocytes (HaCaT cell-line) under the ambient intensity of UVB (0.6 mW/cm2) and sunlight exposure. Significant intracellular ROS generation was observed through DCFH2-DA/DHE assays along with a significant reduction in cell viability through MTT and NRU assays in photosensitized TCS. Photosensitized TCS also induces endoplasmic reticulum (ER) stress as shown through ER-tracker/DAPI staining and Ca2+ release. It further induced cell cycle arrest through the sub-G1 phase augmentation and caused lysosomal/mitochondrial destabilization. Photogenotoxicity was shown through significant tail DNA, micronuclei and cyclobutane pyrimidine dimers (CPDs) formations. Cell signaling mechanism implicated upregulated expression of cleaved Caspase-3, Bax, phospho-p38, phospho-JNK and cytochrome C, thereby downregulated Bcl-2 expressions. Results advocate that TCS induces phototoxic effects via type I mediated photodynamic mechanism and activation of MAPK pathway. We conclude that photoexcited TCS may be deleterious to human health at the ambient environmental intensities of sunlight reaching at the earth's surface. Therefore, it may be replaced by alternative safe preservative.
Collapse
Affiliation(s)
- Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Ajeet K Srivastav
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India; Aryan Essentials Private Limited (Brand Name-Wikka), Mahatma Gandhi Road, Ghitorni, New Delhi 110030, India
| | - Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Saba Qureshi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Hari Narayan Kushwaha
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nivedita Singh
- Department of Bioinformatics, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
62
|
Anderson SE, Weatherly L, Shane HL. Contribution of antimicrobials to the development of allergic disease. Curr Opin Immunol 2019; 60:91-95. [PMID: 31185370 DOI: 10.1016/j.coi.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobials represent a broad class of chemicals with the intended purpose of eliminating or controlling the growth of harmful microorganisms. Exposure can occur occupationally or through the use or consumption of consumer products. The use of antimicrobial agents has been associated with an increased incidence of allergic diseases, including asthma, atopic dermatitis, and less commonly, anaphylaxis. Very diverse immunological mechanisms and mediators have been identified in the sensitization response to antimicrobial chemicals and the importance of the local microenviroment in the response is increasingly being recognized. A complete understanding of the mechanisms of allergic diseases resulting from antimicrobial exposure will help to ensure safe environments and exposure limits.
Collapse
Affiliation(s)
- Stacey E Anderson
- National Institute of Occupational Safety and Health, Health Effects Laboratory Division, Allergy and Clinical Immunology Branch, Morgantown, WV, 26508, United States.
| | - Lisa Weatherly
- National Institute of Occupational Safety and Health, Health Effects Laboratory Division, Allergy and Clinical Immunology Branch, Morgantown, WV, 26508, United States
| | - Hillary L Shane
- National Institute of Occupational Safety and Health, Health Effects Laboratory Division, Allergy and Clinical Immunology Branch, Morgantown, WV, 26508, United States
| |
Collapse
|
63
|
The Effects of Dry, Humid and Wear Conditions on the Antimicrobial Efficiency of Triclosan-Containing Surfaces. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study evaluated the effects of triclosan-containing polyester surfaces under various conditions at concentrations of between 400 ppm and 850 ppm. Staphylococcus aureus was chosen for the tests because it rapidly develops resistance to many antimicrobial agents. The results show that dry and humid conditions have bacteriostatic activity that inhibits the growth of S. aureus, with a greater effect under dryness (p < 0.05). Further, concentrations as low as 400 ppm showed activities of 0.99 log10 and 0.19 log10 for dry and humid conditions, respectively. The study of the association between triclosan concentrations and bacterial inhibition showed a high correlation for dry (R2 = 0.968) and humid conditions (R2 = 0.986). Under wear conditions, triclosan showed a gradual reduction in its bacteriostatic activity due to successive washing/drying treatments (p < 0.05). Thus, the use of triclosan in low concentrations is suggested as achieving bacteriostatic activity. Moreover, its use can be considered as complementary to the cleaning and disinfection procedures carried out in the food industry. However, it must not replace them. Manufacturing processes must be improved to preserve the triclosan properties in the antimicrobial materials to control microorganisms involved in cross-contamination between surfaces and food.
Collapse
|
64
|
Li M, He Y, Sun J, Li J, Bai J, Zhang C. Chronic Exposure to an Environmentally Relevant Triclosan Concentration Induces Persistent Triclosan Resistance but Reversible Antibiotic Tolerance in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3277-3286. [PMID: 30789710 DOI: 10.1021/acs.est.8b06763] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The major concern regarding the biocide triclosan (TCS) stems from its potential coselection for antibiotic resistance. However, environmental impacts are often investigated using high concentrations and acute exposure, while predicted releases are typified by chronic low concentrations. Moreover, little information is available regarding the reversibility of TCS and derived antibiotic resistance with diminishing TCS usage. Here, the model Gram-negative bacterium Escherichia coli was exposed to 0.01 mg/L TCS continuously for more than 100 generations. The adapted cells gained considerable resistance to TCS as indicated by a significant increase in the minimal inhibitory concentration (MIC50) from 0.034 to 0.581 mg/L. This adaptive evolution was attributed to overexpression and mutation of target genes (i.e., fabI) as evidenced by transcriptomic and genomic analyses. However, only mild tolerance to various antibiotics was observed, possibly due to reduced membrane permeability and biofilm formation. After TCS exposure ceased, the adapted cells showed persistent resistance to TCS due to inheritable genetic mutations, whereas their antibiotic tolerance declined over time. Our results suggest that extensive use of TCS may promote the evolution and persistence of TCS-resistant bacterial pathogens. A quantitative definition of the conditions under which TCS selects for multidrug resistance in the environment is crucially needed.
Collapse
Affiliation(s)
- Mingzhu Li
- College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Yuning He
- College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Jing Sun
- College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Jing Li
- College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Junhong Bai
- School of Environment , Beijing Normal University , Beijing 100875 , China
| | - Chengdong Zhang
- School of Environment , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
65
|
Berger KP, Kogut KR, Bradman A, She J, Gavin Q, Zahedi R, Parra KL, Harley KG. Personal care product use as a predictor of urinary concentrations of certain phthalates, parabens, and phenols in the HERMOSA study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:21-32. [PMID: 29317738 PMCID: PMC6037613 DOI: 10.1038/s41370-017-0003-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/02/2017] [Accepted: 09/06/2017] [Indexed: 05/18/2023]
Abstract
Use of personal care products, such as makeup, soaps, and sunscreen, may expose adolescent girls to potential endocrine disruptors, including phthalates, parabens, and other phenols. We evaluated the relationship between recent self-reported personal care product use and concentrations for urinary metabolites of phthalates, parabens, triclosan, and benzophenone-3 (BP-3) in 100 Latina adolescents. Girls who reported using makeup every day vs. rarely/never had higher urinary concentrations of monoethyl phthalate (MEP) (102.2 ng/mL vs. 52.4 ng/mL, P-value: 0.04), methyl paraben (MP) (120.5 ng/mL vs. 13.4 ng/mL, P-value < 0.01), and propyl paraben (PP) (60.4 ng/mL vs. 2.9 ng/mL, P-value < 0.01). Girls who reported recent use of specific makeup products, including foundation, blush, and mascara, had higher urinary concentrations of MEP, mono-n-butyl phthalate (MBP), MP, and PP. Use of Colgate Total toothpaste was associated with 86.7% higher urinary triclosan concentrations. Use of sunscreen was associated with 57.8% higher urinary concentrations of BP-3. Our findings suggest that personal care product use is associated with higher exposure to certain phthalates, parabens, and other phenols in urine. This may be especially relevant in adolescent girls who have high use of personal care products during a period of important reproductive development.
