51
|
Ma C, Liu Y, Zhu L, Ji H, Song X, Guo H, Yi T. Determination and regulation of hepatotoxic pyrrolizidine alkaloids in food: A critical review of recent research. Food Chem Toxicol 2018; 119:50-60. [PMID: 29772268 DOI: 10.1016/j.fct.2018.05.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 11/26/2022]
|
52
|
Khojasteh SC, Miller GP, Mitra K, Rietjens IMCM. Biotransformation and bioactivation reactions - 2017 literature highlights *. Drug Metab Rev 2018; 50:221-255. [PMID: 29954222 DOI: 10.1080/03602532.2018.1473875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This annual review is the third one to highlight recent advances in the study and assessment of biotransformations and bioactivations ( Table 1 ). We followed the same format as the previous years with selection and authoring each section (see Baillie et al. 2016 ; Khojasteh et al. 2017 ). We acknowledge that many universities no longer train students in mechanistic biotransformation studies reflecting a decline in the investment for those efforts by public funded granting institutions. We hope this work serves as a resource to appreciate the knowledge gained each year to understand and hopefully anticipate toxicological outcomes dependent on biotransformations and bioactivations. This effort itself also continues to evolve. I am pleased that Drs. Rietjens and Miller have again contributed to this annual review. We would like to welcome Kaushik Mitra as an author for this year's issue, and we thank Deepak Dalvie for his contributions to last year's edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. As always, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- a Department of Drug Metabolism and Pharmacokinetics , Genentech, Inc , South San Francisco , CA , USA
| | - Grover P Miller
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kaushik Mitra
- c Department of Safety Assessment and Laboratory Animal Resources , Merck Research Laboratories (MRL), Merck & Co., Inc , West Point , PA , USA
| | | |
Collapse
|
53
|
Ma J, Xia Q, Fu PP, Lin G. Pyrrole-protein adducts - A biomarker of pyrrolizidine alkaloid-induced hepatotoxicity. J Food Drug Anal 2018; 26:965-972. [PMID: 29976414 PMCID: PMC9303027 DOI: 10.1016/j.jfda.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are phytotoxins identified in over 6000 plant species worldwide. Approximately 600 toxic PAs and PA N-oxides have been identified in about 3% flowering plants. PAs can cause toxicities in different organs particularly in the liver. The metabolic activation of PAs is catalyzed by hepatic cytochrome P450 and generates reactive pyrrolic metabolites that bind to cellular proteins to form pyrrole-protein adducts leading to PA-induced hepatotoxicity. The mechanisms that pyrrole-protein adducts induce toxicities have not been fully characterized. Methods for qualitative and quantitative detection of pyrrole-protein adducts have been developed and applied for the clinical diagnosis of PA exposure and PA-induced liver injury. This mini-review addresses the mechanisms of PA-induced hepatotoxicity mediated by pyrrole-protein adducts, the analytical methods for the detection of pyrrole-protein adducts, and the development of pyrrole-protein adducts as the mechanism-based biomarker of PA exposure and PA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China.
| |
Collapse
|
54
|
Moreira R, Pereira DM, Valentão P, Andrade PB. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety. Int J Mol Sci 2018; 19:E1668. [PMID: 29874826 PMCID: PMC6032134 DOI: 10.3390/ijms19061668] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Pyrrolizidine alkaloids (PA) are widely distributed in plants throughout the world, frequently in species relevant for human consumption. Apart from the toxicity that these molecules can cause in humans and livestock, PA are also known for their wide range of pharmacological properties, which can be exploited in drug discovery programs. In this work we review the current body of knowledge regarding the chemistry, toxicology, pharmacology and food safety of PA.
