51
|
Quantitative Monitoring of Dynamic Blood Flows Using Coflowing Laminar Streams in a Sensorless Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Determination of blood viscosity requires consistent measurement of blood flow rates, which leads to measurement errors and presents several issues when there are continuous changes in hematocrit changes. Instead of blood viscosity, a coflowing channel as a pressure sensor is adopted to quantify the dynamic flow of blood. Information on blood (i.e., hematocrit, flow rate, and viscosity) is not provided in advance. Using a discrete circuit model for the coflowing streams, the analytical expressions for four properties (i.e., pressure, shear stress, and two types of work) are then derived to quantify the flow of the test fluid. The analytical expressions are validated through numerical simulations. To demonstrate the method, the four properties are obtained using the present method by varying the flow patterns (i.e., constant flow rate or sinusoidal flow rate) as well as test fluids (i.e., glycerin solutions and blood). Thereafter, the present method is applied to quantify the dynamic flows of RBC aggregation-enhanced blood with a peristaltic pump, where any information regarding the blood is not specific. The experimental results indicate that the present method can quantify dynamic blood flow consistently, where hematocrit changes continuously over time.
Collapse
|
52
|
Matrai AA, Varga G, Tanczos B, Barath B, Varga A, Horvath L, Bereczky Z, Deak A, Nemeth N. In vitro effects of temperature on red blood cell deformability and membrane stability in human and various vertebrate species. Clin Hemorheol Microcirc 2021; 78:291-300. [PMID: 33682704 DOI: 10.3233/ch-211118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The effects of temperature on micro-rheological variables have not been completely revealed yet. OBJECTIVE To investigate micro-rheological effects of heat treatment in human, rat, dog, and porcine blood samples. METHODS Red blood cell (RBC) - buffer suspensions were prepared and immersed in a 37, 40, and 43°C heat-controlled water bath for 10 minutes. Deformability, as well as mechanical stability of RBCs were measured in ektacytometer. These tests were also examined in whole blood samples at various temperatures, gradually between 37 and 45°C in the ektacytometer. RESULTS RBC deformability significantly worsened in the samples treated at 40 and 43°C, more expressed in human, porcine, rat, and in smaller degree in canine samples. The way of heating (incubation vs. ektacytometer temperation) and the composition of the sample (RBC-PBS suspension or whole blood) resulted in the different magnitude of RBC deformability deterioration. Heating affected RBC membrane (mechanical) stability, showing controversial alterations. CONCLUSION Significant changes occur in RBC deformability by increasing temperature, showing inter-species differences. The magnitude of alterations is depending on the way of heating and the composition of the sample. The results may contribute to better understanding the micro-rheological deterioration in hyperthermia or fever.
Collapse
Affiliation(s)
- Adam Attila Matrai
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Horvath
- Department of Pharmaceutical Surveillance and Economics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
53
|
Janssen BGH, Najiminaini M, Zhang YM, Omidi P, Carson JJL. Multispectral intravital microscopy for simultaneous bright-field and fluorescence imaging of the microvasculature. Appl Microsc 2021; 51:12. [PMID: 34302534 PMCID: PMC8310548 DOI: 10.1186/s42649-021-00059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/08/2021] [Indexed: 12/05/2022] Open
Abstract
Intravital video microscopy permits the observation of microcirculatory blood flow. This often requires fluorescent probes to visualize structures and dynamic processes that cannot be observed with conventional bright-field microscopy. Conventional light microscopes do not allow for simultaneous bright-field and fluorescent imaging. Moreover, in conventional microscopes, only one type of fluorescent label can be observed. This study introduces multispectral intravital video microscopy, which combines bright-field and fluorescence microscopy in a standard light microscope. The technique enables simultaneous real-time observation of fluorescently-labeled structures in relation to their direct physical surroundings. The advancement provides context for the orientation, movement, and function of labeled structures in the microcirculation.
Collapse
Affiliation(s)
- Barry G H Janssen
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada. .,Kidney Clinical Research Unit (KCRU), London Health Sciences Centre, London, ON, N6C 6B5, Canada.
| | - Mohamadreza Najiminaini
- Imaging Program, St.Joseph's Health Care, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, Western University, London, ON, N6A 5C1, Canada
| | - Yan Min Zhang
- Kidney Clinical Research Unit (KCRU), London Health Sciences Centre, London, ON, N6C 6B5, Canada.,Trauma Research Centre, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China.,School of Biomedical Engineering, Western University, London, ON, N6A 3K7, Canada.,Intensive Care Unit, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China
| | - Parsa Omidi
- Imaging Program, St.Joseph's Health Care, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, Western University, London, ON, N6A 5C1, Canada.,Intensive Care Unit, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China
| | - Jeffrey J L Carson
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada.,Imaging Program, St.Joseph's Health Care, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, Western University, London, ON, N6A 5C1, Canada.,Intensive Care Unit, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China
| |
Collapse
|
54
|
Kubánková M, Hohberger B, Hoffmanns J, Fürst J, Herrmann M, Guck J, Kräter M. Physical phenotype of blood cells is altered in COVID-19. Biophys J 2021; 120:2838-2847. [PMID: 34087216 PMCID: PMC8169220 DOI: 10.1016/j.bpj.2021.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical syndrome coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 is characterized by rapid spreading and high mortality worldwide. Although the pathology is not yet fully understood, hyperinflammatory response and coagulation disorders leading to congestions of microvessels are considered to be key drivers of the still-increasing death toll. Until now, physical changes of blood cells have not been considered to play a role in COVID-19 related vascular occlusion and organ damage. Here, we report an evaluation of multiple physical parameters including the mechanical features of five frequent blood cell types, namely erythrocytes, lymphocytes, monocytes, neutrophils, and eosinophils. More than four million blood cells of 17 COVID-19 patients at different levels of severity, 24 volunteers free from infectious or inflammatory diseases, and 14 recovered COVID-19 patients were analyzed. We found significant changes in lymphocyte stiffness, monocyte size, neutrophil size and deformability, and heterogeneity of erythrocyte deformation and size. Although some of these changes recovered to normal values after hospitalization, others persisted for months after hospital discharge, evidencing the long-term imprint of COVID-19 on the body.
Collapse
Affiliation(s)
- Markéta Kubánková
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Hoffmanns
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Fürst
- Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
55
|
Bornert A, Boscher J, Pertuy F, Eckly A, Stegner D, Strassel C, Gachet C, Lanza F, Léon C. Cytoskeletal-based mechanisms differently regulate in vivo and in vitro proplatelet formation. Haematologica 2021; 106:1368-1380. [PMID: 32327502 PMCID: PMC8094084 DOI: 10.3324/haematol.2019.239111] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Platelets are produced by bone marrow megakaryocytes through cytoplasmic protrusions, named native proplatelets (nPPT), into blood vessels. Proplatelets also refer to protrusions observed in megakaryocyte culture (cultured proplatelets [cPPT]) which are morphologically different. Contrary to cPPT, the mechanisms of nPPT formation are poorly understood. We show here in living mice that nPPT elongation is in equilibrium between protrusion and retraction forces mediated by myosin-IIA. We also found, using wild-type and b1-tubulin-deficient mice, that microtubule behavior differs between cPPT and nPPT, being absolutely required in vitro, while less critical in vivo. Remarkably, microtubule depolymerization in myosin-deficient mice did not affect nPPT elongation. We then calculated that blood Stokes’ forces may be sufficient to promote nPPT extension, independently of myosin and microtubules. Together, we propose a new mechanism for nPPT extension that might explain contradictions between severely affected cPPT production and moderate platelet count defects in some patients and animal models.
Collapse
Affiliation(s)
- Alicia Bornert
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Julie Boscher
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Fabien Pertuy
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - David Stegner
- University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, Germany
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Catherine Léon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| |
Collapse
|
56
|
Lu M, Kanne CK, Reddington RC, Lezzar DL, Sheehan VA, Shevkoplyas SS. Concurrent Assessment of Deformability and Adhesiveness of Sickle Red Blood Cells by Measuring Perfusion of an Adhesive Artificial Microvascular Network. Front Physiol 2021; 12:633080. [PMID: 33995119 PMCID: PMC8113687 DOI: 10.3389/fphys.2021.633080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarker development is a key clinical research need in sickle cell disease (SCD). Hemorheological parameters are excellent candidates as abnormal red blood cell (RBC) rheology plays a critical role in SCD pathophysiology. Here we describe a microfluidic device capable of evaluating RBC deformability and adhesiveness concurrently, by measuring their effect on perfusion of an artificial microvascular network (AMVN) that combines microchannels small enough to require RBC deformation, and laminin (LN) coating on channel walls to model intravascular adhesion. Each AMVN device consists of three identical capillary networks, which can be coated with LN (adhesive) or left uncoated (non-adhesive) independently. The perfusion rate for sickle RBCs in the LN-coated networks (0.18 ± 0.02 nL/s) was significantly slower than in non-adhesive networks (0.20 ± 0.02 nL/s), and both were significantly slower than the perfusion rate for normal RBCs in the LN-coated networks (0.22 ± 0.01 nL/s). Importantly, there was no overlap between the ranges of perfusion rates obtained for sickle and normal RBC samples in the LN-coated networks. Interestingly, treatment with poloxamer 188 decreased the perfusion rate for sickle RBCs in LN-coated networks in a dose-dependent manner, contrary to previous studies with conventional assays, but in agreement with the latest clinical trial which showed no clinical benefit. Overall, these findings suggest the potential utility of the adhesive AMVN device for evaluating the effect of novel curative and palliative therapies on the hemorheological status of SCD patients during clinical trials and in post-market clinical practice.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Celeste K Kanne
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Riley C Reddington
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Dalia L Lezzar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Vivien A Sheehan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
57
|
Changes of Hematological and Hemorheological Parameters in Rabbits with Hypercholesterolemia. Metabolites 2021; 11:metabo11040249. [PMID: 33920738 PMCID: PMC8072928 DOI: 10.3390/metabo11040249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
Hypercholesterolemia plays an important role in the development of atherosclerosis, leading to endothelial dysfunction, ischemic events, and increased mortality. Numerous studies suggest the pivotal role of rheological factors in the pathology of atherosclerosis. To get a more detailed hematological and hemorheological profile in hypercholesterolemia, we carried out an experiment on rabbits. Animals were divided into two groups: the control group (Control) was kept on normal rabbit chow, the high-cholesterol diet group (HC) was fed with special increased cholesterol-containing food. Hematological parameters (Sysmex K-4500 automate), whole blood and plasma viscosity (Hevimet-40 capillary viscometer), red blood cell (RBC) aggregation (Myrenne MA-1 aggregometer), deformability and mechanical stability (LoRRca MaxSis Osmoscan ektacytometer) were tested. The white blood cell and platelet count, mean corpuscular volume, and mean corpuscular hemoglobin were significantly higher in the HC group, while the RBC count, hemoglobin, and hematocrit values were lower than the Control data. Viscosity values corrected to 40% hematocrit were higher in the HC group. The RBC aggregation significantly increased in the HC vs. the Control. The HC group showed significantly worse results both in RBCs' deformability and membrane stability. In conclusion, the atherogenic diet worsens the hematological and macro- and micro-rheological parameters, affecting blood flow properties and microcirculation.
