51
|
Chang MC, Kuo YJ, Hung KH, Peng CL, Chen KY, Yeh LK. Liposomal dexamethasone-moxifloxacin nanoparticle combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing. ACTA ACUST UNITED AC 2020; 15:055022. [PMID: 32434164 DOI: 10.1088/1748-605x/ab9510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infectious keratitis is still one of the major causes of visual impairment and blindness, often affecting developing countries. Eye-drop therapy to reduce disease progression is the first line of treatment for infectious keratitis. The current limitations in controlling ophthalmic infections include rapid precorneal drug loss and the inability to provide long-term extraocular drug delivery. The aim of the present study was to develop a novel ophthalmic formulation to treat corneal infection. The formulation was prepared by constructing moxifloxacin (MFX) and dexamethasone (DEX)-loaded nanostructured lipid carriers (Lipo-MFX/DEX) mixed with a collagen/gelatin/alginate (CGA) biodegradable material (CGA-Lipo-MFX/DEX) for prolonged ocular application. The characteristics of the prepared Lipo-MFX/DEX nanoparticles were as follows: average size, 132.1 ± 73.58 nm; zeta potential, -6.27 ± 4.95 mV; entrapment efficiency, 91.5 ± 3.5%; drug content, 18.1 ± 1.7%. Our results indicated that CGA-Lipo-MFX/DEX could release an effective working concentration in 60 min and sustain the drug release for at least 12 h. CGA-Lipo-MFX/DEX did not produce significant toxicities, but it increased cell numbers when co-cultured with ocular epithelial cells. An animal study also confirmed that CGA-Lipo-MFX/DEX could inhibit pathogen microorganism growth and improve corneal wound healing. Our results suggest that CGA-Lipo-MFX/DEX could be a useful anti-inflammatory formulation for ophthalmological disease treatment.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan
| | | | | | | | | | | |
Collapse
|
52
|
Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep 2020; 72:1125-1151. [PMID: 32700248 DOI: 10.1007/s43440-020-00138-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Drug resistance developed towards conventional therapy is one of the important reasons for chemotherapy failure in cancer. The various underlying mechanism for drug resistance development in tumor includes tumor heterogeneity, some cellular levels changes, genetic factors, and others novel mechanisms which have been highlighted in the past few years. In the present scenario, researchers have to focus on these novel mechanisms and their tackling strategies. The small molecules, peptides, and nanotherapeutics have emerged to overcome the drug resistance in cancer. The drug delivery systems with targeting moiety enhance the site-specificity, receptor-mediated endocytosis, and increase the drug concentration inside the cells, thus minimizing drug resistance and improve their therapeutic efficacy. These therapeutic approaches work by modulating the different pathways responsible for drug resistance. This review focuses on the different mechanisms of drug resistance and the recent advancements in therapeutic approaches to improve the sensitivity and effectiveness of chemotherapeutics.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India
| | - Nagma Banjare
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India.,Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India
| | - Prem N Gupta
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India.
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
53
|
Liang P, Wu H, Zhang Z, Jiang S, Lv H. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. Int J Pharm 2020; 583:119375. [PMID: 32344021 DOI: 10.1016/j.ijpharm.2020.119375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
A novel nanocrystals delivery system of parthenolide (PTL) was designed to combined application with sorafenib (Sora) for advanced hepatocellular carcinoma (HCC) therapy, attempting to not only improve the poor aqueous solubility of PTL, but also enhance the synergistic therapeutic effects with Sora. The PTL nanocrystals (PTL-NCs) were prepared by precipitation-high-pressure homogenization method. The formed PTL-NCs with rod morphology possessed size of 126.9 ± 2.31 nm, zeta potential of -11.18 ± 0.59 mV and drug loading of 31.11 ± 1.99%. Meanwhile, PTL in PTL-NCs exhibited excellent storage stability and sustained release behavior. The combination therapy of Sora and PTL-NCs (Sora/PTL-NCs) in vitro for HepG2 cells presented superior therapeutic effects over that of individual PTL and Sora on intracellular uptake, cell proliferation inhibition and migration inhibition. Meanwhile the strongest anti-tumor effect with 81.86% inhibition rate and minimized systemic toxicity of Sora/PTL-NCs in vivo were obtained on tumor-bearing mice compared with that of PTL (48.84%) and Sora (58.83%). Thus, these findings suggested that PTL-NCs as an effective delivery system for the synergistically used with Sora to gain an optimal response against HCC, for referenced in the industrialization of nanocrystals products for intravenous administration.
Collapse
Affiliation(s)
- Pan Liang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Hangyi Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining, Shandong 272000, China.