Collapse
Affiliation(s)
- Rute Moreira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
55
|
Li YH, Tai WCS, Khan I, Lu C, Lu Y, Wong WY, Chan WY, Wendy Hsiao WL, Lin G. Toxicoproteomic assessment of liver responses to acute pyrrolizidine alkaloid intoxication in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:65-83. [PMID: 29667502 DOI: 10.1080/10590501.2018.1450186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A toxicoproteomic study was performed on liver of rats treated with retrorsine (RTS), a representative hepatotoxic pyrrolizidine alkaloid at a toxic dose (140 mg/kg) known to cause severe acute hepatotoxicity. By comparing current data with our previous findings in mild liver lesions of rats treated with a lower dose of RTS, seven proteins and three toxicity pathways of vascular endothelial cell death, which was further verified by observed sinusoidal endothelial cell losses, were found uniquely associated with retrorsine-induced hepatotoxicity. This toxicoproteomic study of acute pyrrolizidine alkaloid intoxication lays a foundation for future investigation to delineate molecular mechanisms of pyrrolizidine alkaloid-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yan-Hong Li
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
- b School of Medicine , South China University of Technology , Guangzhou , China
| | - William Chi-Shing Tai
- c Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Imran Khan
- d State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau SAR, China
| | - Cheng Lu
- e Institute of Basic Research in Clinical Medicine , China Academic of Chinese Medical Sciences , Beijing , China
| | - Yao Lu
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Wing-Yan Wong
- c Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Wood-Yee Chan
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Wen-Luan Wendy Hsiao
- d State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau SAR, China
| | - Ge Lin
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
56
|
Li X, Yang X, Xiang E, Luo J, Qiu S, Fang Y, Zhang L, Guo Y, Zheng J, Wang H. Maternal-Fetal Disposition and Metabolism of Retrorsine in Pregnant Rats. Drug Metab Dispos 2018; 46:422-428. [PMID: 29352068 DOI: 10.1124/dmd.117.079186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are extensively synthesized by plants, are commonly present in herbs and foodstuffs, and exhibit hepatotoxicity requiring metabolic activation by cytochrome P450 3A to form the electrophilic metabolites-pyrrolic esters. PAs also cause embryo toxicity, but the metabolic profiles of PAs in fetus and placenta have been far from clear. In this study, we determined the basal metabolic activation of retrorsine (RTS) in rat maternal liver, placenta, and fetal liver in vitro and examined the fetal toxicity and bioactivation of RTS in vivo. Detection of microsomal RTS metabolites in vitro showed that the basal metabolic activity of fetal liver and placenta to RTS was much weaker than that of maternal liver. In addition, a higher rate of pyrrolic ester formation was found in normal male fetal liver compared with that of female pups. In vivo exposure to RTS caused fetal growth retardation, as well as placental and fetal liver injury. Little difference in serum RTS was observed in dams and fetuses, but the content of pyrrole-protein adduction in the fetal liver was much lower than that in maternal liver, which was consistent with basal metabolic activity. Unexpectedly, compared with basal metabolism in fetal liver, exposure to RTS during middle and late pregnancy caused an opposite gender difference in RTS metabolism and CYP3A expression in the fetal liver. For the first time, our study showed that RTS can permeate the placenta barrier and entering fetal circulation, whereas the intrauterine pyrrolic metabolite was generated mainly by fetal liver but not transported from the maternal circulation. Induction of CYP3A by RTS was gender-dependent in the fetal liver, which was probably responsible for RTS-induced fetal hepatic injury, especially for female pups.
Collapse
Affiliation(s)
- Xia Li
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Xiaojing Yang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - E Xiang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Jinyuan Luo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Shuaikai Qiu
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Yan Fang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Li Zhang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Jiang Zheng
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| |
Collapse
|
57
|
Li N, Zhang F, Lian W, Wang H, Zheng J, Lin G. Immunoassay approach for diagnosis of exposure to pyrrolizidine alkaloids. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:127-139. [PMID: 28506107 DOI: 10.1080/10590501.2017.1328828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Numerous pyrrolizidine alkaloid (PA) poisoning cases have been documented worldwide. Protein covalent binding with reactive metabolites generated from metabolic activation of PAs to form pyrrole-protein adducts is suggested to be a primary mechanism of PA-induced toxicities. The present study aimed to develop antibodies for diagnosis of PA exposure. Polyclonal antibodies were raised in rabbits and proven to specifically recognize pyrrole-protein adducts regardless of amino acid residues modified by the reactive metabolites of PAs. The developed antibodies were successfully applied to detect pyrrole-protein adducts in blood samples obtained from PA-treated rats and exhibited a potential for the clinical diagnosis of PA exposure.