Collapse
|
58
|
Nilsen JH, Schanche T, Kondratiev TV, Hevrøy O, Sieck GC, Tveita T. Maintaining intravenous volume mitigates hypothermia-induced myocardial dysfunction and accumulation of intracellular Ca 2. Exp Physiol 2021; 106:1196-1207. [PMID: 33728692 DOI: 10.1113/ep089397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Detailed guidelines for volume replacement to counteract hypothermia-induced intravascular fluid loss are lacking. Evidence suggests colloids might have beneficial effects compared to crystalloids. Are central haemodynamic function and level of hypothermia-induced calcium overload, as a marker of cardiac injury, restored by fluid substitution during rewarming, and are colloids favourable to crystalloids? What is the main finding and its importance? Infusion with crystalloid or dextran during rewarming abolished post-hypothermic cardiac dysfunction, and partially mitigated myocardial calcium overload. The effects of volume replacement to support haemodynamic function are comparable to those using potent cardio-active drugs. These findings underline the importance of applying intravascular volume replacement to maintain euvolaemia during rewarming. ABSTRACT Previous research exploring pathophysiological mechanisms underlying circulatory collapse after rewarming victims of severe accidental hypothermia has documented post-hypothermic cardiac dysfunction and hypothermia-induced elevation of intracellular Ca2+ concentration ([Ca2+ ]i ) in myocardial cells. The aim of the present study was to examine if maintaining euvolaemia during rewarming mitigates cardiac dysfunction and/or normalizes elevated myocardial [Ca2+ ]i . A total of 21 male Wistar rats (300 g) were surface cooled to 15°C, then maintained at 15°C for 4 h, and subsequently rewarmed to 37°C. The rats were randomly assigned to one of three groups: (1) non-intervention control (n = 7), (2) dextran treated (i.v. 12 ml/kg dextran 70; n = 7), or (3) crystalloid treated (24 ml/kg 0.9% i.v. saline; n = 7). Infusions occurred during the first 30 min of rewarming. Arterial blood pressure, stroke volume (SV), cardiac output (CO), contractility (dP/dtmax ) and blood gas changes were measured. Post-hypothermic changes in [Ca2+ ]i were measured using the method of radiolabelled Ca2+ (45 Ca2+ ). Untreated controls displayed post-hypothermic cardiac dysfunction with significantly reduced CO, SV and dP/dtmax . In contrast, rats receiving crystalloid or dextran treatment showed a return to pre-hypothermic control levels of CO and SV after rewarming, with the dextran group displaying significantly better amelioration of post-hypothermic cardiac dysfunction than the crystalloid group. Compared to the post-hypothermic increase in myocardial [Ca2+ ]i in non-treated controls, [Ca2+ ]i values with crystalloid and dextran did not increase to the same extent after rewarming. Volume replacement with crystalloid or dextran during rewarming abolishes post-hypothermic cardiac dysfunction, and partially mitigates the hypothermia-induced elevation of [Ca2+ ]i .
Collapse
Affiliation(s)
- Jan Harald Nilsen
- Anesthesia and Critical Care research group, Department of Clinical Medicine, UiT, Arctic University of Norway, Tromsø, Norway.,Department of Research and Education, Norwegian Air Ambulance Foundation, Drøbak, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Torstein Schanche
- Anesthesia and Critical Care research group, Department of Clinical Medicine, UiT, Arctic University of Norway, Tromsø, Norway.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Timofei V Kondratiev
- Anesthesia and Critical Care research group, Department of Clinical Medicine, UiT, Arctic University of Norway, Tromsø, Norway
| | - Olav Hevrøy
- Department of Anesthesiology and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Torkjel Tveita
- Anesthesia and Critical Care research group, Department of Clinical Medicine, UiT, Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
59
|
Cai S, Li H, Zheng F, Kong F, Dao M, Karniadakis GE, Suresh S. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc Natl Acad Sci U S A 2021; 118:e2100697118. [PMID: 33762307 PMCID: PMC8020788 DOI: 10.1073/pnas.2100697118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanics of blood flow is necessary for developing insights into mechanisms of physiology and vascular diseases in microcirculation. Given the limitations of technologies available for assessing in vivo flow fields, in vitro methods based on traditional microfluidic platforms have been developed to mimic physiological conditions. However, existing methods lack the capability to provide accurate assessment of these flow fields, particularly in vessels with complex geometries. Conventional approaches to quantify flow fields rely either on analyzing only visual images or on enforcing underlying physics without considering visualization data, which could compromise accuracy of predictions. Here, we present artificial-intelligence velocimetry (AIV) to quantify velocity and stress fields of blood flow by integrating the imaging data with underlying physics using physics-informed neural networks. We demonstrate the capability of AIV by quantifying hemodynamics in microchannels designed to mimic saccular-shaped microaneurysms (microaneurysm-on-a-chip, or MAOAC), which signify common manifestations of diabetic retinopathy, a leading cause of vision loss from blood-vessel damage in the retina in diabetic patients. We show that AIV can, without any a priori knowledge of the inlet and outlet boundary conditions, infer the two-dimensional (2D) flow fields from a sequence of 2D images of blood flow in MAOAC, but also can infer three-dimensional (3D) flow fields using only 2D images, thanks to the encoded physics laws. AIV provides a unique paradigm that seamlessly integrates images, experimental data, and underlying physics using neural networks to automatically analyze experimental data and infer key hemodynamic indicators that assess vascular injury.
Collapse
Affiliation(s)
- Shengze Cai
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Fuyin Zheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- School of Biological Sciences, Nanyang Technological University, 639798 Singapore
| | - Fang Kong
- School of Biological Sciences, Nanyang Technological University, 639798 Singapore
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912;
- School of Engineering, Brown University, Providence, RI 02912
| | - Subra Suresh
- Nanyang Technological University, 639798 Singapore
| |
Collapse
|
60
|
Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Int J Mol Sci 2021; 22:ijms22062996. [PMID: 33804258 PMCID: PMC7999025 DOI: 10.3390/ijms22062996] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’ mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.
Collapse
|
61
|
Priyadarshani J, Roy T, Das S, Chakraborty S. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology. ACS Biomater Sci Eng 2021; 7:1263-1277. [PMID: 33555875 DOI: 10.1021/acsbiomaterials.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several disease conditions, such as cancer metastasis and atherosclerosis, are deeply connected with the complex biophysical phenomena taking place in the complicated architecture of the tiny blood vessels in human circulatory systems. Traditionally, these diseases have been probed by devising various animal models, which are otherwise constrained by ethical considerations as well as limited predictive capabilities. Development of an engineered network-on-a-chip, which replicates not only the functional aspects of the blood-carrying microvessels of human bodies, but also its geometrical complexity and hierarchical microstructure, is therefore central to the evaluation of organ-assist devices and disease models for therapeutic assessment. Overcoming the constraints of reported resource-intensive fabrication techniques, here, we report a facile, simple yet niche combination of surface engineering and microfabrication strategy to devise a highly ordered hierarchical microtubular network embedded within a polydimethylsiloxane (PDMS) slab for dynamic cell culture on a chip, with a vision of addressing the exclusive aspects of the vascular transport processes under medically relevant paradigms. The design consists of hierarchical complexity ranging from capillaries (∼80 μm) to large arteries (∼390 μm) and a simultaneous tuning of the interfacial material chemistry. The fluid flow behavior is characterized numerically within the hierarchical network, and a confluent endothelial layer is realized on the inner wall of microfluidic device. We further explore the efficacy of the device as a vascular deposition assay of circulatory tumor cells (MG-63 osteosarcoma cells) present in whole blood. The proposed paradigm of mimicking an in vitro vascular network in a low-cost paradigm holds further potential for probing cellular dynamics as well as offering critical insights into various vascular transport processes.
Collapse
Affiliation(s)
- Jyotsana Priyadarshani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
62
|
Bok T, Hysi E, Kolios MC. In vivo photoacoustic assessment of the oxygen saturation changes in the human radial artery: a preliminary study associated with age. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200377R. [PMID: 33754541 PMCID: PMC7984962 DOI: 10.1117/1.jbo.26.3.036006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/02/2021] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE We demonstrate the potential of probing the sO2 change under blood flow in vivo using photoacoustic (PA) imaging and sheds light on the complex relationship between RBC aggregation and oxygen delivery. AIM To conduct in vivo assessments of the sO2 in the radial artery of healthy volunteers and simultaneously probe the relation between the sO2 and hemodynamic behavior such as red blood cell (RBC) aggregation. APPROACH The effects of PA-based measurements of blood hemodynamics were studied as a function of the subjects' age (20s, 30s, and 40s). The pulsatile blood flow in the human radial artery of 12 healthy subjects was imaged in the 700 to 900 nm optical wavelength range using a linear array-based PA system. RESULTS The PA power when blood velocity is minimum (Pamax) was larger than the one attained at maximum blood velocity (Pamin), consistent with predictions based on the cyclical variation of RBC aggregation during pulsatile flow. The difference between Pamin and Pamax at 800 nm (ΔPa800) increased with age (1.7, 2.2, and 2.6 dB for age group of 20s, 30s, and 40s, respectively). The sO2 computed from Pamax was larger than the one from Pamin. CONCLUSIONS The ΔPa800 increased with participant age. The ΔPa800 metric could be a surrogate of noninvasively monitoring the age-induced changes in RBC aggregation. The sO2 change during a cycle of pulsatile blood flow also increased with age, demonstrating that RBC aggregation can affect the sO2 change.