Collapse
Affiliation(s)
- Kimberly P Berger
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Katherine R Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Jianwen She
- Environmental Health Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Qi Gavin
- Environmental Health Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Rana Zahedi
- Environmental Health Laboratory, California Department of Public Health, Richmond, CA, USA
| | | | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
66
|
Wang F, Liu F, Chen W. Exposure to triclosan changes the expression of microRNA in male juvenile zebrafish (Danio rerio). CHEMOSPHERE 2019; 214:651-658. [PMID: 30292047 DOI: 10.1016/j.chemosphere.2018.09.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antibacterial agent which is widely used in various personal care products and cosmetics. It has been found that TCS affects endocrine, immune, nervous, reproductive, and developmental system. Although microRNAs (miRNAs) act a pivotal part in lots of metabolic activities, whether and how they are related to the process of TCS-induced toxicity is unknown. In the present study, TCS induced changes in miRNAs and target gene expression in male zebrafish (Danio rerio) brain, and the potential mechanism was studied. Male juvenile zebrafish were exposed to 0 and 68 μg/L TCS for 42 d. miRNA was isolated from the brain pool of the zebrafish and the expression profiles of 255 known zebrafish miRNAs were analysed by using Affymetrix miRNA 4.0 microarrays. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assay the expression of 5 differentially expressed miRNAs in the microarray data and some related-genes in brains. The GO term analysis revealed that miRNAs significantly affected by TCS exposure were mainly involved in translation, transcription, DNA-templated, protein transport, and motor neuron axon guidance biological process. Pathway analysis showed that target genes of 5 differentially expressed miRNAs prominently participate in basal transcription factors, purine metabolism, and ribosome biogenesis in eukaryotes. In addition, key genes in purine metabolism pathway and oxidative stress related-genes were significantly changed. These findings offer novel insight into the mechanisms of epigenetic regulation in TCS-induced toxicity in male zebrafish, and distinguish novel miRNA biomarkers for exposure to TCS.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China; Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, Luoyang 471022, China.
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China; Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, Luoyang 471022, China
| | - Wanguang Chen
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China; Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, Luoyang 471022, China
| |
Collapse
|
67
|
Alfhili MA, Yoon DS, Faten TA, Francis JA, Cha DS, Zhang B, Pan X, Lee MH. Non-Ionic Surfactants Antagonize Toxicity of Potential Phenolic Endocrine-Disrupting Chemicals, Including Triclosan in Caenorhabditis elegans. Mol Cells 2018; 41:1052-1060. [PMID: 30453732 PMCID: PMC6315314 DOI: 10.14348/molcells.2018.0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment (LC50: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.
Collapse
Affiliation(s)
- Mohammad A. Alfhili
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433,
Saudi Arabia
| | - Dong Suk Yoon
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
| | - Taki A. Faten
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Jocelyn A. Francis
- Department of Chemistry, East Carolina University, Greenville, NC 27858,
USA
| | - Dong Seok Cha
- Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk 565-701,
Korea
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Myon-Hee Lee
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599,
USA
| |
Collapse
|
68
|
Role of peroxisome proliferator-activated receptor alpha (PPARα) and PPARα-mediated species differences in triclosan-induced liver toxicity. Arch Toxicol 2018; 92:3391-3402. [DOI: 10.1007/s00204-018-2308-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/13/2018] [Indexed: 01/31/2023]
|
69
|
Grygiel-Górniak B, Rogacka N, Puszczewicz M. Antinuclear antibodies in healthy people and non-rheumatic diseases - diagnostic and clinical implications. Reumatologia 2018; 56:243-248. [PMID: 30237629 PMCID: PMC6142026 DOI: 10.5114/reum.2018.77976] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
The presence of antinuclear antibodies (ANA) is mainly associated with connective tissue diseases (CTD). In addition, their presence is found in healthy people. These antibodies are more common in women and the elderly. Some drugs and xenobiotics are also important for the development of autoimmunity and ANA synthesis. Moreover, the deficiency of vitamin D in the body of patients correlates with occurrence of these antibodies. Unlike the healthy group, a positive ANA count was observed in patients with atopic dermatitis (AD) and in people with immune disorders. Antinuclear antibodies in low counts are also found in the course of chronic bacterial or viral infection and in patients with hematological malignancies. Also the possibility of false positive results, which may be caused by the choice of method used to determine antibodies, should be borne in mind. Taking into account all these factors, it is concluded that the ANA result itself has no diagnostic value.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology and Internal Medicine, Poznań University of Medical Sciences, Poland
| | - Natalia Rogacka
- Department of Rheumatology and Internal Medicine, Poznań University of Medical Sciences, Poland
| | - Mariusz Puszczewicz
- Department of Rheumatology and Internal Medicine, Poznań University of Medical Sciences, Poland
| |
Collapse
|
70
|
Duarte SS, de Moura RO, da Silva PM. Effect of antiprotozoal molecules on hypnospores of Perkinsus spp. parasite. Exp Parasitol 2018; 192:25-35. [PMID: 30028986 DOI: 10.1016/j.exppara.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/30/2018] [Accepted: 07/15/2018] [Indexed: 11/19/2022]
Abstract
Perkinsus protozoan parasites have been associated with high mortality of bivalves worldwide, including Brazil. The use of antiproliferative drugs to treat the Perkinsosis is an unusual prophylactic strategy. However, because of their environment impact it could be used to control parasite proliferation in closed system, such as hatchery. This study evaluated the anti-Perkinsus activity potential of synthesized and commercial compounds. Viability of hypnospores of Perkinsus spp. was assessed in vitro. Cells were incubated with three 2-amino-thiophene (6AMD, 6CN, 5CN) and one acylhydrazone derivatives (AMZ-DCL), at the concentrations of 31.25; 62.5; 125; 250 and 500 μM and one commercial chlorinated phenoxy phenol derivative, triclosan (2, 5, 10 and 20 μM), for 24-48 h. Two synthetic molecules (6CN and AMZ-DCL) caused a significant decline (38 and 39%, respectively) in hypnospores viability, at the highest concentration (500 μM), after 48 h. Triclosan was the most cytotoxic compound, causing 100% of mortality at 20 μM after 24 h and at 10 μM after 48 h. Cytotoxic effects of the compounds 6CN, AMZ-DCL, and triclosan were investigated by measuring parasite's zoosporulation, morphological changes and metabolic activities (esterase activity, production of reactive oxygen species and lipid content). Results showed that zoosporulation occurred in few cell. Triclosan caused changes in the morphology of hypnospores. The 6CN and AMZ-DCL did not alter the metabolic activities studied whilst Triclosan significantly increased the production of reactive oxygen species and changed the amount and distribution of lipids in the hypnospores. These results suggest that three compounds had potential to be used as antiprotozoal drugs, although further investigation of their mechanism of action must be enlightened.
Collapse
Affiliation(s)
- Sâmia Sousa Duarte
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba -Campus I, 58051-900, João Pessoa, PB, Brazil.
| | - Ricardo Olímpio de Moura
- Laboratório de Síntese e Vetorização de Moléculas, Departamento de Farmácia, Universidade Estadual da Paraíba, 58070-450, João Pessoa, PB, Brazil.
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba -Campus I, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
71
|
Triclosan Is an Aminoglycoside Adjuvant for Eradication of Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 2018; 62:AAC.00146-18. [PMID: 29661867 DOI: 10.1128/aac.00146-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
One of the most important clinical obstacles in cystic fibrosis (CF) treatment is antibiotic treatment failure due to biofilms produced by Pseudomonas aeruginosa The ability of this pathogen to survive eradication by tobramycin and pathoadapt into a hyperbiofilm state leading to chronic infections is key to its success. Retrospective studies have demonstrated that preventing this pathoadaptation by improving eradication is essential to extend the lives of CF patients. To identify adjuvants that enhance tobramycin eradication of P. aeruginosa, we performed a high-throughput screen of 6,080 compounds from four drug-repurposing libraries. We identified that the Food and Drug Administration (FDA)-approved compound triclosan, in combination with tobramycin, resulted in a 100-fold reduction of viable cells within biofilms at 6 h, but neither compound alone had significant antimicrobial activity against biofilms. This synergistic treatment significantly accelerated the killing of biofilms compared to that with tobramycin treatment alone, and the combination was effective against 6/7 CF clinical isolates compared to tobramycin treatment alone, including a tobramycin-resistant strain. Further, triclosan and tobramycin killed persister cells, causing a 100-fold reduction by 8 h and complete eradication by 24 h. Triclosan also enhances tobramycin killing of multiple Burkholderia cenocepacia and Staphylococcus aureus clinical isolates grown as biofilms. Additionally, triclosan showed synergy with other aminoglycosides, such as gentamicin or streptomycin. Triclosan is a well-tolerated aminoglycoside adjuvant shown to be safe for human use that could improve the treatment of biofilm-based infections.