Collapse
Affiliation(s)
- Na Li
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR
| | - Fan Zhang
- b Key Laboratory of Pharmaceutics of Guizhou Province , Guizhou Medical University , Guiyang , Guizhou , China
| | - Wei Lian
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR
- c Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Huali Wang
- d Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning , China
| | - Jiang Zheng
- b Key Laboratory of Pharmaceutics of Guizhou Province , Guizhou Medical University , Guiyang , Guizhou , China
- d Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning , China
- e Center for Developmental Therapeutics, Seattle Children's Research Institute, Division of Gastroenterology, Department of Pediatrics , University of Washington , Seattle , Washington , USA
| | - Ge Lin
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR
- c Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
58
|
Liu W, Li X, Zhou B, Fang S, Ho W, Chen H, Liang H, Ye L, Tang J. Differential induction of apoptosis and autophagy by pyrrolizidine alkaloid clivorine in human hepatoma Huh-7.5 cells and its toxic implication. PLoS One 2017. [PMID: 28650983 PMCID: PMC5484491 DOI: 10.1371/journal.pone.0179379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growing evidence suggests that the pyrrolizidine alkaloids (PAs)-induced hepatotoxicity is mediated by multiple cell death/defence modalities. However, the detailed mechanisms are still lacking. In this study, the hepatotoxic effects of four PAs including three retronecine-type ones (senecionine, seneciphylline and monocrotaline) and one otonecine-type (clivorine) on the proliferation of Huh-7.5 cells and the possible mechanisms were investigated. The results showed that all the PAs could inhibit cell proliferation and induce apoptosis in a concentration-dependent manner. Among them clivorine was the most significant one. In addition to its effect on apoptosis, clivorine treatment could promote autophagy in Huh-7.5 cells, as evidenced by the accumulation of autophagosomes, the enhancement of LC3B expression at the concentrations close to its IC0 value, and the increased conversion of LC3B-I to LC3B-II in the presence of lysosomal inhibitor (chloroquine) and decreased formation of green fluorescent protein (GFP)-LC3 positive puncta in the presence of autophagic sequestration inhibitor (3-methyladenine). Among the other tested PAs, senecionine and seneciphylline also activated autophagy at the same concentrations used for clivorine but monocrotaline did not. Furthermore, our study demonstrated that suppression or enhancement of autophagy resulted in the remarkable enhancement or suppression of senecionine, seneciphylline and clivorine-induced apoptosis at the concentration close to the IC10 for clivorine, respectively, indicating a protective role of autophagy against the PA-induced apoptosis at the low level of exposure. Collectively, our data suggest that PAs in different structures may exert different toxic disturbances on the liver cells. Apoptosis may be one of the most common models of the PA-induced cytotoxicity, while autophagy may be a structure-dependent defence model in the early stage of PA intoxication. Differential induction of apoptosis and autophagy probably depending on the concentration is essential for the cytotoxic potency of clivorine.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Xu Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Centre for Biomedicine, School of Public Health, Guangxi Medical University, Nanning City, Guangxi, P. R. China
| | - Bo Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Centre for Biomedicine, School of Public Health, Guangxi Medical University, Nanning City, Guangxi, P. R. China
| | - Shoucai Fang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Centre for Biomedicine, School of Public Health, Guangxi Medical University, Nanning City, Guangxi, P. R. China
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Hui Chen
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi, P. R. China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Centre for Biomedicine, School of Public Health, Guangxi Medical University, Nanning City, Guangxi, P. R. China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Centre for Biomedicine, School of Public Health, Guangxi Medical University, Nanning City, Guangxi, P. R. China
- * E-mail: (JT); (LY)
| | - Jun Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
- * E-mail: (JT); (LY)
| |
Collapse
|
59
|
Yang M, Ruan J, Gao H, Li N, Ma J, Xue J, Ye Y, Fu PPC, Wang J, Lin G. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans. Arch Toxicol 2017; 91:3913-3925. [PMID: 28620673 DOI: 10.1007/s00204-017-2013-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are among the most potent phytotoxins widely distributed in plant species around the world. PA is one of the major causes responsible for the development of hepatic sinusoidal obstruction syndrome (HSOS) and exerts hepatotoxicity via metabolic activation to form the reactive metabolites, which bind with cellular proteins to generate pyrrole-protein adducts, leading to hepatotoxicity. PA N-oxides coexist with their corresponding PAs in plants with varied quantities, sometimes even higher than that of PAs, but the toxicity of PA N-oxides remains unclear. The current study unequivocally identified PA N-oxides as the sole or predominant form of PAs in 18 Gynura segetum herbal samples ingested by patients with liver damage. For the first time, PA N-oxides were recorded to induce HSOS in human. PA N-oxide-induced hepatotoxicity was further confirmed on mice orally dosed of herbal extract containing 170 μmol PA N-oxides/kg/day, with its hepatotoxicity similar to but potency much lower than the corresponding PAs. Furthermore, toxicokinetic study after a single oral dose of senecionine N-oxide (55 μmol/kg) on rats revealed the toxic mechanism that PA N-oxides induced hepatotoxicity via their biotransformation to the corresponding PAs followed by the metabolic activation to form pyrrole-protein adducts. The remarkable differences in toxicokinetic profiles of PAs and PA N-oxides were found and attributed to their significantly different hepatotoxic potency. The findings of PA N-oxide-induced hepatotoxicity in humans and rodents suggested that the contents of both PAs and PA N-oxides present in herbs and foods should be regulated and controlled in use.