Collapse
Affiliation(s)
- Taehoon Bok
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Toronto, Canada
- St. Michael’s Hospital, Keenan Research Centre for Biomedical Science, Division of Nephrology, Toronto, Canada
| | - Eno Hysi
- St. Michael’s Hospital, Keenan Research Centre for Biomedical Science, Division of Nephrology, Toronto, Canada
| | - Michael C. Kolios
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Toronto, Canada
- St. Michael’s Hospital, Keenan Research Centre for Biomedical Science, Division of Nephrology, Toronto, Canada
- Address all correspondence to Michael C. Kolios,
| |
Collapse
|
63
|
Fulas OA, Laferrière A, Ware DMA, Shir Y, Coderre TJ. The effect of a topical combination of clonidine and pentoxifylline on post-traumatic neuropathic pain patients: study protocol for a randomized, double-blind placebo-controlled trial. Trials 2021; 22:149. [PMID: 33596969 PMCID: PMC7890866 DOI: 10.1186/s13063-021-05088-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND First-line pharmacotherapy for neuropathic pain entails the use of systemic antidepressants and anticonvulsants. These drugs are not optimally effective and poorly tolerated, especially for older patients with comorbid conditions. Given the high number of such patients, there is a need for a greater repertoire of safer and more effective analgesics. Clonidine and pentoxifylline are vasodilator agents that work synergistically to enhance tissue perfusion and oxygenation. The topical administration of these drugs, individually and in combination, has shown anti-nociceptive properties in rodent models of neuropathic pain. A topically-administered combination of clonidine and pentoxifylline also effectively reduced the intensity of both spontaneous and evoked pain in healthy volunteers with experimentally-induced neuropathic pain. The next step in advancing this formulation to clinical use is the undertaking of a phase II clinical study to assess its efficacy and safety in neuropathic pain patients. METHODS/DESIGN This is a study protocol for a randomized, double-blind, placebo-controlled, phase II clinical trial with a cross-over design. It is a single-centered, 5-week study that will enroll a total of 32 patients with post-traumatic peripheral neuropathic pain. Patients will be treated topically with either a combination of clonidine and pentoxifylline or placebo for a period of 2 weeks each, in randomly assigned order across patients, with an intervening washout period of 1 week. The primary outcome measures of the study are the intensity of spontaneous pain recorded daily in a pain diary with a visual analog scale, and the degree of mechanical allodynia evoked by a brush stimulus. The secondary outcome measures of the study include scores of pain relief and change in the area of punctate hyperalgesia. This trial has been prospectively registered with ClinicalTrials.gov on November 1, 2017. ClinicalTrials.gov Identifier: NCT03342950 . DISCUSSION The analgesic use of topical treatment with clonidine and pentoxifylline in combination has not been investigated in post-traumatic neuropathic pain. This study could generate the first evidence for the efficacy and safety of the formulation in alleviating pain in patients with neuropathic pain. Furthermore, this trial will provide objective grounds for the investigation of other agents that enhance tissue oxygenation in the topical treatment of peripheral neuropathic pain. TRIAL REGISTRATION This trial has been registered with ClinicalTrials.gov owned by NIH's US National Library of Medicine. ClinicalTrials.gov NCT03342950 . Registered on November 1, 2017 (trial was prospectively registered). PROTOCOL VERSION AND IDENTIFIERS This is protocol version 5, dated June 2018. McGill University Health Center (MUHC) Reaseach Ethics Board (REB) identification number: TTNP 2018-3906.
Collapse
Affiliation(s)
- Oli Abate Fulas
- Department of Anesthesia, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - André Laferrière
- Department of Anesthesia, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - D Mark A Ware
- Alan Edwards Pain Management Unit, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Yoram Shir
- Alan Edwards Pain Management Unit, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Terence J Coderre
- Department of Anesthesia, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
64
|
Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury-An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. Int J Mol Sci 2021; 22:ijms22041864. [PMID: 33668478 PMCID: PMC7918617 DOI: 10.3390/ijms22041864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice. Furthermore, the pathomechanism of hepatic IRI has not been fully elucidated yet. In the complex process of the IRI, flow properties of blood are not neglectable. Hemorheological factors play an important role in determining tissue perfusion and orchestrating mechanical shear stress-dependent endothelial functions. Antioxidant and anti-inflammatory agents, ischemic conditioning protocols, dynamic organ preservation techniques may improve rheological properties of the post-reperfusion hepatic blood flow and target endothelial cells, exerting a potent protection against hepatic IRI. In this review paper we give a comprehensive overview of microcirculatory, rheological and molecular–pathophysiological aspects of hepatic circulation in the context of IRI and hepatoprotective approaches.
Collapse
|
65
|
Piety NZ, Stutz J, Yilmaz N, Xia H, Yoshida T, Shevkoplyas SS. Microfluidic capillary networks are more sensitive than ektacytometry to the decline of red blood cell deformability induced by storage. Sci Rep 2021; 11:604. [PMID: 33436749 PMCID: PMC7804960 DOI: 10.1038/s41598-020-79710-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Ektacytometry has been the primary method for evaluating deformability of red blood cells (RBCs) in both research and clinical settings. This study was designed to test the hypothesis that the flow of RBCs through a network of microfluidic capillaries could provide a more sensitive assessment of the progressive impairment of RBC deformability during hypothermic storage than ektacytometry. RBC units (n = 9) were split in half, with one half stored under standard (normoxic) conditions and the other half stored hypoxically, for up to 6 weeks. RBC deformability was measured weekly using two microfluidic devices, an artificial microvascular network (AMVN) and a multiplexed microcapillary network (MMCN), and two commercially available ektacytometers (RheoScan-D and LORRCA). By week 6, the elongation indexes measured with RheoScan-D and LORRCA decreased by 5.8–7.1% (5.4–6.9% for hypoxic storage). Over the same storage duration, the AMVN perfusion rate declined by 27.5% (24.5% for hypoxic) and the MMCN perfusion rate declined by 49.0% (42.4% for hypoxic). Unlike ektacytometry, both AMVN and MMCN measurements showed statistically significant differences between the two conditions after 1 week of storage. RBC morphology deteriorated continuously with the fraction of irreversibly-damaged (spherical) cells increasing significantly faster for normoxic than for hypoxic storage. Consequently, the number of MMCN capillary plugging events and the time MMCN capillaries spent plugged was consistently lower for hypoxic than for normoxic storage. These data suggest that capillary networks are significantly more sensitive to both the overall storage-induced decline of RBC deformability, and to the differences between the two storage conditions, than ektacytometry.
Collapse
Affiliation(s)
- Nathaniel Z Piety
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX, 77204-5060, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Julianne Stutz
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX, 77204-5060, USA
| | - Nida Yilmaz
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX, 77204-5060, USA
| | - Hui Xia
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX, 77204-5060, USA
| | | | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX, 77204-5060, USA.
| |
Collapse
|
66
|
Gurung S, Dubansky B, Virgen CA, Verbeck GF, Murphy DW. Effects of crude oil vapors on the cardiovascular flow of embryonic Gulf killifish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141627. [PMID: 33181982 DOI: 10.1016/j.scitotenv.2020.141627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Direct contact with toxicants in crude oil during embryogenesis causes cardiovascular defects, but the effects of exposure to airborne volatile organic compounds released from spilled oil are not well understood. The effects of crude oil-derived airborne toxicants on peripheral blood flow were examined in Gulf killifish (Fundulus grandis) since this model completes embryogenesis in the air. Particle image velocimetry was used to measure in vivo blood flow in intersegmental arteries of control and oil-exposed embryos. Significant effects in oil-exposed embryos included increased pulse rate, reduced mean blood flow speed and volumetric flow rate, and decreased pulsatility, demonstrating that normal-appearing oil-exposed embryos retain underlying cardiovascular defects. Further, hematocrit moderately increased in oil-exposed embryos. This study highlights the potential for fine-scale physiological measurement techniques to better understand the sub-lethal effects of oil exposure and demonstrates the efficacy of Gulf killifish as a unique teleost model for aerial toxicant exposure studies.
Collapse
Affiliation(s)
- Sanjib Gurung
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, United States
| | - Benjamin Dubansky
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States
| | - Camila A Virgen
- Department of Chemistry, University of North Texas, Denton, TX 76203, United States
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas, Denton, TX 76203, United States
| | - David W Murphy
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
67
|
Man Y, Kucukal E, An R, Bode A, Little JA, Gurkan UA. Standardized microfluidic assessment of red blood cell-mediated microcapillary occlusion: Association with clinical phenotype and hydroxyurea responsiveness in sickle cell disease. Microcirculation 2021; 28:e12662. [PMID: 33025653 DOI: 10.1111/micc.12662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES We present a standardized in vitro microfluidic assay and Occlusion Index (OI) for the assessment of red blood cell (RBC)-mediated microcapillary occlusion and its clinical associations in sickle cell disease (SCD). METHODS Red blood cell mediated microcapillary occlusion represented by OI and its clinical associations were assessed for seven subjects with hemoglobin-SC disease (HbSC), 18 subjects with homozygous SCD (HbSS), and five control individuals (HbAA). RESULTS We identified two sub-populations with HbSS based on the OI distribution. HbSS subjects with relatively higher OIs had significantly lower hemoglobin levels, lower fetal hemoglobin (HbF) levels, and lower mean corpuscular volume (MCV), but significantly higher serum lactate dehydrogenase levels and absolute reticulocyte counts, compared to subjects with HbSS and lower OIs. HbSS subjects who had relatively higher OIs were more likely to have had a concomitant diagnosis of intrapulmonary shunting (IPS). Further, lower OI associated with hydroxyurea (HU) responsiveness in subjects with HbSS, as evidenced by significantly elevated HbF levels and MCV. CONCLUSIONS We demonstrated that RBC-mediated microcapillary occlusion and OI associated with subject clinical phenotype and HU responsiveness in SCD. The presented standardized microfluidic assay may be useful for evaluating clinical phenotype and assessing therapeutic outcomes in SCD, including emerging targeted and curative treatments that aim to improve RBC deformability and microcirculatory health.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Division of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A Little
- Division of Hematology and Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
68
|
Moses SR, Adorno JJ, Palmer AF, Song JW. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am J Physiol Cell Physiol 2021; 320:C92-C105. [PMID: 33176110 PMCID: PMC7846973 DOI: 10.1152/ajpcell.00355.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
To understand how the microvasculature grows and remodels, researchers require reproducible systems that emulate the function of living tissue. Innovative contributions toward fulfilling this important need have been made by engineered microvessels assembled in vitro with microfabrication techniques. Microfabricated vessels, commonly referred to as "vessels-on-a-chip," are from a class of cell culture technologies that uniquely integrate microscale flow phenomena, tissue-level biomolecular transport, cell-cell interactions, and proper three-dimensional (3-D) extracellular matrix environments under well-defined culture conditions. Here, we discuss the enabling attributes of microfabricated vessels that make these models more physiological compared with established cell culture techniques and the potential of these models for advancing microvascular research. This review highlights the key features of microvascular transport and physiology, critically discusses the strengths and limitations of different microfabrication strategies for studying the microvasculature, and provides a perspective on current challenges and future opportunities for vessel-on-a-chip models.