Collapse
|
72
|
Zhang H, Kelly BC. Sorption and bioaccumulation behavior of multi-class hydrophobic organic contaminants in a tropical marine food web. CHEMOSPHERE 2018; 199:44-53. [PMID: 29428515 DOI: 10.1016/j.chemosphere.2018.01.173] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
While numerous studies have demonstrated the environmental behavior of legacy persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), information regarding sorption and bioaccumulation potential of other widely used organic chemicals such as halogenated flame retardants (HFRs) is limited. This study involved a comprehensive field investigation of multi-class hydrophobic organic contaminants (HOCs) in environmental media and fish in Singapore Strait, an important tropical maritime strait in Southeast Asia. In total, 90 HOCs were analyzed, including HFRs, synthetic musks, PCBs, OCPs, as well as triclosan and methyl triclosan. The results show that the organic carbon normalized sediment-seawater distribution ratios (CSED/CWD) of the studied compounds are comparable to the organic carbon-water partition coefficients (KOC), over a log KOC range of approximately 4-11. The observed species-specific bioaccumulation factors (BAFs), biota-sediment accumulation factors (BSAFs), organism-environment media fugacity ratios (fFISH/fWD and fFISH/fSED) and trophic magnification factors (TMFs) indicate that legacy POPs and PBDE 47 show bioaccumulation behavior in this tropical marine ecosystem, while triclosan, tonalide, dodecachlorodimethanodibenzocyclooctane stereoisomers (DDC-COs), and hexabromocyclododecanes (HBCDDs) do not. Methyl triclosan and galaxolide exhibit moderate biomagnification. Tetrabromobisphenol A (TBBPA) and 1,2-bis (2,4,6-tribromophenoxy)ethane (BTBPE) were detected in environmental media but not in any of the organisms, suggesting low bioaccumulation potential of these flame retardants. The apparently low bioaccumulation potential of the studied HFRs and synthetic musks is likely because of metabolic transformation and/or reduced bioavailability due to the hydrophobic nature of these compounds.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Barry C Kelly
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
73
|
van Wijnen J, Ragas AMJ, Kroeze C. River export of triclosan from land to sea: A global modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1280-1288. [PMID: 29079081 DOI: 10.1016/j.scitotenv.2017.10.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Triclosan (TCS) is an antibacterial agent that is added to commonly used personal care products. Emitted to the aquatic environment in large quantities, it poses a potential threat to aquatic organisms. Triclosan enters the aquatic environment mainly through sewage effluent. We developed a global, spatially explicit model, the Global TCS model, to simulate triclosan transport by rivers to coastal areas. With this model we analysed annual, basin-wide triclosan export for the year 2000 and two future scenarios for the year 2050. Our analyses for 2000 indicate that triclosan export to coastal areas in Western Europe, Southeast Asia and the East Coast of the USA is higher than in the rest of the world. For future scenarios, the Global TCS model predicts an increase in river export of triclosan in Southeast Asia and a small decrease in Europe. The number of rivers with an annual average triclosan concentration at the river mouth that exceeds a PNEC of 26.2ng/L is projected to double between 2000 and 2050. This increase is most prominent in Southeast Asia, as a result of fast population growth, increasing urbanisation and increasing numbers of people connected to sewerage systems with poor wastewater treatment. Predicted triclosan loads correspond reasonably well with measured values. However, basin-specific predictions have considerable uncertainty due to lacking knowledge and location-specific data on the processes determining the fate of triclosan in river water, e.g. sorption, degradation and sedimentation. Additional research on the fate of triclosan in river systems is therefore recommended. CAPSULE We developed a global spatially explicit model to simulate triclosan export by rivers to coastal seas. For two future scenarios this Global TCS model projects an increase in river export of triclosan to several seas around the world.
Collapse
Affiliation(s)
- Jikke van Wijnen
- Department of Science, Faculty of Management, Science &Technology, Open University, Heerlen, The Netherlands.
| | - Ad M J Ragas
- Department of Science, Faculty of Management, Science &Technology, Open University, Heerlen, The Netherlands; Radboud University Nijmegen, Institute for Water & Wetland Research, Department of Environmental Science, POB 9010, NL-6500, GL, Nijmegen, Netherlands
| | - Carolien Kroeze
- Department of Science, Faculty of Management, Science &Technology, Open University, Heerlen, The Netherlands; Water Systems and Global Change Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
74
|
Gorenoglu E, Aydin E, Topuz E, Pehlivanoglu-Mantas E. Effect of triclosan and its photolysis products on marine bacterium V. fischeri and freshwater alga R. subcapitata. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 211:218-224. [PMID: 29408069 DOI: 10.1016/j.jenvman.2018.01.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 06/07/2023]
Abstract
The use of antibacterial agents in consumer products may lead to adverse effects in waters receiving treated wastewater. Triclosan is one of the antibacterial agents used widely in the world and its high usage leads to relatively high concentrations in wastewater effluents. In this study, the probable effect of triclosan in receiving waters was assessed using different organisms. The EC50 values were 668 ± 80 μg/L and 7.8 ± 0.1 μg/L, for Vibrio fischeri and Raphidocelis subcapitata, respectively, indicating the higher sensitivity of the alga. The toxicity of triclosan upon exposure to UV light decreased for both species, as suggested by the increase in EC50 values (1300 ± 50 μg/L and 8.7 ± 0.6 μg/L for V. fischeri and R. subcapitata, respectively). The effect of photolysis on toxicity reduction was higher for V. fischeri and the EC50 values were similar for direct and indirect photolysis. LC-MS/MS analysis of samples with and without UV exposure suggested a decrease in triclosan concentration as well as formation of photolysis byproducts upon photolysis.
Collapse
Affiliation(s)
- Eren Gorenoglu
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey
| | - Egemen Aydin
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey
| | - Emel Topuz
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey
| | - Elif Pehlivanoglu-Mantas
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
75
|
Ena L, Lim JS, Son JY, Park YJ, Lee YH, Kim JY, Kwack SJ, Lee BM, Ahn MY, Kim HS. Evaluation of subchronic exposure to triclosan on hepatorenal and reproductive toxicities in prepubertal male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:421-431. [PMID: 29557728 DOI: 10.1080/15287394.2018.1451188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triclosan (TCS), a common antimicrobial ingredient, is present in many consumer products, including soaps, shampoos, and toothpaste. Owing to its widespread use, potential adverse effects on animals and humans may arise from lifetime exposure, but data on chronic prepubertal exposure of TCS are still lacking. The aim of the present study was to investigate the influence of subchronic TCS exposure (0.25, 25, 250, or 750 mg/kg) on target organ toxicity in prepubertal male rats. After daily administration of TCS to rats by oral gavage for 60 d, a significant reduction in body weight and relative weights of liver, kidneys, testes, and adrenal glands was observed in the 750-mg/kg (high dose) group. Serum alanine aminotransferase and aspartate aminotransferase activities as well as levels of blood urea nitrogen, and creatinine were significantly increased at 750 mg/kg TCS. Further, TCS (750 mg/kg) elevated the protein expressions of hepatic CYP2B1, RXR/PPAR, and levels of malondialdehyde. High-dose TCS exposure induced histological changes as evidenced by reduction of Bowman's space, occlusion of the tubular lumen, and degeneration of tubular epithelial cells in the kidney. Tubular necrosis was confirmed as evidenced by a rise in expression of high mobility group box 1 renal protein. Daily sperm production was significantly diminished by high doses of TCS with marked inhibition of androgen receptor protein expression. Our results indicated that subchronic exposure to excessively high concentrations of 750 mg/kg TCS induced hepatorenal and reproductive toxicities in prepubertal male rats; however, the biological relevance of these findings is questionable as these drug levels are not encountered in the environment.
