51
|
Ma F, Wu J, Jiang Z, Huang W, Jia Y, Sun W, Wu H. P53/NRF2 mediates SIRT1's protective effect on diabetic nephropathy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1272-1281. [PMID: 30959066 DOI: 10.1016/j.bbamcr.2019.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end stage renal disease, posing a severe threat to public health. Previous studies reported the protective role of sirtuin 1 (SIRT1) in DN, encouraging the investigation of more potent and specific SIRT1 activators. SRT2104 is a novel, first-in-class, highly selective small-molecule activator of SIRT1, with its effect and mechanism unknown on DN. To this end, streptozotocin-induced C57BL/6 wild-type (WT) diabetic mice were treated with SRT2104, for 24 weeks. To determine whether SRT2104 acted through inhibition of P53 - a substrate of SIRT1, the P53 activator nutlin3a was administered to the WT diabetic mice in the presence of SRT2104. In order to test whether nuclear factor erythroid 2-related factor 2 (NRF2) - the master of cellular antioxidants - mediated SIRT1 and P53's actions, WT and Nrf2 gene knockout (KO) diabetic mice were treated with SRT2104 or the P53 inhibitor pifithrin-α (PFT-α). In the WT mice, SRT2104 enhanced renal SIRT1 expression and activity, deacetylated P53, and activated NRF2 antioxidant signaling, providing remarkable protection against the DM-induced renal oxidative stress, inflammation, fibrosis, glomerular remodeling and albuminuria. These effects were completely abolished in the presence of nutlin3a. Deletion of the Nrf2 gene completely abrogated the efficacies of SRT2104 and PFT-α in elevating antioxidants and ameliorating DN, despite their abilities to activate SIRT1 and inhibit P53 in the Nrf2 KO mice. The present study reports the beneficial effects of SRT2104 on DN, uncovering a SIRT1/P53/NRF2 pathway that modulates the pathogenesis of DN.
Collapse
Affiliation(s)
- Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, 71 Xinmin St., Changchun 130021, China
| | - Wenlin Huang
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Ln., Lawrenceville, GA 30043, USA
| | - Ye Jia
- Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China.
| | - Hao Wu
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, 44 Wenhua Xi Rd., Jinan, Shandong 250012, China.
| |
Collapse
|
52
|
Kpemissi M, Eklu-Gadegbeku K, Veerapur VP, Potârniche AV, Adi K, Vijayakumar S, Banakar SM, Thimmaiah NV, Metowogo K, Aklikokou K. Antioxidant and nephroprotection activities of Combretum micranthum: A phytochemical, in-vitro and ex-vivo studies. Heliyon 2019; 5:e01365. [PMID: 30976670 PMCID: PMC6441829 DOI: 10.1016/j.heliyon.2019.e01365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Management of chronic renal failure is exceedingly expensive. Despite of encouraging experimental outcomes, there is a lack of potent nephroprotective drugable molecules in a clinics or market. To develop a nephroprotective phytomedicine, the present study was designed to do a literature survey on reported phytochemical and biological analysis of Combretum micranthum and to carry out chemoprofiling, in-vitro antioxidant and ex-vivo nephroprotective capacity of the title plant. The phytochemical and biological activity survey of C. micranthum has reveals the presence of many bioactive compounds such as flavonoids, terpenoids, steroids and alkaloids with many biological activities. Phytochemical investigation re-confirmed the presence of these compounds. Hydroalcoholic extract of C. micranthum (CM extract) showed a strong antioxidant activity by scavenging AAPH, DPPH, nitric oxide, hydrogen peroxide and chelating metal ions. CM extract exhibited significant (P < 0.001) dose dependent inhibition of ferric chloride-ascorbic acid induced lipid peroxidation. Diabetic nephropathy is a serious and common complication leading to end stage renal disease. Therefore, in the present study, glucose-induced toxicity was also studied in human embryonic kidney cells (HEK-293) as an in vitro model for diabetic nephropathy. The results showed that exposure of cells to high glucose (100 mM) for 72 h significantly reduced the cell viability resulting in morphological changes such as cell shrinkage, rounded cell shape and cytoplasmic vacuolation. Treatment with CM extract at 10 and 25 μg/mL resulted in significant improvement in cell viability from 10 to 23% compared to the high glucose control. This study demonstrated the potential antioxidant and nephroprotective properties of C. micranthum, justifying its traditional use in the treatment of various diseases.