Collapse
Affiliation(s)
- Savannah R Moses
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
69
|
Hevey R, Pouw RB, Harris C, Ricklin D. Sweet turning bitter: Carbohydrate sensing of complement in host defence and disease. Br J Pharmacol 2020; 178:2802-2822. [PMID: 33140840 DOI: 10.1111/bph.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a major role in threat recognition and in orchestrating responses to microbial intruders and accumulating debris. This immune surveillance is largely driven by lectins that sense carbohydrate signatures on foreign, diseased and healthy host cells and act as complement activators, regulators or receptors to shape appropriate immune responses. While carbohydrate sensing protects our bodies, misguided or impaired recognition can contribute to disease. Moreover, pathogenic microbes have evolved to evade complement by mimicking host signatures. While complement is recognized as a disease factor, we only slowly start to appreciate the role of carbohydrate interactions in the underlying processes. A better understanding of complement's sweet side will contribute to a better description of disease mechanisms and enhanced diagnostic and therapeutic options. This review introduces the key components in complement-mediated carbohydrate sensing, discusses their role in health and disease, and touches on the potential effects of carbohydrate-related disease intervention. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Claire Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
70
|
Shevchenko IL, Stoĭko IM, Gudymovich VG, Cherniago TI. [Glycocalyx as a determining factor in development of endothelial venous dysfunction and possibilities of correction thereof]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:71-77. [PMID: 33332308 DOI: 10.33529/angio2020404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Modern vascular surgery has the data on a substantial role of the endothelium in pathogenesis of vascular diseases. Endothelial dysfunction is associated with a wide range of pathological processes including those in chronic diseases of lower-limb veins. The discovery of the endothelial glycocalyx made it possible to evaluate its role in the development of endothelial dysfunction as a trigger mechanism in impairment of venous blood flow. The understanding of the unifying role of endothelial dysfunction in pathology in various fields of medicine provides a possibility of predicting the development of serious socially significant diseases such as cardiovascular diseases, diabetes mellitus, obstetrical complications, and to correct the conditions associated therewith. The present study was aimed at carrying out a systematic literature review, thus making it possible to evaluate the role of the endothelial glycocalyx in the development of endothelial dysfunction, as well as to determine therapy with sulodexide capable of decreasing the probability of the onset of endothelial dysfunction at the expense of an anti-inflammatory, antithrombotic, and angioprotective effect on the endothelial wall.
Collapse
Affiliation(s)
- Iu L Shevchenko
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - Iu M Stoĭko
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - V G Gudymovich
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| | - T Iu Cherniago
- National Medical and Surgical Centre named after N.I. Pirogov under the RF Ministry of Public Health, Moscow, Russia
| |
Collapse
|
71
|
An inhibitor of endothelial ETS transcription factors promotes physiologic and therapeutic vessel regression. Proc Natl Acad Sci U S A 2020; 117:26494-26502. [PMID: 33020273 DOI: 10.1073/pnas.2015980117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During the progression of ocular diseases such as retinopathy of prematurity and diabetic retinopathy, overgrowth of retinal blood vessels results in the formation of pathological neovascular tufts that impair vision. Current therapeutic options for treating these diseases include antiangiogenic strategies that can lead to the undesirable inhibition of normal vascular development. Therefore, strategies that eliminate pathological neovascular tufts while sparing normal blood vessels are needed. In this study we exploited the hyaloid vascular network in murine eyes, which naturally undergoes regression after birth, to gain mechanistic insights that could be therapeutically adapted for driving neovessel regression in ocular diseases. We found that endothelial cells of regressing hyaloid vessels underwent down-regulation of two structurally related E-26 transformation-specific (ETS) transcription factors, ETS-related gene (ERG) and Friend leukemia integration 1 (FLI1), prior to apoptosis. Moreover, the small molecule YK-4-279, which inhibits the transcriptional and biological activity of ETS factors, enhanced hyaloid regression in vivo and drove Human Umbilical Vein Endothelial Cells (HUVEC) tube regression and apoptosis in vitro. Importantly, exposure of HUVECs to sheer stress inhibited YK-4-279-induced apoptosis, indicating that low-flow vessels may be uniquely susceptible to YK-4-279-mediated regression. We tested this hypothesis by administering YK-4-279 to mice in an oxygen-induced retinopathy model that generates disorganized and poorly perfused neovascular tufts that mimic human ocular diseases. YK-4-279 treatment significantly reduced neovascular tufts while sparing healthy retinal vessels, thereby demonstrating the therapeutic potential of this inhibitor.
Collapse
|
72
|
Jafari CZ, Sullender CT, Miller DR, Mihelic SA, Dunn AK. Effect of vascular structure on laser speckle contrast imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:5826-5841. [PMID: 33149989 PMCID: PMC7587253 DOI: 10.1364/boe.401235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Laser speckle contrast imaging (LSCI) is a powerful tool for non-invasive, real-time imaging of blood flow in tissue. However, the effect of tissue geometry on the form of the electric field autocorrelation function and speckle contrast values is yet to be investigated. In this paper, we present an ultrafast forward model for simulating a speckle contrast image with the ability to rapidly update the image for a desired illumination pattern and flow perturbation. We demonstrate the first simulated speckle contrast image and compare it against experimental results. We simulate three mouse-specific cerebral cortex decorrelation time images and implement three different schemes for analyzing the effects of homogenization of vascular structure on correlation decay times. Our results indicate that dissolving structure and assuming homogeneous geometry creates up to ∼ 10x shift in the correlation function decay times and alters its form compared with the case for which the exact geometry is simulated. These effects are more pronounced for point illumination and detection imaging schemes, highlighting the significance of accurate modeling of the three-dimensional vascular geometry for accurate blood flow estimates.
Collapse
Affiliation(s)
- Chakameh Z. Jafari
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Colin T. Sullender
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - David R. Miller
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samuel A. Mihelic
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
73
|
Blakely IP, Horton RE. A microfluidic computational fluid dynamics model for cellular interaction studies of sickle cell disease vaso-occlusions. Microvasc Res 2020; 132:104052. [PMID: 32768462 DOI: 10.1016/j.mvr.2020.104052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
Abstract
Individuals with sickle cell disease are plagued with vaso-occlusions, chronic blockages within the vasculature. Several factors including stiffer sickle red blood cells and increased cell aggregation contribute to vaso-occlusion formation; however much remains to be understood. We present a computational fluid dynamics blood flow simulation within a microfluidic platform using the Carreau model and Murray's law. Vaso-occlusions form preferentially near bifurcations within 60 s in the sickle cell disease simulation. Velocity profiles and shear rates align with clinical and experimental reports. We assert that results from this study can be utilized to inform experimental investigations and microfluidic system design decisions.
Collapse
Affiliation(s)
- Ian P Blakely
- Agricultural and Biological Engineering, College of Arts and Life Sciences, James Worth Bagley College of Engineering, Mississippi State University, United States of America
| | - Renita E Horton
- Biomedical Engineering Department, Cullen College of Engineering, University of Houston, United States of America.
| |
Collapse
|
74
|
Portörő I, Mukli P, Kocsis L, Hermán P, Caccia D, Perrella M, Mozzarelli A, Ronda L, Mathe D, Eke A. Model-based evaluation of the microhemodynamic effects of PEGylated HBOC molecules in the rat brain cortex: a laser speckle imaging study. BIOMEDICAL OPTICS EXPRESS 2020; 11:4150-4175. [PMID: 32923034 PMCID: PMC7449705 DOI: 10.1364/boe.388089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Hemoglobin-based oxygen carriers (HBOCs) were developed with the aim of substituting transfusions in emergency events. However, they exhibit adverse events, such as nitric oxide (NO) scavenging, vasoactivity, enhanced platelet aggregation, presently hampering their clinical application. The impact of two prototypical PEGylated HBOCs, Euro-PEG-Hb and PEG-HbO2, endowed by different oxygen affinities and hydrodynamic volumes, was assessed on the cerebrocortical parenchymal microhemodynamics, and extravasation through the blood-brain-barrier (BBB) by laser speckle contrast imaging (LSCI) method and near-infrared (NIR) imaging, respectively. By evaluating voxel-wise cerebrocortical red blood cell velocity, non-invasively for its mean kernel-wise value ( v ¯ RBC ), and model-derived kernel-wise predictions for microregional tissue hematocrit, THt, and fractional change in hematocrit-corrected vascular resistance, R', as measures of potential adverse effects (enhanced platelet aggregation and vasoactivity, respectively) we found i) no significant difference between tested HBOCs in the systemic and microregional parameters, and in the relative spatial dispersion of THt, and R' as additional measures of HBOC-related adverse effects, and ii) no extravasation through BBB by Euro-PEG-Hb. We conclude that Euro-PEG-Hb does not exhibit adverse effects in the brain microcirculation that could be directly attributed to NO scavenging.