Collapse
Affiliation(s)
- Lee Ena
- a School of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Jong Seung Lim
- b Division of Toxicology, School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Ji Yeon Son
- b Division of Toxicology, School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Yu Jin Park
- b Division of Toxicology, School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Yong Hee Lee
- b Division of Toxicology, School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Ji Yeong Kim
- b Division of Toxicology, School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Seung Jun Kwack
- c Department of Biochemistry and Health Science , Changwon National University , Gyeongnam , Republic of Korea
| | - Byung Mu Lee
- b Division of Toxicology, School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Mee-Young Ahn
- d Major in Pharmaceutical Engineering, Division of Bio-industry, College of Medical and Life Sciences , Silla University , Busan , Republic of Korea
| | - Hyung Sik Kim
- b Division of Toxicology, School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| |
Collapse
|
76
|
Arnot JA, Pawlowski S, Champ S. A weight-of-evidence approach for the bioaccumulation assessment of triclosan in aquatic species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1506-1518. [PMID: 29029804 DOI: 10.1016/j.scitotenv.2017.09.322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The bioaccumulation assessment of chemicals is challenging because of various metrics and criteria, multiple lines of evidence and underlying uncertainty in the data. Measured in vivo laboratory and field bioaccumulation data are generally considered preferable; however, quantitative structure-activity relationships (QSARs), mass balance models and in vitro data can also be considered. This case study critically evaluates in vivo, in vitro and in silico data and provides new data for the bioaccumulation assessment of triclosan (TCS). The review focusses on measured fish bioconcentration factors (BCFs) because this is the most commonly used regulatory metric. Reported measured fish BCFs range from about 20 to 8700L/kg-ww spanning a range of possible bioaccumulation assessment outcomes, i.e. from "not bioaccumulative" to "very bioaccumulative". Estimated biotransformation rate constants for fish obtained from in vivo, in vitro and in silico methods show general consensus fostering confidence in the selection of plausible values to confront uncertainty in the measured fish BCF tests. Other measurements (lines of evidence) from various species are also collected and reviewed. The estimated biotransformation rate constants and selected chemical property data are used to parameterize bioaccumulation models for aquatic species. Collectively the available lines of evidence are presented using a weight of evidence approach for assessing the bioaccumulation of TCS in aquatic species. Acceptable quality measured data and model predictions for TCS BCFs and bioaccumulation factors are lower than 2000L/kg. Biomagnification factors are <1 (kg/kg). The general consistency in the acceptable quality data is largely explained by the relatively efficient rates of TCS biotransformation in a range of species including measurements of significant in vitro activity of phase II conjugation reactions. The review demonstrates the value of combining models and measurements and, when necessary, applying multiple lines of evidence for chemical assessment.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting Inc., 36 Sproat Avenue, Toronto, ON M4M 1W4, Canada; Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada; Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | | | - Samantha Champ
- BASF SE, Carl-Bosch Str. 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
77
|
Wang C, Yu Z, Shi X, Tang X, Wang Y, Wang X, An Y, Li S, Li Y, Wang X, Luan W, Chen Z, Liu M, Yu L. Triclosan Enhances the Clearing of Pathogenic Intracellular Salmonella or Candida albicans but Disturbs the Intestinal Microbiota through mTOR-Independent Autophagy. Front Cell Infect Microbiol 2018. [PMID: 29515975 PMCID: PMC5826388 DOI: 10.3389/fcimb.2018.00049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent, whose well-known antibacterial mechanism is inhibiting lipid synthesis. Autophagy, an innate immune response, is an intracellular process that delivers the cargo including pathogens to lysosomes for degradation. In this study, we first demonstrated that TCS induced autophagy in a dose-dependent manner in non-phagocytic cells (HeLa) and in macrophages (Raw264.7) and in vivo. The western blot results also revealed that TCS induced autophagy via the AMPK/ULK1 and JNK/ERK/p38 pathways independent of mTOR. The immunofluorescence results indicated that TCS up-regulated the expression of the ubiquitin receptors NDP52 and p62 and strengthened the co-localization of these receptors with Salmonella enterica Typhimurium (S. typhimurium) or Candida albicans (C. albicans) in infected MΦ cells. In addition, sub-lethal concentrations of TCS enhanced the clearing of the pathogens S. typhimurium or C. albicans in infected MΦ and in corresponding mouse infection models in vivo. Specifically, we found that a sub-inhibitory concentration of TCS induced autophagy, leading to an imbalance of the intestinal microflora in mice through the analysis of 16s rRNA Sequencing. Together, these results demonstrated that TCS induced autophagy, which enhanced the killing against pathogenic S. typhimurium or C. albicans within mammal cells but broke the balance of the intestinal microflora.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhongyang Yu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaochen Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xudong Tang
- Key Lab for New Drugs Research of TCM in Shenzhen, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Yang Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueyan Wang
- Key Lab for New Drugs Research of TCM in Shenzhen, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Yanan An
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shulin Li
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuefei Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenjing Luan
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhaobin Chen
- West China School of Public Health, Sichuan University, Chengdu, China.,Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Mingyuan Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lu Yu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
78
|
Craig ZR, Ziv-Gal A. Pretty Good or Pretty Bad? The Ovary and Chemicals in Personal Care Products. Toxicol Sci 2017; 162:349-360. [DOI: 10.1093/toxsci/kfx285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Zelieann R Craig
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Ayelet Ziv-Gal
- College of Health/School of Health Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
79
|
Yoon DS, Choi Y, Cha DS, Zhang P, Choi SM, Alfhili MA, Polli JR, Pendergrass D, Taki FA, Kapalavavi B, Pan X, Zhang B, Blackwell TK, Lee JW, Lee MH. Triclosan Disrupts SKN-1/Nrf2-Mediated Oxidative Stress Response in C. elegans and Human Mesenchymal Stem Cells. Sci Rep 2017; 7:12592. [PMID: 28974696 PMCID: PMC5626723 DOI: 10.1038/s41598-017-12719-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Triclosan (TCS), an antimicrobial chemical with potential endocrine-disrupting properties, may pose a risk to early embryonic development and cellular homeostasis during adulthood. Here, we show that TCS induces toxicity in both the nematode C. elegans and human mesenchymal stem cells (hMSCs) by disrupting the SKN-1/Nrf2-mediated oxidative stress response. Specifically, TCS exposure affected C. elegans survival and hMSC proliferation in a dose-dependent manner. Cellular analysis showed that TCS inhibited the nuclear localization of SKN-1/Nrf2 and the expression of its target genes, which were associated with oxidative stress response. Notably, TCS-induced toxicity was significantly reduced by either antioxidant treatment or constitutive SKN-1/Nrf2 activation. As Nrf2 is strongly associated with aging and chemoresistance, these findings will provide a novel approach to the identification of therapeutic targets and disease treatment.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Dong Seok Cha
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk, 565-701, Republic of Korea
| | - Peng Zhang
- Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.,Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seong Mi Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Mohammad Abdulmohsen Alfhili
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Joseph Ryan Polli
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - DeQwon Pendergrass
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Faten A Taki
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Brahmam Kapalavavi
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - T Keith Blackwell
- Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.,Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Myon-Hee Lee
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
80
|
Mínguez-Alarcón L, Christou G, Messerlian C, Williams PL, Carignan CC, Souter I, Ford JB, Calafat AM, Hauser R. Urinary triclosan concentrations and diminished ovarian reserve among women undergoing treatment in a fertility clinic. Fertil Steril 2017; 108:312-319. [PMID: 28583664 DOI: 10.1016/j.fertnstert.2017.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the association between urinary triclosan concentrations and antral follicle count (AFC), a well-accepted marker of ovarian reserve, among women from a fertility center. DESIGN Prospective cohort study. SETTING Hospital fertility center. PATIENT(S) A total of 109 women. INTERVENTION(S) Urinary triclosan concentrations quantified by online solid phase extraction-high performance liquid chromatography-isotope dilution tandem mass spectrometry. MAIN OUTCOME MEASURE(S) AFC through transvaginal ultrasonography on the third day of an unstimulated menstrual cycle or on the third day of a progesterone withdrawal bleed. RESULT(S) The geometric mean of the specific gravity-adjusted urinary triclosan concentrations for the 225 samples provided by the 109 women was 13.0 μg/L (95% confidence interval [CI], 8.9, 19.1). Women had median (with interquartile range) AFC of 13 (8, 18). The specific gravity-adjusted urinary triclosan concentrations were inversely associated with AFC (-4%; 95% CI, -7%, -1%). Women with triclosan concentrations above the median had lower AFC compared with those whose triclosan concentrations were equal to or below the median, with an adjusted difference of -3.2 (95% CI, -3.9, -1.6) among those with a body mass index <25 kg/m2 and -1.8 (95% CI, -3.2, -0.3) among those who were <35 years old. CONCLUSION(S) Specific gravity-adjusted urinary triclosan concentrations were inversely associated with AFC in women seeking care at a fertility center. This association was modified by age and body mass index, with the younger and leaner women showing larger decreases in AFC.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.