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
54
|
Li ZY, Yin YF, Guo Y, Li H, Xu MQ, Liu M, Wang JR, Feng ZH, Duan XC, Zhang S, Zhang SQ, Wang GX, Liao A, Wang SM, Zhang X. Enhancing Anti-Tumor Activity of Sorafenib Mesoporous Silica Nanomatrix in Metastatic Breast Tumor and Hepatocellular Carcinoma via the Co-Administration with Flufenamic Acid. Int J Nanomedicine 2020; 15:1809-1821. [PMID: 32214813 PMCID: PMC7083629 DOI: 10.2147/ijn.s240436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Because tumor-associated inflammation is a hallmark of cancer treatment, in the present study, sorafenib mesoporous silica nanomatrix (MSNM@SFN) co-administrated with flufenamic acid (FFA, a non-steroidal anti-inflammatory drug (NSAID)) was investigated to enhance the anti-tumor activity of MSNM@SFN. METHODS Metastatic breast tumor 4T1/luc cells and hepatocellular carcinoma HepG2 cells were selected as cell models. The effects of FFA in vitro on cell migration, PGE2 secretion, and AKR1C1 and AKR1C3 levels in 4T1/luc and HepG2 cells were investigated. The in vivo anti-tumor activity of MSNM@SFN co-administrating with FFA (MSNM@SFN+FFA) was evaluated in a 4T1/luc metastatic tumor model, HepG2 tumor-bearing nude mice model, and HepG2 orthotopic tumor-bearing nude mice model, respectively. RESULTS The results indicated that FFA could markedly decrease cell migration, PGE2 secretion, and AKR1C1 and AKR1C3 levels in both 4T1/luc and HepG2 cells. The enhanced anti-tumor activity of MSNM@SFN+FFA compared with that of MSNM@SFN was confirmed in the 4T1/luc metastatic tumor model, HepG2 tumor-bearing nude mice model, and HepG2 orthotopic tumor-bearing nude mice model in vivo, respectively. DISCUSSION MSNM@SFN co-administrating with FFA (MSNM@SFN+FFA) developed in this study is an alternative strategy for improving the therapeutic efficacy of MSNM@SFN via co-administration with NSAIDs.
Collapse
Affiliation(s)
- Zhuo-Yue Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Yi-Fan Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Yang Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Hui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Mei-Qi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Man Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Jing-Ru Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Zhen-Han Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Shuang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Shuai-Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Guang-Xue Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Ai Liao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| | - Shu-Min Wang
- Department of Ultrasound, Peking University Third Hospital, Peking University, Beijing100191, People’s Republic of China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing100191, People’s Republic of China
| |
Collapse
|
55
|
Li N, Chen Y, Sun H, Huang T, Chen T, Jiang Y, Yang Q, Yan X, Wu M. Decreasing acute toxicity and suppressing colorectal carcinoma using Sorafenib-loaded nanoparticles. Pharm Dev Technol 2020; 25:556-565. [PMID: 31958240 DOI: 10.1080/10837450.2020.1718704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: A polymer-based nanoparticle was constructed to target sorafenib delivery to colorectal carcinoma cells and decrease the side effects of the drug.Methods: Sorafenib-loaded nanoparticles (S-NPs) based on PEG-PLGA were prepared using a double emulsion solvent evaporation method. The properties of S-NPs were evaluated and then their effects on the viability of colorectal cancer cells and normal human cells were assessed. The mechanism of S-NP internalization was explored using cellular uptake assays and in vitro fluorescence confocal imaging. Acute toxicity of sorafenib on its own or within S-NPs was assessed in mice.Results: S-NPs showed high drug loading and entrapment efficiencies, they did not cause extensive hemolysis, and they efficiently inhibited growth of colorectal cancer cell lines and human umbilical vein endothelial cells. S-NPs showed lower acute toxicity than the free drug.Conclusions: Loading sorafenib into nanoparticles can enhance its uptake by colorectal cancer cells and decrease its acute toxicity.
Collapse
Affiliation(s)
- Ningxi Li
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yan Chen
- Department of Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huimin Sun
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Tingwenli Huang
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Tianyu Chen
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yichun Jiang
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Qian Yang
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xiaoyan Yan
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Min Wu
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| |
Collapse
|
56
|
Zian W, Yang L, Peng W, Yifei J, Min J. Small molecular interaction-based fluorescence enhancement for second near-infrared imaging. Nanomedicine (Lond) 2020; 15:115-129. [DOI: 10.2217/nnm-2019-0233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: This study described a new strategy to enhance second near-infrared (NIR-II) fluorescence intensity. Materials & methods: NIR-II liposomes were prepared by thin film hydration method and their fluorescence properties were evaluated. The efficacy of the optimized liposome was then evaluated in vivo with low dose and irradiation. Results: Indocyanine green-IR1061 liposome exhibited higher fluorescence intensity (∼fourfold than IR1061 liposome) with the red-shifted emission. The intensity of indocyanine green-IR1061 cationic liposome was enhanced to approximately tenfold, which allowed us to perform angiography with lower doses and less exposure time. Conclusion: We report a new and efficient way to enhance NIR-II fluorescence intensity. This could be used to acquire high temporal resolution and signal-to-background ratio fluorescence imaging.