Collapse
Affiliation(s)
- István Portörő
- Institute of Translational Medicine, Semmelweis University, Hungary
- These authors contributed equally to this work
| | - Péter Mukli
- Institute of Translational Medicine, Semmelweis University, Hungary
- Department of Physiology, Semmelweis University, Hungary
- These authors contributed equally to this work
| | - László Kocsis
- Institute of Translational Medicine, Semmelweis University, Hungary
| | - Péter Hermán
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Dario Caccia
- Department of Biomedical Science and Technology, University of Milan, Italy
- Department of Food and Drug, University of Parma, Italy
| | - Michele Perrella
- Department of Biomedical Science and Technology, University of Milan, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Italy
- Institute of Biophysics, National Research Council, Pisa, Italy
- Biopharmanet-TEC, University of Parma, Italy
| | - Luca Ronda
- Institute of Biophysics, National Research Council, Pisa, Italy
- Biopharmanet-TEC, University of Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Domokos Mathe
- CROmed Research and Service Centers Ltd., Budapest, Hungary
| | - Andras Eke
- Institute of Translational Medicine, Semmelweis University, Hungary
- Department of Physiology, Semmelweis University, Hungary
| |
Collapse
|
75
|
Mini-review: Perfluorocarbons, Oxygen Transport, and Microcirculation in Low Flow States: in Vivo and in Vitro Studies. Shock 2020; 52:19-27. [PMID: 28930919 DOI: 10.1097/shk.0000000000000994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The in vivo study of microvascular oxygen transport requires accurate and challenging measurements of several mass transfer parameters. Although recommended, blood flow and oxygenation are typically not measured in many studies where treatments for ischemia are tested. Therefore, the aim of this communication is to briefly review cardinal aspects of oxygen transport, and the effects of perfluorocarbon (PFC) treatment on blood flow and oxygenation based mostly on studies performed in our laboratory. As physiologically relevant events in oxygen transport take place at the microvascular level, we implemented the phosphorescence quenching technique coupled with noninvasive intravital videomicroscopy for quantitative evaluation of these events in vivo. Rodent experimental models and various approaches have been used to induce ischemia, including hemorrhage, micro- and macroembolism, and microvessel occlusion. Measurements show decrease in microvascular blood flow as well as intravascular and tissue oxygen partial pressure (PO2) after these procedures. To minimize or reverse the effects of ischemia and hypoxia, artificial oxygen carriers such as different PFCs were tested. Well-defined endpoints such as blood flow and tissue PO2 were measured because they have significant effect on tissue survival and outcome. In several cases, enhancement of flow and oxygenation could be demonstrated. Similar results were found in vitro: PFC emulsion mixed with blood (from healthy donors and sickle cell disease patients) enhanced oxygen transport. In summary, PFCs may provide beneficial effects in these models by mechanisms at the microvascular level including facilitated diffusion and bubble reabsorption leading to improved blood flow and oxygenation.
Collapse
|
76
|
Hemorheological Alterations in Patients with Heart Failure with Reduced Ejection Fraction Treated by Resveratrol. Cardiovasc Ther 2020; 2020:7262474. [PMID: 32695229 PMCID: PMC7350166 DOI: 10.1155/2020/7262474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/30/2020] [Indexed: 01/08/2023] Open
Abstract
Objectives Several beneficial effects of resveratrol have already been published. This study evaluated the effect of resveratrol on the hemorheological parameters in patients with heart failure with reduced ejection fraction. Methods In our double-blind, placebo-controlled human clinical trial, we enrolled 60 outpatients with heart failure. Patients were randomized into two groups: receiving either 100 mg resveratrol capsule daily or placebo for 3 months. Hematocrit was determined by microhematocrit centrifuge. Plasma and whole blood viscosity was evaluated by capillary viscometer. Erythrocyte aggregation was measured by both LORCA and Myrenne aggregometers. LORCA ektacytometer was used for measuring erythrocyte deformability. Exercise capacity was assessed by a 6-minute walk test. Results Resveratrol treatment did not have any significant effect on hematocrit and viscosity. The erythrocyte deformability also remained unchanged. However, significant improvement of red blood cell aggregation was observed in the resveratrol group compared to baseline after 3 months. Furthermore, positive correlation was found between the exercise capacity and the hemorheological properties (Hct, WBV, and RBC aggregation and deformability) as well. Conclusion These findings indicate that resveratrol can significantly reduce red blood cell aggregation, which may positively influence microcirculation, which may contribute to the improvement of tissue perfusion and oxygen supply in heart failure.
Collapse
|
77
|
Correlation Between Wall Shear Stress and Acute Degradation of the Endothelial Glycocalyx During Cardiopulmonary Bypass. J Cardiovasc Transl Res 2020; 13:1024-1032. [DOI: 10.1007/s12265-020-10027-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
|
78
|
Ahn SJ, Ruiz-Uribe NE, Li B, Porter J, Sakadzic S, Schaffer CB. Label-free assessment of hemodynamics in individual cortical brain vessels using third harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2665-2678. [PMID: 32499951 PMCID: PMC7249811 DOI: 10.1364/boe.385848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 05/04/2023]
Abstract
We show that third harmonic generation (THG) microscopy using a 1-MHz train of 1,300-nm femtosecond duration laser pulses enabled visualization of the structure and quantification of flow speed in the cortical microvascular network of mice to a depth of > 1 mm. Simultaneous three-photon imaging of an intravascular fluorescent tracer enabled us to quantify the cell free layer thickness. Using the label-free imaging capability of THG, we measured flow speed in different types of vessels with and without the presence of an intravascular tracer conjugated to a high molecular weight dextran (2 MDa FITC-dextran, 5% w/v in saline, 100 µl). We found a ∼20% decrease in flow speeds in arterioles and venules due to the dextran-conjugated FITC, which we confirmed with Doppler optical coherence tomography. Capillary flow speeds did not change, although we saw a ∼7% decrease in red blood cell flux with dextran-conjugated FITC injection.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Nancy E. Ruiz-Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jason Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
79
|
Bento D, Lopes S, Maia I, Lima R, Miranda JM. Bubbles Moving in Blood Flow in a Microchannel Network: The Effect on the Local Hematocrit. MICROMACHINES 2020; 11:mi11040344. [PMID: 32224993 PMCID: PMC7230880 DOI: 10.3390/mi11040344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/07/2023]
Abstract
Air inside of blood vessels is a phenomenon known as gas embolism. During the past years, studies have been performed to assess the influence of air bubbles in microcirculation. In this study, we investigated the flow of bubbles in a microchannel network with several bifurcations, mimicking part of a capillary system. Thus, two working fluids were used, composed by sheep red blood cells (RBCs) suspended in a Dextran 40 solution with different hematocrits (5% and 10%). The experiments were carried out in a polydimethylsiloxane (PDMS) microchannel network fabricated by a soft lithography. A high-speed video microscopy system was used to obtain the results for a blood flow rate of 10 µL/min. This system enables the visualization of bubble formation and flow along the network. The results showed that the passage of air bubbles strongly influences the cell's local concentration, since a higher concentration of cells was observed upstream of the bubble, whereas a lower local hematocrit was visualized at the region downstream of the bubble. In bifurcations, bubbles may split asymmetrically, leading to an uneven distribution of RBCs between the outflow branches.
Collapse
Affiliation(s)
- David Bento
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.B.); (R.L.)
- Polytechnic Institute of Bragança, ESTiG/IPB, C. Sta. Apolónia, 5300-857 Bragança, Portugal;
| | - Sara Lopes
- Polytechnic Institute of Bragança, ESTiG/IPB, C. Sta. Apolónia, 5300-857 Bragança, Portugal;
| | - Inês Maia
- Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Rui Lima
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.B.); (R.L.)
- MEtRICS, Mechanical Eng. Dep., University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - João M. Miranda
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.B.); (R.L.)
- Correspondence:
| |
Collapse
|
80
|
Lubiana P, Bouws P, Roth LK, Dörpinghaus M, Rehn T, Brehmer J, Wichers JS, Bachmann A, Höhn K, Roeder T, Thye T, Gutsmann T, Burmester T, Bruchhaus I, Metwally NG. Adhesion between P. falciparum infected erythrocytes and human endothelial receptors follows alternative binding dynamics under flow and febrile conditions. Sci Rep 2020; 10:4548. [PMID: 32161335 PMCID: PMC7066226 DOI: 10.1038/s41598-020-61388-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/25/2020] [Indexed: 11/10/2022] Open
Abstract
Characterizing the adhesive dynamics of Plasmodium falciparum infected erythrocytes (IEs) to different endothelial cell receptors (ECRs) in flow is a big challenge considering available methods. This study investigated the adhesive dynamics of IEs to five ECRs (CD36, ICAM-1, P-selectin, CD9, CSA) using simulations of in vivo-like flow and febrile conditions. To characterize the interactions between ECRs and knobby and knobless IEs of two laboratory-adapted P. falciplarum isolates, cytoadhesion analysis over time was performed using a new tracking bioinformatics method. The results revealed that IEs performed rolling adhesion exclusively over CD36, but exhibited stationary binding to the other four ECRs. The absence of knobs affected rolling adhesion both with respect to the distance travelled by IEs and their velocity. Knobs played a critical role at febrile temperatures by stabilizing the binding interaction. Our results clearly underline the complexity of the IE-receptor interaction and the importance of knobs for the survival of the parasite at fever temperatures, and lead us to propose a new hypothesis that could open up new strategies for the treatment of malaria.
Collapse
Affiliation(s)
- Pedro Lubiana
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Philip Bouws
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Torben Rehn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jana Brehmer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Thorsten Thye
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Thorsten Burmester
- Zoological Institute, Department of Molecular Physiology, Hamburg University, Hamburg, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. .,Department of Biology, University of Hamburg, Hamburg, Germany.