Collapse
Affiliation(s)
- Mabozou Kpemissi
- Faculty of Sciences, University of Lomé, Togo.,University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania.,Sree Siddaganga College of Pharmacy, B.H. Road, Tumkur 572 102, Karnataka, India
| | | | - Veeresh P Veerapur
- Sree Siddaganga College of Pharmacy, B.H. Road, Tumkur 572 102, Karnataka, India
| | - Adrian-Valentin Potârniche
- University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania
| | - Kodjo Adi
- Faculty of Sciences, University of Lomé, Togo
| | - S Vijayakumar
- Sree Siddaganga College of Pharmacy, B.H. Road, Tumkur 572 102, Karnataka, India
| | - Siddalingesh M Banakar
- Anthem Biosciences Pvt. Ltd., Industrial Area Phase I, Bommasandra, Hosur Road, Bangalore, 560099, India
| | - N V Thimmaiah
- Anthem Biosciences Pvt. Ltd., Industrial Area Phase I, Bommasandra, Hosur Road, Bangalore, 560099, India
| | | | | |
Collapse
|
53
|
Hegazy AM, El-Sayed EM, Ibrahim KS, Abdel-Azeem AS. Dietary antioxidant for disease prevention corroborated by the Nrf2 pathway. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 16:/j/jcim.ahead-of-print/jcim-2018-0161/jcim-2018-0161.xml. [PMID: 30726190 DOI: 10.1515/jcim-2018-0161] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Abstract
Dietary antioxidants are widely distributed in various types of our food. They are strongly associated with reduced risk of many chronic diseases such as atherosclerosis, cancer, and Alzheimer's diseases. They include vitamins such as vitamins A, E, C, and carotenoids. Also, some minerals like; zinc, manganese, copper, iron, and selenium are essential for the activity of antioxidant enzymes. Furthermore, dietary polyphenols and flavonoids are considered as potent antioxidant compounds. Vegetables, fruits, and edible herbs are the richest sources of such antioxidants. Antioxidants reduce oxidative stress, either directly by reducing reactive species or indirectly by enhancing the body antioxidant defense mechanisms in different ways. These may include upregulating gene expression of some antioxidant enzymes via a nuclear factor erythroid 2 related factor2 pathway. Administration of a mixture of antioxidants is beneficial since they act synergistically in various phases. The aims of this review are to summarize the different antioxidants from dietary sources and their role in the prevention of different diseases.
Collapse
Affiliation(s)
- Amany M Hegazy
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Eman M El-Sayed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Khadiga S Ibrahim
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Giza, Egypt
| | - Amal S Abdel-Azeem
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
54
|
Chen HW, Yang MY, Hung TW, Chang YC, Wang CJ. Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats. J Food Drug Anal 2019; 27:736-748. [PMID: 31324289 PMCID: PMC9307034 DOI: 10.1016/j.jfda.2018.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy is not only a common and severe microvascular complication of diabetes mellitus but also the leading cause of renal failure. Lotus (Nelumbo nucifera) possesses antioxidative and anticancer properties. The present study aimed to investigate the antidiabetic and renoprotective effects of N. nucifera leaf extract (NLE) in a rat model of type 2 diabetic mellitus. Male Sprague–Dawley rats with type 2 diabetes induced by a high-fat diet (HFD)/streptozotocin (STZ) were treated with NLE at dosages of 0.5% and 1% (w/w) daily for 6 weeks. At the end of the experimental period, body weight, serum glucose levels, insulin levels, and kidney function were assessed. Furthermore, antioxidant enzyme and lipid peroxide levels were determined in the kidney, and histopathological examination was performed using hematoxylin and eosin staining, periodic acid Schiff staining, and Masson trichrome staining. To shed light on the molecular mechanism underlying the functioning of NLE, mouse glomerular mesangial cells (MES-13) treated with high glucose (HG, 25 mM glucose) were chosen as a model for an examination of the signal transduction pathway of NLE. The results revealed that NLE improved diabetic kidney injury by reducing blood glucose, serum creatinine, and blood urea nitrogen levels and enhanced antioxidant enzyme activities in kidney tissue. Treatment with NLE significantly reduced the malondialdehyde and 8-hydroxy-2-deoxyguanosine levels and increased serum insulin levels; expression of renal superoxide dismutase, catalase, and glutathione peroxidase activities; and glutathione content. Histological studies have also demonstrated that NLE treatment inhibited the dilation of Bowman’s capsule, which confirmed its renoprotective action in diabetes. In addition, treatment with NLE and its major component quercetin 3-glucuronide attenuated 25 mM HG-induced suppressed nuclear factor erythroid 2-related factor 2 and antioxidant enzyme expression in MES-13 cells. Collectively, these findings indicate that NLE may have antidiabetic and renoprotective effects against HFD/STZ-induced diabetes, at least in part, through antioxidative pathways.