Collapse
Affiliation(s)
- Mengbi Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jianqing Ruan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Hong Gao
- Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Na Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yang Ye
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | - Jiyao Wang
- Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong.
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
| |
Collapse
|
60
|
Khojasteh SC, Rietjens IMCM, Dalvie D, Miller G. Biotransformation and bioactivation reactions - 2016 literature highlights. Drug Metab Rev 2017; 49:285-317. [PMID: 28468514 DOI: 10.1080/03602532.2017.1326498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We are pleased to present a second annual issue highlighting a previous year's literature on biotransformation and bioactivation. Each contributor to this issue worked independently to review the articles published in 2016 and proposed three to four articles, which he or she believed would be of interest to the broader research community. In each synopsis, the contributing author summarized the procedures, analyses and conclusions as described in the original manuscripts. In the commentary sections, our authors offer feedback and highlight aspects of the work that may not be apparent from an initial reading of the article. To be fair, one should still read the original article to gain a more complete understanding of the work conducted. Most of the articles included in this review were published in Drug Metabolism and Disposition or Chemical Research in Toxicology, but attempts were made to seek articles in 25 other journals. Importantly, these articles are not intended to represent a consensus of the best papers of the year, as we did not want to make any arbitrary standards for this purpose, but rather they were chosen by each author for their notable findings and descriptions of novel metabolic pathways or biotransformations. I am pleased that Drs. Rietjens and Dalvie have again contributed to this annual review. We would like to welcome Grover P Miller as an author for this year's issue, and we thank Tom Baillie for his contributions to last year's edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. Finally, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. This article is dedicated to Professor Thomas Baillie for his exceptional contributions to the field of drug metabolism.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- a Department of Drug Metabolism and Pharmacokinetics , Genentech, Inc , South San Francisco , CA , USA
| | | | - Deepak Dalvie
- c Drug Metabolism and Pharmacokinetics, Celgene Corporation , San Diego , CA USA
| | - Grover Miller
- d Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
61
|
Yang X, Li W, Sun Y, Guo X, Huang W, Peng Y, Zheng J. Comparative Study of Hepatotoxicity of Pyrrolizidine Alkaloids Retrorsine and Monocrotaline. Chem Res Toxicol 2017; 30:532-539. [DOI: 10.1021/acs.chemrestox.6b00260] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaojing Yang
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Ying Sun
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Xiucai Guo
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Wenlin Huang
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ying Peng
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
62
|
Mei N, Guo X, Ren Z, Kobayashi D, Wada K, Guo L. Review of Ginkgo biloba-induced toxicity, from experimental studies to human case reports. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:1-28. [PMID: 28055331 PMCID: PMC6373469 DOI: 10.1080/10590501.2016.1278298] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ginkgo biloba seeds and leaves have been used as a traditional herbal remedy for thousands of years, and its leaf extract has been consumed as a botanical dietary supplement for decades. Ginkgo biloba extract is a complex mixture with numerous components, including flavonol glycosides and terpene lactones, and is one of the most widely sold botanical dietary supplements worldwide. Concerns about potential health risks for the general population have been raised because of the widespread human exposure to Ginkgo biloba and its potential toxic and carcinogenic activities in rodents. The National Toxicology Program conducted 2-year gavage studies on one Ginkgo biloba leaf extract and concluded that there was clear evidence of carcinogenic activity of this extract in mice based on an increased incidence of hepatocellular carcinoma and hepatoblastoma. Recently, Ginkgo biloba leaf extract has been classified as a possible human carcinogen (Group 2B) by the International Agency for Research on Cancer. This review presents updated information on the toxicological effects from experimental studies both in vitro and in vivo to human case reports (caused by ginkgo seeds or leaves), and also summarizes the negative results from relatively large clinical trials.