| | | |
Collapse
|
81
|
Kang YJ. Microfluidic-Based Biosensor for Blood Viscosity and Erythrocyte Sedimentation Rate Using Disposable Fluid Delivery System. MICROMACHINES 2020; 11:mi11020215. [PMID: 32093288 PMCID: PMC7074636 DOI: 10.3390/mi11020215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022]
Abstract
To quantify the variation of red blood cells (RBCs) or plasma proteins in blood samples effectively, it is necessary to measure blood viscosity and erythrocyte sedimentation rate (ESR) simultaneously. Conventional microfluidic measurement methods require two syringe pumps to control flow rates of both fluids. In this study, instead of two syringe pumps, two air-compressed syringes (ACSs) are newly adopted for delivering blood samples and reference fluid into a T-shaped microfluidic channel. Under fluid delivery with two ACS, the flow rate of each fluid is not specified over time. To obtain velocity fields of reference fluid consistently, RBCs suspended in 40% glycerin solution (hematocrit = 7%) as the reference fluid is newly selected for avoiding RBCs sedimentation in ACS. A calibration curve is obtained by evaluating the relationship between averaged velocity obtained with micro-particle image velocimetry (μPIV) and flow rate of a syringe pump with respect to blood samples and reference fluid. By installing the ACSs horizontally, ESR is obtained by monitoring the image intensity of the blood sample. The averaged velocities of the blood sample and reference fluid (<UB>, <UR>) and the interfacial location in both fluids (αB) are obtained with μPIV and digital image processing, respectively. Blood viscosity is then measured by using a parallel co-flowing method with a correction factor. The ESR is quantified as two indices (tESR, IESR) from image intensity of blood sample (<IB>) over time. As a demonstration, the proposed method is employed to quantify contributions of hematocrit (Hct = 30%, 40%, and 50%), base solution (1× phosphate-buffered saline [PBS], plasma, and dextran solution), and hardened RBCs to blood viscosity and ESR, respectively. Experimental Results of the present method were comparable with those of the previous method. In conclusion, the proposed method has the ability to measure blood viscosity and ESR consistently, under fluid delivery of two ACSs.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| |
Collapse
|
82
|
Gaudette S, Hughes D, Boller M. The endothelial glycocalyx: Structure and function in health and critical illness. J Vet Emerg Crit Care (San Antonio) 2020; 30:117-134. [PMID: 32067360 DOI: 10.1111/vec.12925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/23/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To conduct a narrative review of the current literature in reference to the structure and function of the endothelial glycocalyx (EG) and its contribution to the pathophysiology of conditions relevant to the veterinary emergency and critical care clinician. Novel therapies for restoring or preserving the EG will also be discussed. DATA SOURCES Online databases (PubMed, CAB abstracts, Scopus) were searched between January 1st 2017 and May 1st 2017 for English language articles without publication date restriction. Keywords included EG, endothelial surface layer, degradation, syndecan-1, heparan sulfate, critical illness, sepsis, trauma, and therapeutics. DATA SYNTHESIS The EG is a complex and important structure located on the luminal surface of all blood vessels throughout the body. It plays an important role in normal vascular homeostasis including control of fluid exchange across the vascular barrier. Loss or degradation of the EG has an impact on inflammation, coagulation, and vascular permeability and tone. These changes are essential components in the pathophysiology of many conditions including sepsis and trauma. A substantial body of experimental animal and human clinical research over the last decade has demonstrated increased circulating concentrations of EG degradation products in these conditions. However, veterinary-specific research into the EG and critical illness is currently lacking. The utility of EG degradation products as diagnostic and prognostic tools continues to be investigated and new therapies to preserve or improve EG structure and function are under development. CONCLUSIONS The recognition of the presence of the EG has changed our understanding of transvascular fluid flux and the pathophysiology of many conditions of critical illness. The EG is an exciting target for novel therapeutics to improve morbidity and mortality in conditions such as sepsis and trauma.
Collapse
Affiliation(s)
- Sarah Gaudette
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Dez Hughes
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia.,Translational Research and Clinical Trials (TRACTS) Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Manuel Boller
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia.,Translational Research and Clinical Trials (TRACTS) Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
83
|
Lu M, Rab MA, Shevkoplyas SS, Sheehan VA. Blood rheology biomarkers in sickle cell disease. Exp Biol Med (Maywood) 2020; 245:155-165. [PMID: 31948290 DOI: 10.1177/1535370219900494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease (SCD) is the most common inherited blood disorder, affecting approximately 100,000 patients in the U.S. and millions more worldwide. Patients with SCD experience a wide range of clinical complications, including frequent pain crises, stroke, and early mortality, all originating from a single-point mutation in the β-globin subunit. The RBC changes resulting from the sickle mutation lead to a host of rheological abnormalities that diminish microvascular blood flow, and produce severe anemia due to RBC hemolysis, and ischemia from vaso-occlusion initiated by sticky, rigid sickle RBCs. While the pathophysiology and mechanisms of SCD have been investigated for many years, therapies to treat the disease are limited. In addition to RBC transfusion, there are only two US Food and Drug Administration (FDA)-approved drugs to ameliorate SCD complications: hydroxyurea (HU) and L-glutamine (Endari™). The only curative therapy currently available is allogeneic hematopoietic stem cell transplantation (HSCT), which is generally reserved for individuals with a matched related donor, comprising only 10–15% of the total SCD population. Potentially curative advanced gene therapy approaches for SCD are under investigation in ongoing clinical trials. The ultimate goal of any curative treatment should be to repair the hemorheological abnormalities caused by SCD, and thus normalize blood flow and prevent clinical complications. Our mini-review highlights a set of key hemorheological biomarkers (and the current and emerging technologies used to measure them) that may be used to guide the development of novel curative and palliative therapies for SCD, and functionally assess outcomes. Impact statement Severe impairment of blood rheology is the hallmark of SCD pathophysiology, and one of the key factors predisposing SCD patients to pain crises, organ damage, and early mortality. As novel therapies emerge to treat or cure SCD, it is crucial that these treatments are functionally evaluated for their effect on blood rheology. This review describes a comprehensive panel of rheological biomarkers, their clinical uses, and the technologies used to obtain them. The described technologies can produce highly sensitive measurements of the ability of current treatments to improve blood rheology of SCD patients. The goal of curative therapies should be to achieve blood rheology biomarkers measurements in the range of sickle cell trait individuals (HbAS). The use of the panel of rheological biomarkers proposed in this review could significantly accelerate the development, optimization, and clinical translation of novel therapies for SCD.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Minke Ae Rab
- Laboratory of Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht University, Utrecht 3584, The Netherlands
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
84
|
Hong JK, Gao L, Singh J, Goh T, Ruhoff AM, Neto C, Waterhouse A. Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomater Sci 2020; 8:5824-5845. [DOI: 10.1039/d0bm01284j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the importance of flow in medical device thrombosis and explores current and emerging technologies to evaluate dynamic biomaterial Thrombosis in vitro.
Collapse
Affiliation(s)
- Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- School of Medical Sciences
- Faculty of Medicine and Health
| | - Lingzi Gao
- Heart Research Institute
- Newtown
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jasneil Singh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Tiffany Goh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Alexander M. Ruhoff
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- School of Medical Sciences
- Faculty of Medicine and Health
- The University of Sydney
- Australia
- Heart Research Institute
| |
Collapse
|
85
|
Spears JR. Reperfusion Microvascular Ischemia After Prolonged Coronary Occlusion: Implications And Treatment With Local Supersaturated Oxygen Delivery. HYPOXIA 2019; 7:65-79. [PMID: 31696129 PMCID: PMC6814765 DOI: 10.2147/hp.s217955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Following a prolonged coronary arterial occlusion, heterogeneously scattered, focal regions of low erythrocyte flow are commonly found throughout the reperfused myocardium. Experimental studies have also demonstrated the presence of widespread, focally patchy regions of microvascular ischemia during reperfusion (RMI). However, the potential contribution of RMI to tissue viability and function has received little attention in the absence of practical clinical methods for its detection. In this review, the anatomic/functional basis of RMI is summarized, along with the evidence for its presence in reperfused myocardium. Advances in microcirculation research related to obstructive responses of vascular endothelial cells and blood elements to the effects of hypoxia and low shear stress are discussed, and a potential cycle of intensification of RMI from such responses and progressive loss of functional capillary density is presented. In capillaries with impaired erythrocyte flow, compensatory increases in the delivery of oxygen, because of its low solubility in plasma, are effective only at high partial pressures. As discussed herein, attenuation of the cycle with oxygen at hyperbaric levels in plasma is, very likely, responsible for improved tissue level perfusion noted experimentally. Observed clinical benefits from intracoronary SuperSaturated oxygen (SSO2) delivery, including infarct size reduction, can be attributed to attenuation of RMI with improvement in microvascular blood flow.
Collapse
Affiliation(s)
- James Richard Spears
- Cardiovascular Research Laboratory, Department of Medicine, Division of Cardiology, Beaumont Heart & Vascular Center, Dearborn, MI 48124, USA
| |
Collapse
|
86
|
Krüger-Genge A, Blocki A, Franke RP, Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci 2019; 20:ijms20184411. [PMID: 31500313 PMCID: PMC6769656 DOI: 10.3390/ijms20184411] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
The vascular endothelium, a monolayer of endothelial cells (EC), constitutes the inner cellular lining of arteries, veins and capillaries and therefore is in direct contact with the components and cells of blood. The endothelium is not only a mere barrier between blood and tissues but also an endocrine organ. It actively controls the degree of vascular relaxation and constriction, and the extravasation of solutes, fluid, macromolecules and hormones, as well as that of platelets and blood cells. Through control of vascular tone, EC regulate the regional blood flow. They also direct inflammatory cells to foreign materials, areas in need of repair or defense against infections. In addition, EC are important in controlling blood fluidity, platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration. They also tightly keep the balance between coagulation and fibrinolysis and play a major role in the regulation of immune responses, inflammation and angiogenesis. To fulfill these different tasks, EC are heterogeneous and perform distinctly in the various organs and along the vascular tree. Important morphological, physiological and phenotypic differences between EC in the different parts of the arterial tree as well as between arteries and veins optimally support their specified functions in these vascular areas. This review updates the current knowledge about the morphology and function of endothelial cells, particularly their differences in different localizations around the body paying attention specifically to their different responses to physical, biochemical and environmental stimuli considering the different origins of the EC.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Department of Biomaterials and Healthcare, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam-Golm 14476, Germany.
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada.
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine (ITERM), School of Biomedical Sciences (SBS), Chinese University of Hong Kong (CUHK), New Territories, Hong Kong, China
| | - Ralf-Peter Franke
- Central Institute for Biomedical Technology, Dep. Biomaterials, University of Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany
| |
Collapse
|
87
|
Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows. MICROMACHINES 2019; 10:mi10090577. [PMID: 31480325 PMCID: PMC6780160 DOI: 10.3390/mi10090577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022]
Abstract
Aggregation of red blood cells (RBCs) varies substantially depending on changes of several factors such as hematocrit, membrane deformability, and plasma proteins. Among these factors, hematocrit has a strong influence on the aggregation of RBCs. Thus, while measuring RBCs aggregation, it is necessary to monitor hematocrit or, additionally, the effect of hematocrit (i.e., blood viscosity or pressure). In this study, the sequential measurement method of pressure and RBC aggregation is proposed by quantifying blood flow (i.e., velocity and image intensity) through a microfluidic device, in which an air-compressed syringe (ACS) is used to control the sample injection. The microfluidic device used is composed of two channels (pressure channel (PC), and blood channel (BC)), an inlet, and an outlet. A single ACS (i.e., air suction = 0.4 mL, blood suction = 0.4 mL, and air compression = 0.3 mL) is employed to supply blood into the microfluidic channel. At an initial time (t < 10 s), the pressure index (PI) is evaluated by analyzing the intensity of microscopy images of blood samples collected inside PC. During blood delivery with ACS, shear rates of blood flows vary continuously over time. After a certain amount of time has elapsed (t > 30 s), two RBC aggregation indices (i.e., SEAI: without information on shear rate, and erythrocyte aggregation index (EAI): with information on shear rate) are quantified by analyzing the image intensity and velocity field of blood flow in BC. According to experimental results, PI depends significantly on the characteristics of the blood samples (i.e., hematocrit or base solutions) and can be used effectively as an alternative to blood viscosity. In addition, SEAI and EAI also depend significantly on the degree of RBC aggregation. In conclusion, on the basis of three indices (two RBC aggregation indices and pressure index), the proposed method is capable of measuring RBCs aggregation consistently using a microfluidic device.