Collapse
Affiliation(s)
- Huan-Wei Chen
- Department of General Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Mon-Yuan Yang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Tung-Wei Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yun-Ching Chang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
55
|
Increased levels of serum pigment epithelium-derived factor aggravate proteinuria via induction of podocyte actin rearrangement. Int Urol Nephrol 2018; 51:359-367. [PMID: 30536192 PMCID: PMC6394770 DOI: 10.1007/s11255-018-2026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE To assess the role of serum pigment epithelium-derived factor (PEDF) in the occurrence and development of proteinuria and renal dysfunction and determine its relevant signaling pathway. METHODS We analyzed serum PEDF, creatinine, the urinary albumin-to-creatinine ratio, and renal morphology of normal or streptozotocin (STZ)-induced diabetic mice, before and after treatment with PEDF. In vitro, podocytes were stimulated with PEDF under normal or high-glucose conditions; permeability was measured by the transwell assay with fluorescein isothiocyanate (FITC)-dextran; and F-actin cytoskeleton was analyzed by phalloidin staining. Apoptosis was assessed by flow cytometry. RhoA activity and ROCK1, ZO-1, nephrin, and podocin levels were detected by Western blotting. RESULTS Diabetic mice exhibited a high serum PEDF level. In vivo, elevated serum PEDF led to proteinuria, increased serum creatinine, and podocyte foot process fusion in normal or diabetic mice. In vitro, both high-glucose and PEDF stimulation activated the RhoA/ROCK1 pathway in podocytes and promoted cell permeability, F-actin rearrangement, and apoptosis. Inhibition of RhoA/ROCK1 alleviated the damage from these effects. CONCLUSIONS Elevated serum PEDF aggravates the development of proteinuria and renal dysfunction by inducing F-actin arrangement, foot process fusion, and apoptosis of podocytes in both normal and diabetic mice, and this effect may be mediated by activation of the RhoA/ROCK1 pathway.
Collapse
|
56
|
Wang X, Qin A, Xiao F, Olatunji OJ, Zhang S, Pan D, Han W, Wang D, Ni Y. N 6 -(2-hydroxyethyl)-adenosine from Cordyceps cicadae protects against diabetic kidney disease via alleviation of oxidative stress and inflammation. J Food Biochem 2018; 43:e12727. [PMID: 31353654 DOI: 10.1111/jfbc.12727] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
This study investigated the kidney-protective ability of N6 -(2-hydroxyethyl)-adenosine (HEA) in alloxan-induced diabetic rats. Diabetes was induced in the rats by the administration of alloxan monohydrate (150 mg/kg, i.p) and treated with HEA for 6 weeks. Diabetic rats displayed marked increase in blood glucose, serum creatinine (Scr), and blood urea nitrogen (BUN), in addition to high excretion of urinary protein and albumin. Furthermore, diabetic rats showed decreased renal levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and increased malondialdehyde (MDA) as well as renal concentrations of pro-inflammatory mediators (TNF-α, IL-6, IL-1β, and TGF-β1). Treatment of diabetic rats with HEA (20 and 40 mg/kg) significantly increased the renal antioxidant level, reduced the levels of blood glucose, Scr, BUN, urinary protein, albumin, and pro-inflammatory mediators in a dose-dependent fashion. Histological evaluation of the kidney of diabetic rats indicated that HEA also ameliorated glomerular and tubular changes. PRACTICAL APPLICATIONS: HEA is a bioactive constituent isolated from Cordyceps cicadae and has been shown to possess antihyperglycemic, kidney protective, antioxidant, and antiinflammatory effects in diabetic rats. HEA stimulated the antioxidant enzymes' activities in the kidney tissues as well as reduced pro-inflammatory mediators, indicating its antidiabetic and renoprotective effects in diabetic models. The results showed that HEA attenuated oxidative stress and inflammation in kidney tissues.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Gerontology, The Second Hospital of Shandong University, Jinan, China
| | - Aiqiong Qin
- Department of Gerontology, The Second Hospital of Shandong University, Jinan, China
| | - Fang Xiao
- Department of Gerontology, The Second Hospital of Shandong University, Jinan, China
| | - Opeyemi J Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Shuyuan Zhang
- Department of Dermatology, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, China
| | - Dong Pan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weizhe Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daoqing Wang
- Department of Rehabilitation, The Second Hospital of Shandong University, Jinan, China
| | - Yihong Ni
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
57
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
58
|
Polson D, Villalba N, Freeman K. Optimization of a diagnostic platform for oxidation-reduction potential (ORP) measurement in human plasma. Redox Rep 2018; 23:125-129. [PMID: 29606080 PMCID: PMC6748793 DOI: 10.1080/13510002.2018.1456000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objectives: Oxidation–reduction potential (ORP) measurement
can demonstrate the extent of oxidative stress in patients with severe illness
and/or injury. A novel ORP diagnostic platform using disposable sensors
(RedoxSYS) has been validated by comparison to mass spectrometry, but the
optimal methods of sample handling for best performance of the device have not
been described. Methods: We sought to optimize ORP measurement in human plasma under
controlled conditions. We hypothesized that the anticoagulant,
freeze–thawing, and storage duration would influence measured ORP
levels. Results: The platform was sensitive to exogenous oxidation with
hydrogen peroxide and reduction with ascorbic acid. Plasma anticoagulated with
heparin was more sensitive to differences in ORP than plasma prepared in
citrate. ORP measurements decreased slightly after a freeze–thaw cycle,
but once frozen, ORP was stable for up to one month. Discussion: We confirm that ORP detects oxidative stress in plasma
samples. Optimal measurement of plasma ORP requires blood collection in heparin
anticoagulant tubes and immediate analysis without a freeze–thaw
cycle.