Collapse
Affiliation(s)
- Wang Zian
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Liu Yang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wang Peng
- Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
- Department of Biomedical Engineering,School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiang Yifei
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Ji Min
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
57
|
Zhang J, Ye CZ, Liu ZY, Yang Q, Ye Y. Preparation And Antibacterial Effects Of Carboxymethyl Chitosan-Modified Photo-Responsive Camellia Sapogenin Derivative Cationic Liposomes. Int J Nanomedicine 2019; 14:8611-8626. [PMID: 31802873 PMCID: PMC6830381 DOI: 10.2147/ijn.s218101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bacterial resistance to antibiotics is a persistent and intractable problem. The sapogenin isolated from the seeds of Camellia oleifera can inhibit antibiotic-resistant bacteria after structural modification. PURPOSE This study aims to improve sapogenin's antibacterial activity and avoid bacterial resistance based on nano-preparation with photo responsiveness. METHODS The liposome shell material of carboxymethyl chitosan-phosphatidyl ethanolamine (CMC-PE) was prepared using amidation reaction, and photo-responsive cationic (PCC) liposomes containing Camellia sapogenin derivative (CSD) and photosensitizer pheophorbide-a were prepared by film dispersion method. Encapsulation efficiency, drug loading, zeta potential, particle size distribution, morphology and stability of the PCC liposomes were determined by HPLC, particle size analyzer, transmission electron microscopy (TEM) and fluorescence microscopy. Photo-responsive release of CSD in the PCC liposomes was determined by laser (0.5 mW/cm2) at 665 nm. Antibacterial activity of the PCC liposomes with or without irradiation was analyzed by MIC50, MBC, MBIC50, and bacterial morphology to evaluate the antibacterial effects on amoxicillin resistant Escherichia coli and Staphylococcus aureus. RESULTS Size distribution, zeta potential, encapsulation efficiency and drug loading of the PCC liposomes were 189.23 ± 2.12 nm, 18.80 ± 1.57 mV, 83.52 ± 1.53% and 2.83 ± 0.05%, respectively. The PCC liposomes had higher storage stability and gastrointestinal stability, and no obvious hemolytic toxicity to rabbit red blood cells and no cytotoxicity after incubation with Hela cells. The photosensitizer pheophorbide-a was uniformly dispersed in the phospholipid layer of the PCC liposomes and increased the CSD release after irradiation. The PCC liposomes could bind to bacteria and impaired their morphology and structure, and had significant bactericidal effect on amoxicillin resistant E. coli and S. aureus. CONCLUSION The photo-responsive PCC liposomes are efficient antibacterial agents for avoidance of bacterial resistance against antibiotics.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Chuan-Zhen Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Ze-Yu Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Qian Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Yong Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| |
Collapse
|
58
|
Cytotoxic Effect of Paclitaxel and Lapatinib Co-Delivered in Polylactide- co-Poly(ethylene glycol) Micelles on HER-2-Negative Breast Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11040169. [PMID: 30959904 PMCID: PMC6523169 DOI: 10.3390/pharmaceutics11040169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
To find better strategies to enhance the cytotoxic effect of paclitaxel (PTX) and lapatinib (LAP) against breast cancer cells, we analyzed the efficacy of a novel delivery system containing polylactide-co-poly(ethylene glycol) (PLA-PEG) filomicelles of over 100 nm in length and spherical micelles of approximately 20 nm in diameter. The 1H NMR measurements confirmed the incorporation of PTX and LAP into micelles. Analysis of the drug release mechanism revealed the diffusion-controlled release of LAP and anomalous transport of PTX. Drug content analysis in lyophilized micelles and micellar solution showed their good storage stability for at least 6 weeks. Blank micelles, LAP-loaded micelles and free LAP did not affect MCF-7 breast cancer cell proliferation, suggesting that the cytotoxicity of PTX-, PTX/LAP-loaded micelles, and the binary mixture of free PTX and LAP was solely caused by PTX. PTX/LAP-loaded micelles showed greater toxicity compared to the binary mixture of PTX and LAP after 48 h and 72 h. Only free PTX alone induced P-gp activity. This study showed the feasibility of using a LAP and PTX combination to overcome MDR in MCF-7 cells, particularly when co-loaded into micelles. We suggest that PTX/LAP micelles can be applicable not only for the therapy of HER-2-positive, but also HER-2-negative breast cancers.
Collapse
|