Collapse
|
88
|
Clinically feasible method for assessing leukocyte rheology in whole blood. Heart Vessels 2019; 35:268-277. [PMID: 31444563 PMCID: PMC6981318 DOI: 10.1007/s00380-019-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022]
Abstract
This study reports a novel method for assessment of leukocyte rheological activation with a new designed microchannel array chip to mimic the human microvascular network for microchannel array flow analysis (MCFAN). Study subjects were 79 healthy volunteers and 42 patients with type 2 diabetes mellitus (DM) and 36 patients with acute coronary syndrome (ACS). Using the anticoagulants heparin and ethylene-diamine-tetraacetic acid (EDTA)-2Na which inhibits platelets and leukocytes by chelating Ca2+, we were able to quantify leukocyte rheological activation by the subtraction of passage time of blood treated with both heparin and EDTA-2Na from that of blood treated with heparin only. We confirmed that passage times of whole blood with heparin + EDTA-2Na were always shorter than those of whole blood with only heparin in healthy subjects and patients with DM or ACS under suction pressures of − 30 cmH2O. There was a significant correlation between delta whole blood passage time {(heparin tube) − (EDTA-2Na + heparin)} and serum levels of myeloperoxidase and adhesive leukocyte number, respectively, even in blood from patients with DM or ACS, who suffered from inflammation. In conclusion we have developed a clinically feasible method for assessing leukocyte rheological activation in whole blood in ex vivo.
Collapse
|
89
|
Ghanem S, Somogyi V, Tanczos B, Szabo B, Deak A, Nemeth N. Modulation of micro-rheological and hematological parameters in the presence of artificial carotid-jugular fistula in rats. Clin Hemorheol Microcirc 2019; 71:325-335. [PMID: 29914014 DOI: 10.3233/ch-180411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Arteriovenous fistula (AVF) may affect erythrocytes through many pathways (e.g., mechanical, inflammatory). However, these effects haven't been elucidated completely yet. OBJECTIVE To follow-up the hemorheological and the hematological changes in the presence of artificial carotid-jugular fistula in rats. METHODS Female Wistar rats were subjected to sham-operated group (SG, n = 6) and to fistula group (FG, n = 10). Under general anesthesia, the right carotid artery and jugular vein were isolated via a neck incision, and in the FG carotid-jugular fistula was performed by microsurgical techniques. Hematological variables, red blood cell (RBC) deformability and membrane (mechanical) stability parameters were determined before operation and on the 1st and 6th postoperative weeks. Density separated samples ('young' and 'old' RBCs) were also tested. RESULTS In FG group hematocrit, RBC and platelet counts increased gradually to reach highly significant level of increment on the 6th postoperative week. RBC deformability significantly was impaired. The membrane stability test showed lower deformability values after applying mechanical shearing. No significant differences were observed between density separated RBC subpopulations. CONCLUSIONS The presence of arteriovenous fistula may lead to an increment of RBC mass and impairment of RBC deformability. These changes could be one of the pathways through which the fistula influences the microcirculation.
Collapse
Affiliation(s)
- Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
90
|
PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling. Biophys J 2019; 114:2052-2058. [PMID: 29742399 PMCID: PMC5961748 DOI: 10.1016/j.bpj.2018.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022] Open
Abstract
In this article, we present PolNet, an open-source software tool for the study of blood flow and cell-level biological activity during vessel morphogenesis. We provide an image acquisition, segmentation, and analysis protocol to quantify endothelial cell polarity in entire in vivo vascular networks. In combination, we use computational fluid dynamics to characterize the hemodynamics of the vascular networks under study. The tool enables, to our knowledge for the first time, a network-level analysis of polarity and flow for individual endothelial cells. To date, PolNet has proven invaluable for the study of endothelial cell polarization and migration during vascular patterning, as demonstrated by two recent publications. Additionally, the tool can be easily extended to correlate blood flow with other experimental observations at the cellular/molecular level. We release the source code of our tool under the Lesser General Public License.
Collapse
|
91
|
Schmitz B, Niehues H, Lenders M, Thorwesten L, Klose A, Krüger M, Brand E, Brand SM. Effects of high-intensity interval training on microvascular glycocalyx and associated microRNAs. Am J Physiol Heart Circ Physiol 2019; 316:H1538-H1551. [DOI: 10.1152/ajpheart.00751.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High-intensity interval training (HIIT) has been proposed to exert vasculoprotective effects. This study aimed to evaluate whether HIIT affects the microvasculature, including the endothelial glycocalyx barrier, and to identify associated microRNAs (miRNAs). Fifty healthy participants (23.1 ± 3.0 yr) performed a 4-wk 4 × 30-s all-out running HIIT. Sidestream dark-field imaging was performed at baseline and follow-up to detect changes of the sublingual microvasculature including the endothelial glycocalyx. Exercise parameters were determined by continuous running field test and documentation of high-intensity runs. miRNAs potentially associated with glycocalyx thickness were selected by structured literature search and blood samples for miRNA, and lactate measurements were drawn at baseline and follow-up HIIT. At baseline, a correlation between maximal exercise performance capacity and glycocalyx thickness (determined by perfused boundary region) was detected ( P = 0.045, r = 0.303). Increased exercise performance at follow-up also correlated with glycocalyx thickness ( P = 0.031, r = 0.416), and increased high-intensity sprinting speed was associated with an increased number of perfused vessels ( P = 0.0129, r = 0.449). Literature search identified miR-143, -96-5p, and -24, which were upregulated by HIIT already at baseline and showed an association with peak blood lactate levels after sprints (all P < 0.05). Moreover, increased baseline miR-143 levels predicted increased glycocalyx thickness at follow-up (AUCmiR-143 = 0.92, 95% confidence interval, 0.81–1.0, P = 0.0008). Elevated resting miR-126 levels after the intervention were associated with cell-free versican mRNA levels. We conclude that HIIT induces changes in the endothelial glycocalyx of the microvasculature. Associated miRNAs such as miR-143 may represent a tool for monitoring early vasculoprotective adaptations to physical activity. NEW & NOTEWORTHY High-intensity interval training is known to improve health-related fitness in general and in lifestyle-induced chronic diseases. To visualize microvasculature structure and to detect exercise-induced changes, sublingual sidestream dark-field imaging microscopy was used, and circulating miRNAs were measured. This study shows that exercise-induced changes correlate with associated circulating miRNA, which might be useful for monitoring vasculoprotective effects. Furthermore, sidestream dark-field imaging may represent a sensitive tool for the early detection of exercise-induced systemic vascular changes.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Hannah Niehues
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Malte Lenders
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Lothar Thorwesten
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Andreas Klose
- Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Michael Krüger
- Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
92
|
Detterich JA, Kato R, Bush A, Chalacheva P, Ponce D, De Zoysa M, Shah P, Khoo MC, Meiselman HJ, Coates TD, Wood JC. Sickle cell microvascular paradox-oxygen supply-demand mismatch. Am J Hematol 2019; 94:678-688. [PMID: 30916797 DOI: 10.1002/ajh.25476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
We have previously demonstrated that sickle cell disease (SCD) patients maintain normal global systemic and cerebral oxygen delivery by increasing cardiac output. However, ischemic end-organ injury remains common suggesting that tissue oxygen delivery may be impaired by microvascular dysregulation or damage. To test this hypothesis, we performed fingertip laser Doppler flowmetry measurements at the base of the nailbed and regional oxygen saturation (rSO2 ) on the dorsal surface of the same hand. This was done during flow mediated dilation (FMD) studies in 26 chronically transfused SCD, 75 non-transfused SCD, and 18 control subjects. Chronically transfused SCD patients were studied prior to and following a single transfusion and there was no acute change in rSO2 or perfusion. Laser Doppler estimates of resting perfusion were 76% higher in non-transfused and 110% higher in transfused SCD patients, compared to control subjects. In contrast, rSO2 was 12 saturation points lower in non-transfused SCD patients, but normal in the transfused SCD patients. During cuff occlusion, rSO2 declined at the same rate in all subjects suggesting similar intrinsic oxygen consumption rates. Upon cuff release, laser doppler post occlusive hyperemia was blunted in SCD patients in proportion to their resting perfusion values. Transfusion therapy did not improve the hyperemia response. FMD was impaired in SCD subjects but partially ameliorated in transfused SCD subjects. Taken together, non-transfused SCD subjects demonstrate impaired conduit artery FMD, impaired microcirculatory post-occlusive hyperemia, and resting hypoxia in the hand despite compensated oxygen delivery, suggesting impaired oxygen supply-demand matching. Transfusion improves FMD and oxygen supply-demand matching but not microcirculation hyperemic response.