| | - Georgios Christou
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Paige L Williams
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Courtney C Carignan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Irene Souter
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
81
|
Teplova VV, Belosludtsev KN, Kruglov AG. Mechanism of triclosan toxicity: Mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation. Toxicol Lett 2017; 275:108-117. [DOI: 10.1016/j.toxlet.2017.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/15/2023]
|
82
|
Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol 2017; 233:R109-R129. [PMID: 28356401 PMCID: PMC5479690 DOI: 10.1530/joe-17-0023] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/29/2017] [Indexed: 01/10/2023]
Abstract
Endocrine disrupting chemicals are ubiquitous chemicals that exhibit endocrine disrupting properties in both humans and animals. Female reproduction is an important process, which is regulated by hormones and is susceptible to the effects of exposure to endocrine disrupting chemicals. Disruptions in female reproductive functions by endocrine disrupting chemicals may result in subfertility, infertility, improper hormone production, estrous and menstrual cycle abnormalities, anovulation, and early reproductive senescence. This review summarizes the effects of a variety of synthetic endocrine disrupting chemicals on fertility during adult life. The chemicals covered in this review are pesticides (organochlorines, organophosphates, carbamates, pyrethroids, and triazines), heavy metals (arsenic, lead, and mercury), diethylstilbesterol, plasticizer alternatives (di-(2-ethylhexyl) phthalate and bisphenol A alternatives), 2,3,7,8-tetrachlorodibenzo-p-dioxin, nonylphenol, polychlorinated biphenyls, triclosan, and parabens. This review focuses on the hypothalamus, pituitary, ovary, and uterus because together they regulate normal female fertility and the onset of reproductive senescence. The literature shows that several endocrine disrupting chemicals have endocrine disrupting abilities in females during adult life, causing fertility abnormalities in both humans and animals.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Changqing Zhou
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Catheryne Chiang
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sharada Mahalingam
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Emily Brehm
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
83
|
Mihaich E, Capdevielle M, Urbach-Ross D, Slezak B. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: a case study with triclosan. Crit Rev Toxicol 2017; 47:263-285. [DOI: 10.1080/10408444.2016.1269722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ellen Mihaich
- Environmental and Regulatory Resources, LLC, Durham, NC, USA
| | | | | | | |
Collapse
|
84
|
Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:447-469. [PMID: 29182464 PMCID: PMC6126357 DOI: 10.1080/10937404.2017.1399306] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triclosan (TCS) is an antimicrobial used so ubiquitously that 75% of the US population is likely exposed to this compound via consumer goods and personal care products. In September 2016, TCS was banned from soap products following the risk assessment by the US Food and Drug Administration (FDA). However, TCS still remains, at high concentrations, in other personal care products such as toothpaste, mouthwash, hand sanitizer, and surgical soaps. TCS is readily absorbed into human skin and oral mucosa and found in various human tissues and fluids. The aim of this review was to describe TCS exposure routes and levels as well as metabolism and transformation processes. The burgeoning literature on human health effects associated with TCS exposure, such as reproductive problems, was also summarized.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Julie A. Gosse
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| |
Collapse
|
85
|
Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M. Is Triclosan a neurotoxic agent? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:104-117. [PMID: 28339349 DOI: 10.1080/10937404.2017.1281181] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antibacterial agent that has been used in many products since 1960s. Given its broad usage as an antiseptic TCS is present ubiquitously in the environment. Trace levels of TCS continue to be detected in many organisms, and it has been shown to be particularly toxic to aquatic species. The mechanisms underlying TCS-mediated toxicity include hormone dyshomeostasis, induction of oxidative stress, apoptosis and inflammation. Although TCS has been considered to be non-toxic to mammals, the adverse effects of continuous, long-term and low concentration exposure remain unknown. Epidemiological studies revealed that levels of TCS in human tissues, urine, plasma and breast milk correlate with the usage of this antimicrobial. This led to concerns regarding TCS safety and potential toxicity in humans, with special emphasis on early development. The Food and Drug Administration (FDA) recently issued a directive banning the use of TCS in consumer soaps, justifying the move attributed to data gaps on its effectiveness and safety, indicating the need for more studies addressing this chemical-mediated effects on various tissues including the central nervous system (CNS). The aim of this review was to (1) summarize the current findings on the neurotoxic effects of TCS and given the paucity of data, to (2) broaden the discussion to other effects of TCS, which might plausibly be related to neuronal functions.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - Shaojun Li
- b Department of Toxicology, School of Public Health , Guangxi Medical University , Guangxi , China
| | - Maliya B Rodriguez
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - Michael Aschner
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| |
Collapse
|
86
|
Schnitzler JG, Frédérich B, Dussenne M, Klaren PHM, Silvestre F, Das K. Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:1-10. [PMID: 27810487 DOI: 10.1016/j.aquatox.2016.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Thyroid hormones are critically involved in somatic growth, development and metamorphosis of vertebrates. The structural similarity between thyroid hormones and triclosan, an antimicrobial compound widely employed in consumer personal care products, suggests triclosan can have adverse effects on the thyroid system. The sheepshead minnow, Cyprinodon variegatus, is now used in ecotoxicological studies that have recently begun to focus on potential disruption of the thyroid axis by endocrine disrupting compounds. Here, we investigate the in vivo effects of exposure to triclosan (20, 50, and 100μgL-1) on the thyroid system and the embryonic and larval development of C. variegatus. Triclosan exposure did not affect hatching success, but delayed hatching time by 6-13h compared to control embryos. Triclosan exposure affected the ontogenetic variations of whole body thyroid hormone concentrations during the larval phase. The T3 peak around 12-15 dph, described to be indicative for the metamorphosis climax in C. variegatus, was absent in triclosan-exposed larvae. Triclosan exposure did not produce any deformity or allometric repatterning, but a delayed development of 18-32h was observed. We conclude that the triclosan-induced disruption of the thyroid system delays in vivo the start of metamorphosis in our experimental model. We observed a global developmental delay of 24-45h, equivalent to 4-7% prolongation of the developmental time in C. variegatus. The costs of delayed metamorphosis can lead to reduction of juvenile fitness and could be a determining factor in the outcome of competitive interactions.
Collapse
Affiliation(s)
| | - Bruno Frédérich
- Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research Center, Liège University, Liège, Belgium.
| | - Mélanie Dussenne
- Laboratory of Oceanology, MARE, B6c, Liège University, Liège, Belgium.
| | - Peter H M Klaren
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology-URBE, UNamur, B-5000 Namur, Belgium.
| | - Krishna Das
- Laboratory of Oceanology, MARE, B6c, Liège University, Liège, Belgium.