Collapse
Affiliation(s)
- David Polson
- a Department of Surgery , Larner College of Medicine, University of Vermont , Burlington , VT , USA
| | - Nuria Villalba
- a Department of Surgery , Larner College of Medicine, University of Vermont , Burlington , VT , USA
| | - Kalev Freeman
- a Department of Surgery , Larner College of Medicine, University of Vermont , Burlington , VT , USA
| |
Collapse
|
59
|
Chen PP, Xu HL, Ting-Yue, ZhuGe DL, Jin BH, Zhu QY, Shen BX, Wang LF, Lu CT, Zhao YZ, Li XK. CoQ10-loaded liposomes combined with UTMD prevented early nephropathy of diabetic rats. Oncotarget 2018; 9:11767-11782. [PMID: 29589596 PMCID: PMC5837748 DOI: 10.18632/oncotarget.24363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Nephropathy is one of the most severe complications of diabetic patients. The therapeutic strategies for diabetic patients should not only focus on the control of blood glucose but also pay attention to the occurrence of diabetic nephropathy (DN). Coenzyme Q10 (CoQ10) has great therapeutic potential for DN. However, the clinical application of CoQ10 has been limited because of its low water-solubility and non-specific distribution. Liposomes were supposed to be an effective way for delivering CoQ10 to kidney. CoQ10 was effectively encapsulated into the liposome (CoQ10-LIP) with a high entrapment efficiency of 86.15 %. The CoQ10-LIP exhibited a small hydrodynamic diameter (180 ± 2.1 nm) and negative zeta potential (-18.20 mV). Moreover, CoQ10-LIP was combined with ultrasound-mediated microbubble destruction (UTMD) to enhance specific distribution of CoQ10 in kidney. In early stage of diabetic mellitus (DM), rats were administrated with CoQ10-LIP followed by UTMD (CoQ10-LIP+UTMD) to prevent occurrence of DN. Results revealed that CoQ10-LIP+UTMD effectively prevented the renal morphology and function of diabetics rats from damage. The protective mechanism of CoQ10-LIP was highly associated with protecting podocyte, promoting vascular repair and inhibiting cell apoptosis. Conclusively, CoQ10-LIP in combination with UTMD might be a potential strategy to prevent occurrence of DN.
Collapse
Affiliation(s)
- Pian-Pian Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ting-Yue
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Li-Fen Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
60
|
Li Y, Li X, He K, Li B, Liu K, Qi J, Wang H, Wang Y, Luo W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy. FASEB J 2018; 32:2269-2279. [PMID: 29229684 DOI: 10.1096/fj.201700891r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C-peptide (CP) has demonstrated unique beneficial effects in diabetic nephropathy (DN), but whether and how CP regulates NF-κB and its coactivator, p300, to suppress inducible iNOS and antagonize DN are unknown. iNOS expression, NF-κB nuclear translocation, colocalization and binding of NF-κB to p300, binding of NF-κB to the inos promoter, and the bound NF-κB, p300, and histone 3 lysine 9 acetylation (H3K9ac) at binding sites were measured in high glucose-stimulated mesangial cells. We evaluated pathologic changes, iNOS expression, NF-κB, and p300 contents in diabetic rats. We found that CP inhibited iNOS expression and notably prevented colocalization and binding of NF-κB and p300. CP prevented NF-κB from binding to the inos promoter, especially at the distal site, and reduced bound NF-κB, p300, and H3K9ac. N-terminal plus middle fragment could mostly mimic the antagonizing effects of CP against the pathologic changes of DN and equally suppresses renal iNOS expression as CP. In conclusion, CP prevented NF-κB from recruiting p300 and binding to the inos promoter, and decreased H3K9ac at the binding sites to suppress iNOS expression and antagonize DN, with the effect region identified as N-terminal plus middle fragment.-Li, Y., Li, X., He, K., Li, B., Liu, K., Qi, J., Wang, H., Wang, Y., Luo, W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy.
Collapse
Affiliation(s)
- Yanning Li
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoping Li
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Kunyu He
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Jinsheng Qi
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Weigang Luo
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|