Collapse
Affiliation(s)
- Jon A. Detterich
- Division of Cardiology, Children's Hospital Los AngelesUniversity of Southern California Keck School of Medicine Los Angeles California
- Department of Physiology and NeuroscienceUniversity of Southern California Keck School of Medicine Los Angeles California
| | - Roberta Kato
- Division of Pediatric PulmonologyChildren's Hospital Los Angeles Los Angeles California
| | - Adam Bush
- Department of Biomedical EngineeringUniversity of Southern California Viterbi School of Engineering
| | - Patjanaporn Chalacheva
- Department of Biomedical EngineeringUniversity of Southern California Viterbi School of Engineering
| | - Derek Ponce
- Division of Cardiology, Children's Hospital Los AngelesUniversity of Southern California Keck School of Medicine Los Angeles California
| | - Madushka De Zoysa
- Division of Cardiology, Children's Hospital Los AngelesUniversity of Southern California Keck School of Medicine Los Angeles California
| | - Payal Shah
- Division of Hematology Oncology, Children's Hospital Los AngelesUniversity of Southern California Keck School of Medicine Los Angeles California
| | - Michael C. Khoo
- Department of Biomedical EngineeringUniversity of Southern California Viterbi School of Engineering
| | - Herbert J. Meiselman
- Department of Physiology and NeuroscienceUniversity of Southern California Keck School of Medicine Los Angeles California
| | - Thomas D. Coates
- Division of Hematology Oncology, Children's Hospital Los AngelesUniversity of Southern California Keck School of Medicine Los Angeles California
| | - John C. Wood
- Division of Cardiology, Children's Hospital Los AngelesUniversity of Southern California Keck School of Medicine Los Angeles California
- Department of Biomedical EngineeringUniversity of Southern California Viterbi School of Engineering
| |
Collapse
|
93
|
Ren P, Wang BC, Wang YZ, Xia HJ, Guo TW, Li XF. Finite element analysis for blood accumulation in intracerebral hemorrhage. Exp Ther Med 2019; 17:4681-4686. [PMID: 31086601 PMCID: PMC6488987 DOI: 10.3892/etm.2019.7474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 06/29/2018] [Indexed: 11/06/2022] Open
Abstract
Biomechanical methods may provide a novel way to understand blood accumulation in intracerebral hemorrhage (ICH). The current study presents the results of a biomechanical analysis of blood accumulation in ICH using a finite element analysis, with an emphasis on the pressure exerted by the mass effect of blood in early ICH. A two-dimensional finite model of the human brain parenchyma and the human ventricular system was developed and analyzed under two preloading conditions. The material properties of the human parenchyma were derived from previous reports. Ogden's theory was applied to describe the stress-strain association in soft tissue. The results of the present study indicated that maximal stress was located at the two ends of the hemorrhage cavity, with the majority of stresses distributed on the zone surrounding the bleed. The two load environments demonstrated similar stress distributions. The loads put on the detached edges were not less than the intracranial pressure (ICP) when the stress threshold was reached. The results of the present study suggest that the direction of blood accumulation can be determined by the shape of the initial blood mass. Mechanical factors (blood pressure and ICP) did not serve a definitive role in preventing blood from accumulating in the early stages of ICH. The present study may aid in understanding the effects of mechanical factors in blood accumulation and hemostasis in patients with early ICH.
Collapse
Affiliation(s)
- Peng Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Bo-Chu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Ya-Zhou Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Hai-Jian Xia
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting-Wang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xiao-Fei Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
94
|
Reichel F, Mauer J, Nawaz AA, Gompper G, Guck J, Fedosov DA. High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability. Biophys J 2019; 117:14-24. [PMID: 31235179 DOI: 10.1016/j.bpj.2019.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 02/01/2023] Open
Abstract
The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study that systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells.
Collapse
Affiliation(s)
- Felix Reichel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Johannes Mauer
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Ahmad Ahsan Nawaz
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light, Erlangen, Germany.
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
95
|
Binding Heterogeneity of Plasmodium falciparum to Engineered 3D Brain Microvessels Is Mediated by EPCR and ICAM-1. mBio 2019; 10:mBio.00420-19. [PMID: 31138740 PMCID: PMC6538777 DOI: 10.1128/mbio.00420-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria research has been hindered by the inaccessibility of the brain. Here, we have developed an engineered 3D human brain microvessel model that mimics the blood flow rates and architecture of small blood vessels to study how P. falciparum-infected human erythrocytes attach to brain endothelial cells. By studying parasite lines with different adhesive properties, we show that the malaria parasite binding rate is heterogeneous and strongly influenced by physiological differences in flow and whether the endothelium has been previously activated by TNF-α, a proinflammatory cytokine that is linked to malaria disease severity. We also show the importance of human EPCR and ICAM-1 in parasite binding. Our model sheds new light on how P. falciparum binds within brain microvessels and provides a powerful method for future investigations of recruitment of human brain pathogens to the blood vessel lining of the brain. Cerebral malaria is a severe neurological complication associated with sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the brain microvasculature, but the specific binding interactions remain under debate. Here, we have generated an engineered three-dimensional (3D) human brain endothelial microvessel model and studied P. falciparum binding under the large range of physiological flow velocities that occur in both health and disease. Perfusion assays on 3D microvessels reveal previously unappreciated phenotypic heterogeneity in parasite binding to tumor necrosis factor alpha (TNF-α)-activated brain endothelial cells. While clonal parasite lines expressing a group B P. falciparum erythrocyte membrane protein 1 (PfEMP1) present an increase in binding to activated 3D microvessels, P. falciparum-IE expressing DC8-PfEMP1 present a decrease in binding. The differential response to endothelium activation is mediated by surface expression changes of endothelial protein C receptor (EPCR) and intercellular adhesion molecule 1 (ICAM-1). These findings demonstrate heterogeneity in parasite binding and provide evidence for a parasite strategy to adapt to a changing microvascular environment during infection. The engineered 3D human brain microvessel model provides new mechanistic insight into parasite binding and opens opportunities for further studies on malaria pathogenesis and parasite-vessel interactions.
Collapse
|
96
|
Yilmaz O, Afsar B, Ortiz A, Kanbay M. The role of endothelial glycocalyx in health and disease. Clin Kidney J 2019; 12:611-619. [PMID: 31583086 PMCID: PMC6768294 DOI: 10.1093/ckj/sfz042] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
The endothelium is the largest organ in the body and recent studies have shown that the endothelial glycocalyx (eGCX) plays a major role in health and disease states. The integrity of eGCX is vital for homoeostasis and disruption of its structure and function plays a major role in several pathologic conditions. An increased understanding of the numerous pathophysiological roles of eGCX may lead to the development of potential surrogate markers for endothelial injury or novel therapeutic targets. This review provides a state-of-the-art update on the structure and function of the eGCX, emphasizing the current understanding of interorgan crosstalk between the eGCX and other organs that might also contribute to the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Onur Yilmaz
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
97
|
Kodama Y, Aoki H, Yamagata Y, Tsubota K. In vitro analysis of blood flow in a microvascular network with realistic geometry. J Biomech 2019; 88:88-94. [PMID: 30975487 DOI: 10.1016/j.jbiomech.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
Abstract
In vitro blood flow was measured in a polydimethysiloxane micro channel to reflect the complex geometry of a microvascular network. Flow rates were determined from the velocities of tracer particles moving along the center line of the flow channel, and the flow rates of two working fluids were then compared: water and blood. In some bifurcating channels, the measured flow rate showed that the effects of bifurcation in the apparent viscosity depend on the hematocrit, such that the flow rate in the daughter channel with the higher (lower) flow rate was lower (higher) for blood than for water. The measured flow rates in other bifurcating channels reflected effects from the surrounding flow channels acting as bypasses, which tended to balance out the effects of bifurcation.
Collapse
Affiliation(s)
- Yuya Kodama
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan; RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyoshi Aoki
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yutaka Yamagata
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Tsubota
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan; RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
98
|
Kadri OE, Chandran VD, Surblyte M, Voronov RS. In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images. Comput Biol Med 2019; 106:1-11. [PMID: 30660757 PMCID: PMC6390965 DOI: 10.1016/j.compbiomed.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
Ischemia which leads to heart attacks and strokes is one of the major causes of death in the world. Whether an occlusion occurs or not depends on the ability of a growing thrombus to resist flow forces exerted on its structure. This manuscript provides the first known in vivo measurement of how much stress a clot can withstand, before yielding to the surrounding blood flow. Namely, Lattice-Boltzmann Method flow simulations are performed based on 3D clot geometries, which are estimated from intravital microscopy images of laser-induced injuries in cremaster microvasculature of live mice. In addition to reporting the blood clot yield stresses, we also show that the thrombus "core" does not experience significant deformation, while its "shell" does. This indicates that the shell is more prone to embolization. Therefore, drugs should be designed to target the shell selectively, while leaving the core intact to minimize excessive bleeding. Finally, we laid down a foundation for a nondimensionalization procedure which unraveled a relationship between clot mechanics and biology. Hence, the proposed framework could ultimately lead to a unified theory of thrombogenesis, capable of explaining all clotting events. Thus, the findings presented herein will be beneficial to the understanding and treatment of heart attacks, strokes and hemophilia.
Collapse
Affiliation(s)
- Olufemi Emmanuel Kadri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Vishnu Deep Chandran
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Migle Surblyte
- Ying Wu College of Computing Sciences, Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
99
|
Calvetti D, Prezioso J, Somersalo E. Estimating hemodynamic stimulus and blood vessel compliance from cerebral blood flow data. J Theor Biol 2019; 460:243-261. [PMID: 30312691 PMCID: PMC8201967 DOI: 10.1016/j.jtbi.2018.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 11/23/2022]
Abstract
Several key brain imaging modalities that are intended for retrieving information about neuronal activity in brain, the BOLD fMRI as a foremost example, rely on the assumption that elevated neuronal activity elicits spatiotemporally well localized increase of the oxygenated blood volume, which in turn can be monitored non-invasively. The details of the signaling in the neurovascular unit during hyperemia are still not completely understood, and remain a topic of active research, requiring good mathematical models that are able to couple the different aspects of the signaling event. In this work, the question of estimating the hemodynamic stimulus function from cerebral blood flow data is addressed. In the present model, the hemodynamic stimulus is a non-specific signal from the electrophysiological and metabolic complex that controls the compliance of the blood vessels, leading to a vasodilation and thereby to an increase of blood flow. The underlying model is based on earlier literature, and it is further developed in this article for the needs of the inverse problem, which is solved using hierarchical Bayesian methodology, addressing also the poorly known model parameters.
Collapse
Affiliation(s)
- D Calvetti
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, USA.
| | - J Prezioso
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, USA.
| | - E Somersalo
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
100
|
Yang DY, Zhu Y, Kong JQ, Gong XJ, Xie ZH, Mei WY, Luo CF, Du ZM, Zhuang XD, Liao XX. “Light in and Sound Out”: Review of Photoacoustic Imaging in Cardiovascular Medicine. IEEE ACCESS 2019; 7:38890-38901. [DOI: 10.1109/access.2019.2902543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
|