| |
Collapse
|
87
|
Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells. Arch Toxicol 2016; 91:2405-2423. [PMID: 27896399 DOI: 10.1007/s00204-016-1893-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/15/2016] [Indexed: 01/03/2023]
Abstract
Triclosan is a widely used broad-spectrum anti-bacterial agent. The objectives of this study were to identify which cytochrome P450 (CYP) isoforms metabolize triclosan and to examine the effects of CYP-mediated metabolism on triclosan-induced cytotoxicity. A panel of HepG2-derived cell lines was established, each of which overexpressed a single CYP isoform, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP4A11, and CYP4B1. The extent of triclosan metabolism by each CYP was assessed by reversed-phase high-performance liquid chromatography with online radiochemical detection. Seven isoforms were capable of metabolizing triclosan, with the order of activity being CYP1A2 > CYP2B6 > CYP2C19 > CYP2D6 ≈ CYP1B1 > CYP2C18 ≈ CYP1A1. The remaining 11 isoforms (CYP2A6, CYP2A7, CYP2A13, CYP2C8, CYP2C9, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP4A11, and CYP4B1) had little or no activity toward triclosan. Three metabolites were detected: 2,4-dichlorophenol, 4-chlorocatechol, and 5'-hydroxytriclosan. Consistent with the in vitro screening data, triclosan was extensively metabolized in HepG2 cells overexpressing CYP1A2, CYP2B6, CYP2C19, CYP2D6, and CYP2C18, and these cells were much more resistant to triclosan-induced cytotoxicity compared to vector cells, suggesting that CYP-mediated metabolism of triclosan attenuated its cytotoxicity. In addition, 2,4-dichlorophenol and 4-chlorocatechol were less toxic than triclosan to HepG2/vector cells. Conjugation of triclosan, catalyzed by human glucuronosyltransferases (UGTs) and sulfotransferases (SULTs), also occurred in HepG2/CYP-overexpressing cells and primary human hepatocytes, with a greater extent of conjugation being associated with higher cell viability. Co-administration of triclosan with UGT or SULT inhibitors led to greater cytotoxicity in HepG2 cells and primary human hepatocytes, indicating that glucuronidation and sulfonation of triclosan are detoxification pathways. Among the 18 CYP-overexpressing cell lines, an inverse correlation was observed between cell viability and the level of triclosan in the culture medium. In conclusion, human CYP isoforms that metabolize triclosan were identified, and the metabolism of triclosan by CYPs, UGTs, and SULTs decreased its cytotoxicity in hepatic cells.
Collapse
|
88
|
Liu J, Wang J, Zhao C, Liu J, Xie H, Wang S, Zhang J, Hu Z. Performance and mechanism of triclosan removal in simultaneous nitrification and denitrification (SND) process under low-oxygen condition. Appl Microbiol Biotechnol 2016; 101:1653-1660. [DOI: 10.1007/s00253-016-7952-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
|
89
|
Yueh MF, Tukey RH. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. Annu Rev Pharmacol Toxicol 2016; 56:251-72. [PMID: 26738475 DOI: 10.1146/annurev-pharmtox-010715-103417] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent that has been added to personal care products, including hand soaps and cosmetics, and impregnated in numerous different materials ranging from athletic clothing to food packaging. The constant disposal of TCS into the sewage system is creating a major environmental and public health hazard. Owing to its chemical properties of bioaccumulation and resistance to degradation, TCS is widely detected in various environmental compartments in concentrations ranging from nanograms to micrograms per liter. Epidemiology studies indicate that significant levels of TCS are detected in body fluids in all human age groups. We document here the emerging evidence--from in vitro and in vivo animal studies and environmental toxicology studies--demonstrating that TCS exerts adverse effects on different biological systems through various modes of action. Considering the fact that humans are simultaneously exposed to TCS and many TCS-like chemicals, we speculate that TCS-induced adverse effects may be relevant to human health.
Collapse
Affiliation(s)
- Mei-Fei Yueh
- Laboratory of Environmental Toxicology, Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093; ,
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
90
|
Pollock T, Greville LJ, Tang B, deCatanzaro D. Triclosan elevates estradiol levels in serum and tissues of cycling and peri-implantation female mice. Reprod Toxicol 2016; 65:394-401. [PMID: 27638325 DOI: 10.1016/j.reprotox.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/17/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Abstract
Triclosan, an antimicrobial agent added to personal care products, can modulate estrogenic actions. We investigated whether triclosan affects concentrations of exogenous and endogenous estradiol. Female mice were given injections of triclosan followed by 1μCi tritium-labeled estradiol. Mice given daily 2-mg triclosan doses (57.9mg/kg/dose) showed significantly elevated radioactivity in tissues and serum compared to controls. A single dose of 1 or 2mg triclosan increased radioactivity in the uterus in both cycling and peri-implantation females. We also measured natural urinary estradiol at 2-12h following triclosan injection. Unconjugated estradiol was significantly elevated for several hours following 1 or 2mg of triclosan. These data are consistent with evidence that triclosan inhibits sulfonation of estrogens by interacting with sulfotransferases, preventing metabolism of these steroids into biologically inactive forms. Elevation of estrogen concentrations by triclosan is potentially relevant to anti-reproductive and carcinogenic actions of excessive estrogen activity.
Collapse
Affiliation(s)
- Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Lucas J Greville
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Brandon Tang
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
91
|
Zeng L, Ma H, Pan S, You J, Zhang G, Yu Z, Sheng G, Fu J. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group. Toxicol In Vitro 2016; 34:35-44. [DOI: 10.1016/j.tiv.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/20/2016] [Accepted: 03/06/2016] [Indexed: 12/18/2022]
|
92
|
Johnson PI, Koustas E, Vesterinen HM, Sutton P, Atchley DS, Kim AN, Campbell M, Donald JM, Sen S, Bero L, Zeise L, Woodruff TJ. Application of the Navigation Guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. ENVIRONMENT INTERNATIONAL 2016; 92-93:716-28. [PMID: 27156197 PMCID: PMC4951161 DOI: 10.1016/j.envint.2016.03.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND There are reports of developmental and reproductive health effects associated with the widely used biocide triclosan. OBJECTIVE Apply the Navigation Guide systematic review methodology to answer the question: Does exposure to triclosan have adverse effects on human development or reproduction? METHODS We applied the first 3 steps of the Navigation Guide methodology: 1) Specify a study question, 2) Select the evidence, and 3) Rate quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using pre-specified criteria. We assessed the number and type of all relevant studies. We evaluated each included study for risk of bias and rated the quality and strength of the evidence for the selected outcomes. We conducted a meta-analysis on a subset of suitable data. RESULTS We found 4282 potentially relevant records, and 81 records met our inclusion criteria. Of the more than 100 endpoints identified by our search, we focused our evaluation on hormone concentration outcomes, which had the largest human and non-human mammalian data set. Three human studies and 8 studies conducted in rats reported thyroxine levels as outcomes. The rat data were amenable to meta-analysis. Because only one of the human thyroxine studies quantified exposure, we did not conduct a meta-analysis of the human data. Through meta-analysis of the data for rats, we estimated for prenatal exposure a 0.09% (95% CI: -0.20, 0.02) reduction in thyroxine concentration per mg triclosan/kg-bw in fetal and young rats compared to control. For postnatal exposure we estimated a 0.31% (95% CI: -0.38, -0.23) reduction in thyroxine per mg triclosan/kg-bw, also compared to control. Overall, we found low to moderate risk of bias across the human studies and moderate to high risk of bias across the non-human studies, and assigned a "moderate/low" quality rating to the body of evidence for human thyroid hormone alterations and a "moderate" quality rating to the body of evidence for non-human thyroid hormone alterations. CONCLUSION Based on this application of the Navigation Guide systematic review methodology, we concluded that there was "sufficient" non-human evidence and "inadequate" human evidence of an association between triclosan exposure and thyroxine concentrations, and consequently, triclosan is "possibly toxic" to reproductive and developmental health. Thyroid hormone disruption is an upstream indicator of developmental toxicity. Additional endpoints may be identified as being of equal or greater concern as other data are developed or evaluated.
