51
|
Xie SJ, Diao LT, Cai N, Zhang LT, Xiang S, Jia CC, Qiu DB, Liu C, Sun YJ, Lei H, Hou YR, Tao S, Hu YX, Xiao ZD, Zhang Q. mascRNA and its parent lncRNA MALAT1 promote proliferation and metastasis of hepatocellular carcinoma cells by activating ERK/MAPK signaling pathway. Cell Death Discov 2021; 7:110. [PMID: 34001866 PMCID: PMC8128908 DOI: 10.1038/s41420-021-00497-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
MALAT1-associated small cytoplasmic RNA (mascRNA) is a cytoplasmic tRNA-like small RNA derived from nucleus-located long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). While MALAT1 was extensively studied and was found to function in multiple cellular processes, including tumorigenesis and tumor progression, the role of mascRNA was largely unknown. Here we show that mascRNA is upregulated in multiple cancer cell lines and hepatocellular carcinoma (HCC) clinical samples. Using HCC cells as model, we found that mascRNA and its parent lncRNA MALAT1 can both promote cell proliferation, migration, and invasion in vitro. Correspondingly, both of them can enhance the tumor growth in mice subcutaneous tumor model and can promote metastasis by tail intravenous injection of HCC cells. Furthermore, we revealed that mascRNA and MALAT1 can both activate ERK/MAPK signaling pathway, which regulates metastasis-related genes and may contribute to the aggressive phenotype of HCC cells. Our results indicate a coordination in function and mechanism of mascRNA and MALAT1 during development and progress of HCC, and provide a paradigm for deciphering tRNA-like structures and their parent transcripts in mammalian cells.
Collapse
Affiliation(s)
- Shu-Juan Xie
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Nan Cai
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ting Zhang
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Sha Xiang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chang-Chang Jia
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Dong-Bo Qiu
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu-Jia Sun
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hang Lei
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China. .,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
52
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
53
|
Melnik BC. Lifetime Impact of Cow's Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021; 11:404. [PMID: 33803410 PMCID: PMC8000710 DOI: 10.3390/biom11030404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
The consumption of cow's milk is a part of the basic nutritional habits of Western industrialized countries. Recent epidemiological studies associate the intake of cow's milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. This review presents current epidemiological and translational evidence linking milk consumption to the regulation of mTORC1, the master-switch for eukaryotic cell growth. Epidemiological studies confirm a correlation between cow's milk consumption and birthweight, body mass index, onset of menarche, linear growth during childhood, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, diffuse large B-cell lymphoma, neurodegenerative diseases, and all-cause mortality. Thus, long-term persistent consumption of cow's milk increases the risk of mTORC1-driven diseases of civilization. Milk is a highly conserved, lactation genome-controlled signaling system that functions as a maternal-neonatal relay for optimized species-specific activation of mTORC1, the nexus for regulation of eukaryotic cell growth, and control of autophagy. A deeper understanding of milk´s impact on mTORC1 signaling is of critical importance for the prevention of common diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
54
|
Myojin Y, Kodama T, Maesaka K, Motooka D, Sato Y, Tanaka S, Abe Y, Ohkawa K, Mita E, Hayashi Y, Hikita H, Sakamori R, Tatsumi T, Taguchi A, Eguchi H, Takehara T. ST6GAL1 Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clin Cancer Res 2020; 27:1150-1161. [PMID: 33288659 DOI: 10.1158/1078-0432.ccr-20-3382] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is characterized by high intertumor heterogeneity of genetic drivers. Two multitarget tyrosine kinase inhibitors (TKI), lenvatinib and sorafenib, are used as standard-of-care chemotherapeutics in patients with advanced HCC, but a stratification strategy has not been established because of a lack of efficacious biomarkers. Therefore, we sought biomarkers that indicate lenvatinib-susceptible HCC. EXPERIMENTAL