Collapse
Affiliation(s)
- Nan Mei
- a Division of Genetic and Molecular Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Xiaoqing Guo
- a Division of Genetic and Molecular Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Zhen Ren
- b Division of Biochemical Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Daisuke Kobayashi
- c Department of Food and Chemical Toxicology , Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido , Hokkaido , Japan
| | - Keiji Wada
- c Department of Food and Chemical Toxicology , Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido , Hokkaido , Japan
| | - Lei Guo
- b Division of Biochemical Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| |
Collapse
|
63
|
Fu PP. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation. Chem Res Toxicol 2016; 30:81-93. [DOI: 10.1021/acs.chemrestox.6b00297] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter P. Fu
- National Center for Toxicological
Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
64
|
Xia Q, Zhao Y, Lin G, Beland FA, Cai L, Fu PP. Pyrrolizidine Alkaloid-Protein Adducts: Potential Non-invasive Biomarkers of Pyrrolizidine Alkaloid-Induced Liver Toxicity and Exposure. Chem Res Toxicol 2016; 29:1282-92. [DOI: 10.1021/acs.chemrestox.6b00120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Yuewei Zhao
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Frederick A. Beland
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Lining Cai
- Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| |
Collapse
|
65
|
The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Arch Toxicol 2016; 91:949-965. [PMID: 27125825 DOI: 10.1007/s00204-016-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2β). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2β). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.
Collapse
|
66
|
Guo X, Mei N. Aloe vera: A review of toxicity and adverse clinical effects. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:77-96. [PMID: 26986231 PMCID: PMC6349368 DOI: 10.1080/10590501.2016.1166826] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Aloe plant is employed as a dietary supplement in a variety of foods and as an ingredient in cosmetic products. The widespread human exposure and its potential toxic and carcinogenic activities raise safety concerns. Chemical analysis reveals that the Aloe plant contains various polysaccharides and phenolic chemicals, notably anthraquinones. Ingestion of Aloe preparations is associated with diarrhea, hypokalemia, pseudomelanosis coli, kidney failure, as well as phototoxicity and hypersensitive reactions. Recently, Aloe vera whole leaf extract showed clear evidence of carcinogenic activity in rats, and was classified by the International Agency for Research on Cancer as a possible human carcinogen (Group 2B). This review presents updated information on the toxicological effects, including the cytotoxicity, genotoxicity, carcinogenicity, and adverse clinical effects of Aloe vera whole leaf extract, gel, and latex.
Collapse
Affiliation(s)
- Xiaoqing Guo
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Nan Mei
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , Jefferson , Arkansas , USA
| |
Collapse
|
67
|
Li W, Wang K, Lin G, Peng Y, Zheng J. Lysine Adduction by Reactive Metabolite(s) of Monocrotaline. Chem Res Toxicol 2016; 29:333-41. [DOI: 10.1021/acs.chemrestox.5b00488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | | | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, Hong Kong
| | | | - Jiang Zheng
- Center for Developmental Therapeutics,
Seattle Children’s Research Institute, Division of Gastroenterology
and Hepatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98102, United States
| |
Collapse
|