Collapse
Affiliation(s)
- Paula I Johnson
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA.
| | - Erica Koustas
- ORISE Post-doctoral Fellowship, U.S. Environmental Protection Agency, Office of Policy, National Center for Environmental Economics, Washington, D.C., USA
| | - Hanna M Vesterinen
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Patrice Sutton
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Dylan S Atchley
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Allegra N Kim
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Marlissa Campbell
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - James M Donald
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Saunak Sen
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Lisa Bero
- University of California San Francisco, Department of Clinical Pharmacy, San Francisco, CA, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Tracey J Woodruff
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| |
Collapse
|
93
|
Weatherly LM, Shim J, Hashmi HN, Kennedy RH, Hess ST, Gosse JA. Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes. J Appl Toxicol 2016; 36:777-89. [PMID: 26204821 PMCID: PMC4724348 DOI: 10.1002/jat.3209] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
Triclosan (TCS) is an antimicrobial used widely in hospitals and personal care products, at ~10 mm. Human skin efficiently absorbs TCS. Mast cells are ubiquitous key players both in physiological processes and in disease, including asthma, cancer and autism. We previously showed that non-cytotoxic levels of TCS inhibit degranulation, the release of histamine and other mediators, from rat basophilic leukemia mast cells (RBL-2H3), and in this study, we replicate this finding in human mast cells (HMC-1.2). Our investigation into the molecular mechanisms underlying this effect led to the discovery that TCS disrupts adenosine triphosphate (ATP) production in RBL-2H3 cells in glucose-free, galactose-containing media (95% confidence interval EC50 = 7.5-9.7 µm), without causing cytotoxicity. Using these same glucose-free conditions, 15 µm TCS dampens RBL-2H3 degranulation by 40%. The same ATP disruption was found with human HMC-1.2 cells (EC50 4.2-13.7 µm), NIH-3 T3 mouse fibroblasts (EC50 4.8-7.4 µm) and primary human keratinocytes (EC50 3.0-4.1 µm) all with no cytotoxicity. TCS increases oxygen consumption rate in RBL-2H3 cells. Known mitochondrial uncouplers (e.g., carbonyl cyanide 3-chlorophenylhydrazone) previously were found to inhibit mast cell function. TCS-methyl, which has a methyl group in place of the TCS ionizable proton, affects neither degranulation nor ATP production at non-cytotoxic doses. Thus, the effects of TCS on mast cell function are due to its proton ionophore structure. In addition, 5 µm TCS inhibits thapsigargin-stimulated degranulation of RBL-2H3 cells: further evidence that TCS disrupts mast cell signaling. Our data indicate that TCS is a mitochondrial uncoupler, and TCS may affect numerous cell types and functions via this mechanism. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Graduate School of Biomedical Science and Engineering, Orono, ME, 04469
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469
| | - Juyoung Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469
| | - Hina N. Hashmi
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469
| | - Rachel H. Kennedy
- Graduate School of Biomedical Science and Engineering, Orono, ME, 04469
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469
| | - Samuel T. Hess
- Graduate School of Biomedical Science and Engineering, Orono, ME, 04469
- Department of Physics and Astronomy, University of Maine, Orono, ME, 04469
| | - Julie A. Gosse
- Graduate School of Biomedical Science and Engineering, Orono, ME, 04469
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469
| |
Collapse
|
94
|
Fang JL, Vanlandingham M, da Costa GG, Beland FA. Absorption and metabolism of triclosan after application to the skin of B6C3F1 mice. ENVIRONMENTAL TOXICOLOGY 2016; 31:609-23. [PMID: 25410937 DOI: 10.1002/tox.22074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 05/22/2023]
Abstract
Triclosan is used as an antimicrobial agent in personal care products, household items, medical devices, and clinical settings. Humans can receive lifelong exposures to triclosan; however, data on the toxicity and carcinogenicity after topical application are lacking. This study determined the absorption, distribution, metabolism, and excretion of triclosan after application to the skin of B6C3F1 mice. [(14)C(U)]triclosan (10 or 100 mg triclosan/kg body weight) was administered topically to mice in two separate experiments: a vehicle selection experiment using propylene glycol, ethanol, and a generic cosmetic cream, and a toxicokinetic experiment. Mice were killed up to 72 h after triclosan administration, and excreta and tissues were analyzed for radioactivity. Ethanol had the best properties of the vehicles evaluated. Maximum absorption was obtained at approximately 12 h after dosing. Radioactivity appeared in the excreta and in all tissues examined, with the highest levels in the gall bladder and the lowest levels in the brain. Triclosan was metabolized to triclosan sulfate, triclosan glucuronide, 2,4-dichlorophenol, and hydroxytriclosan. The metabolite profile was tissue-dependent and the predominant route of excretion was fecal. The AUC(0-∞) and the Cmax of plasma and liver in females were greater than those in males. Slightly lower absorption was observed in mice with Elizabethan collars.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, 72079, USA
| | - Michelle Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, 72079, USA
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, 72079, USA
| |
Collapse
|
95
|
Dinse GE, Jusko TA, Whitt IZ, Co CA, Parks CG, Satoh M, Chan EK, Rose KM, Walker NJ, Birnbaum LS, Zeldin DC, Weinberg CR, Miller FW. Associations Between Selected Xenobiotics and Antinuclear Antibodies in the National Health and Nutrition Examination Survey, 1999-2004. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:426-36. [PMID: 26252071 PMCID: PMC4829978 DOI: 10.1289/ehp.1409345] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 08/04/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Potential associations between background environmental chemical exposures and autoimmunity are understudied. OBJECTIVES Our exploratory study investigated exposure to individual environmental chemicals and selected mixtures in relation to the presence of antinuclear antibodies (ANA), a widely used biomarker of autoimmunity, in a representative sample of the U.S. METHODS This cross-sectional analysis used data on 4,340 participants from the National Health and Nutrition Examination Survey (1999-2004), of whom 14% were ANA positive, to explore associations between ANA and concentrations of dioxins, dibenzofurans, polychlorinated biphenyls, organochlorines, organophosphates, phenols, metals, and other environmental exposures and metabolites measured in participants' serum, whole blood, or urine. For dioxin-like compounds with toxic equivalency factors, we developed and applied a new statistical approach to study selected mixtures. Lognormal models and censored-data methods produced estimates of chemical associations with ANA in males, nulliparous females, and parous females; these estimates were adjusted for confounders and accommodated concentrations below detectable levels. RESULTS Several associations between chemical concentration and ANA positivity were observed, but only the association in males exposed to triclosan remained statistically significant after correcting for multiple comparisons (mean concentration ratio = 2.8; 95% CI: 1.8, 4.5; p < 0.00001). CONCLUSIONS These data suggest that background levels of most xenobiotic exposures typical in the U.S. population are not strongly associated with ANA. Future studies should ideally reduce exposure misclassification by including prospective measurement of the chemicals of concern and should track changes in ANA and other autoantibodies over time. CITATION Dinse GE, Jusko TA, Whitt IZ, Co CA, Parks CG, Satoh M, Chan EKL, Rose KM, Walker NJ, Birnbaum LS, Zeldin DC, Weinberg CR, Miller FW. 2016. Associations between selected xenobiotics and antinuclear antibodies in the National Health and Nutrition Examination Survey, 1999-2004. Environ Health Perspect 124:426-436; http://dx.doi.org/10.1289/ehp.1409345.
Collapse
Affiliation(s)
- Gregg E. Dinse
- Biostatistics Center, Social & Scientific Systems, Inc., Durham, North Carolina, USA
| | - Todd A. Jusko
- Departments of Public Health Sciences and Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Irene Z. Whitt
- Division of Rheumatology and Immunology, Department of Internal Medicine, Duke University, Durham, North Carolina, USA
| | - Caroll A. Co
- Biostatistics Center, Social & Scientific Systems, Inc., Durham, North Carolina, USA
| | - Christine G. Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Minoru Satoh
- Department of Clinical Nursing, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Edward K.L. Chan
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Kathryn M. Rose
- Biostatistics Center, Social & Scientific Systems, Inc., Durham, North Carolina, USA
| | - Nigel J. Walker
- Division of the National Toxicology Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | | | - Clarice R. Weinberg
- Biostatistics and Computational Biology Branch, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | | |
Collapse
|
96
|
Movahed E, Tan GMY, Munusamy K, Yeow TC, Tay ST, Wong WF, Looi CY. Triclosan Demonstrates Synergic Effect with Amphotericin B and Fluconazole and Induces Apoptosis-Like Cell Death in Cryptococcus neoformans. Front Microbiol 2016; 7:360. [PMID: 27047474 PMCID: PMC4800180 DOI: 10.3389/fmicb.2016.00360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
Objectives:Cryptococcus neoformans is an opportunistic fungus that causes fatal meningoencephalitis especially in AIDS patients. There is an increasing need for discovery of new anti-cryptococcal drugs due to emergence of resistance cases in recent years. In this study, we aim to elucidate the antifungal effect of triclosan against C. neoformans. Methods: Minimal inhibitory concentration (MIC) of triclosan in different C. neoformans strains was first examined. The in vitro interactions between triclosan and two standard anti-fungal drugs (amphotericin B and fluconazole) were further evaluated by microdilution checkerboard assay. Mechanism of triclosan fungicidal activity was then investigated by viewing the cell morphology under transmission electron microscope. Results: We reported that triclosan potently inhibited the growth of C. neoformans. A combination of triclosan with amphotericin B or with fluconazole enhanced their fungicidal effects. Triclosan-treated C. neoformans displayed characteristics such as nuclear chromatin condensation, extensive intracellular vacuolation and mitochondrial swelling, indicating that triclosan triggered apoptosis-like cell death. Conclusion: In summary, our report suggests triclosan as an independent drug or synergent for C. neoformans treatment.
Collapse
Affiliation(s)
- Elaheh Movahed
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Komathy Munusamy
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Tee Cian Yeow
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
97
|
Forte M, Mita L, Cobellis L, Merafina V, Specchio R, Rossi S, Mita DG, Mosca L, Castaldi MA, De Falco M, Laforgia V, Crispi S. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells. Mol Cell Endocrinol 2016; 422:74-83. [PMID: 26604029 DOI: 10.1016/j.mce.2015.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023]
Abstract
In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome.
Collapse
Affiliation(s)
- Maurizio Forte
- National Laboratory on Endocrine Disruptors of Interuniversity Consortium INBB, Italy; Institute of Genetics and Biophysics (IGB) "ABT", National Research Council (CNR), Via P. Castellino, 111, 80131, Naples, Italy
| | - Luigi Mita
- National Laboratory on Endocrine Disruptors of Interuniversity Consortium INBB, Italy; Institute of Genetics and Biophysics (IGB) "ABT", National Research Council (CNR), Via P. Castellino, 111, 80131, Naples, Italy
| | - Luigi Cobellis
- Department of Gynaecology, Obstetric and Reproductive Science, Second University of Studies of Naples, Naples, Italy
| | - Verdiana Merafina
- Institute of Genetics and Biophysics (IGB) "ABT", National Research Council (CNR), Via P. Castellino, 111, 80131, Naples, Italy
| | - Raffaella Specchio
- Institute of Genetics and Biophysics (IGB) "ABT", National Research Council (CNR), Via P. Castellino, 111, 80131, Naples, Italy
| | - Sergio Rossi
- Institute of Genetics and Biophysics (IGB) "ABT", National Research Council (CNR), Via P. Castellino, 111, 80131, Naples, Italy
| | - Damiano Gustavo Mita
- National Laboratory on Endocrine Disruptors of Interuniversity Consortium INBB, Italy; Institute of Genetics and Biophysics (IGB) "ABT", National Research Council (CNR), Via P. Castellino, 111, 80131, Naples, Italy.
| | - Lavinia Mosca
- Department of Gynaecology, Obstetric and Reproductive Science, Second University of Studies of Naples, Naples, Italy
| | - Maria Antonietta Castaldi
- Department of Gynaecology, Obstetric and Reproductive Science, Second University of Studies of Naples, Naples, Italy
| | - Maria De Falco
- National Laboratory on Endocrine Disruptors of Interuniversity Consortium INBB, Italy; Department of Biology, University "Federico II" of Naples, Naples, Italy
| | - Vincenza Laforgia
- National Laboratory on Endocrine Disruptors of Interuniversity Consortium INBB, Italy; Department of Biology, University "Federico II" of Naples, Naples, Italy
| | - Stefania Crispi
- National Laboratory on Endocrine Disruptors of Interuniversity Consortium INBB, Italy; Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Naples, Italy
| |
Collapse
|
98
|
Magina S, Santos MD, Ferra J, Cruz P, Portugal I, Evtuguin D. High Pressure Laminates with Antimicrobial Properties. MATERIALS 2016; 9:ma9020100. [PMID: 28787897 PMCID: PMC5456506 DOI: 10.3390/ma9020100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/04/2016] [Indexed: 12/22/2022]
Abstract
High-pressure laminates (HPLs) are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB) was incorporated for the first time into melamine-formaldehyde resin (MF) matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms), whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms). The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.
Collapse
Affiliation(s)
- Sandra Magina
- CICECO-Aveiro Institute of Materials and Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mauro D Santos
- CICECO-Aveiro Institute of Materials and Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João Ferra
- EuroResinas-Indústrias Químicas SA, Plataforma Industrial de Sines-Lote Industrial I, Monte Feio, 7520-064 Sines, Portugal.
| | - Paulo Cruz
- SONAE Indústria de Revestimentos SA (SIR), Lugar do Espido-Via Norte, Apartado 1096, 4470-177 Maia, Portugal.
| | - Inês Portugal
- CICECO-Aveiro Institute of Materials and Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Dmitry Evtuguin
- CICECO-Aveiro Institute of Materials and Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
99
|
Wu Y, Beland FA, Fang JL. Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol In Vitro 2016; 32:310-9. [PMID: 26827900 DOI: 10.1016/j.tiv.2016.01.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/24/2022]
Abstract
Triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and bisphenol A (BPA) have been reported to disturb thyroid hormone (TH) homeostasis. We have examined the effects of these chemicals on sodium/iodide symporter (NIS)-mediated iodide uptake and the expression of genes involved in TH synthesis in rat thyroid follicular FRTL-5 cells, and on the activity of thyroid peroxidase (TPO) using rat thyroid microsomes. All four chemicals inhibited NIS-mediated iodide uptake in a concentration-dependent manner. A decrease in the iodide uptake was also observed in the absence of sodium iodide. Kinetic studies showed that all four chemicals were non-competitive inhibitors of NIS, with the order of Ki values being triclosan<triclocarban<BDE-47<BPA. The transcriptional expression of three genes involved in TH synthesis, Slc5a5, Tpo, and Tgo, and three thyroid transcription factor genes, Pax8, Foxe1, and Nkx2-1, was examined using quantitative real-time PCR. No significant changes in the expression of any genes were observed with triclosan or triclocarban. BDE-47 decreased the level of Tpo, while BPA altered the expression of all six genes. Triclosan and triclocarban inhibited the activity of TPO at 166 and >300 μM, respectively. Neither BDE-47 nor BPA affected TPO activity. In conclusion, triclosan, triclocarban, BDE-47, and BPA inhibited iodide uptake, but had differential effects on the expression of TH synthesis-related genes and the activity of TPO.
Collapse
Affiliation(s)
- Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
100
|
Peng J, Li J, Shi H, Wang Z, Gao S. Oxidation of disinfectants with Cl-substituted structure by a Fenton-like system Cu(2+)/H2O2 and analysis on their structure-reactivity relationship. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1898-1904. [PMID: 26408114 DOI: 10.1007/s11356-015-5454-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
As widely used chemicals intended to protect human being from infection of microorganisms, disinfectants are ubiquitous in the environment. Among them chlorine-substituted phenol is a basic structure in many disinfectant molecules. Removal of these pollutants from wastewater is of great concern. The oxidative degradation of antimicrobial agents such as triclosan, chlorofene, and dichlorofene by a Fenton-like system Cu(2+)/H2O2 was examined. Reaction conditions such as temperature, initial concentrations of H2O2 and Cu(2+), and pH were optimized using triclosan as a representative. The degradation kinetics of the above disinfectants followed pseudo-first-order kinetics under the investigated conditions. Fourteen chlorophenols (CPs) with different chlorine substitution were also studied to evaluate the influence of molecular structure on the degradation process in the Cu(2+)/H2O2 system. Fourteen structure-related parameters were calculated using Gaussian 09 program. A quantitative structure-activity relationship (QSAR) model was established using SPSS software with measured rate constant (k) as dependent variable and calculated molecular descriptors as independent variables. A three-parameter model including energy of HOMO (E homo), molar heat capacity at constant volume (Cv(θ)), and the most positive net charge of hydrogen atoms (qH(+)) was selected for k prediction, with correlation coefficient R(2) = 0.878. Analyses of the model demonstrated that the Cv(θ) was the most significant factor affecting the k of chlorophenols. Variance analysis and standard t-value test were used to validate the model.
Collapse
Affiliation(s)
- Jianbiao Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jianhua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Huanhuan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|