DESIGN We performed genetic screening of HCC driver genes involved in TKI susceptibility using a novel HCC mouse model in which tumor diversity of genetic drivers was recapitulated. A biomarker candidate was evaluated in human HCC cell lines. Secreted proteins from HCC cells were then screened using mass spectrometry. Serum and tumor levels of the biomarker candidates were analyzed for their association and prediction of overall survival in patients with HCC. RESULTS We found that lenvatinib selectively eliminated FGF19-expressing tumors, whereas sorafenib eliminated MET- and NRAS-expressing tumors. FGF19 levels and lenvatinib susceptibility were correlated in HCC cell lines, and FGF19 inhibition eliminated lenvatinib susceptibility. Lenvatinib-resistant HCC cell lines, generated by long-term exposure to lenvatinib, showed FGF19 downregulation but were resensitized to lenvatinib by FGF19 reexpression. Thus, FGF19 is a tumor biomarker of lenvatinib-susceptible HCC. Proteome and secretome analyses identified ST6GAL1 as a tumor-derived secreted protein positively regulated by FGF19 in HCC cells. Serum ST6GAL1 levels were positively correlated with tumor FGF19 expression in patients with surgically resected HCC. Among patients with serum ST6GAL1-high HCC who underwent TKI therapy, lenvatinib therapy showed significantly better survival than sorafenib. CONCLUSIONS Serum ST6GAL may be a novel biomarker that identifies lenvatinib-susceptible FGF19-driven HCC.
Collapse
Affiliation(s)
- Yuta Myojin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuki Maesaka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yu Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Tanaka
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yuichi Abe
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazuyoshi Ohkawa
- Department of Gastroenterology and Hepatology, Osaka International Cancer Institute, Osaka, Japan
| | - Eiji Mita
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
55
|
Shi W, Song J, Gao Z, Liu X, Wang W. Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4. Onco Targets Ther 2020; 13:9443-9453. [PMID: 33061430 PMCID: PMC7522318 DOI: 10.2147/ott.s251508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Background Esophageal cancer (EC) is one of the aggressive gastrointestinal malignancies. It has been reported that microRNAs (miRNAs) play key roles during the tumorigenesis of EC. To identify novel potential targets for EC, differential expressed miRNAs (DEG) between EC and adjacent normal tissues were analyzed with bioinformatics tool. Methods The differential expression of miRNAs between EC and adjacent normal tissues was analyzed. CCK-8 and Ki67 staining were used to detect the cell proliferation. Flow cytometry was performed to test the cell apoptosis. The correlation between miR-7-5p and KLF4 was detected by dual-luciferase report assay. Gene and protein expression in EC cells or in tissues were measured by qRT-PCR and Western blot, respectively. Cell migration and invasion were detected with transwell assay. Xenograft mice model was established to investigate the role of miR-7-5p in EC tumorigenesis in vivo. Results MiR-7-5p was found to be negatively correlated with the survival rate of patient with EC. In addition, downregulation of miR-7-5p significantly inhibited the growth and invasion of EC cells. Meanwhile, miR-7-5p directly targeted KLF4 in EC cells. Moreover, downregulation of miR-7-5p inhibited the tumorigenesis of EC via inactivating MAPK signaling pathway in vivo. Conclusion Downregulation of miR-7-5p notably suppressed the progression of EC via targeting KLF4. Thus, miR-7-5p might serve as a new target for the treatment of EC.
Collapse
Affiliation(s)
- Woda Shi
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| | - Jianxiang Song
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| | - Zhengya Gao
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| | - Xingchen Liu
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| | - Wencai Wang
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| |
Collapse
|
56
|
Du Y, Zhang MJ, Li LL, Xu XL, Chen H, Feng YB, Li Y, Peng XQ, Chen FH. ATPR triggers acute myeloid leukaemia cells differentiation and cycle arrest via the RARα/LDHB/ERK-glycolysis signalling axis. J Cell Mol Med 2020; 24:6952-6965. [PMID: 32391634 PMCID: PMC7299716 DOI: 10.1111/jcmm.15353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukaemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. 4‐Amino‐2‐trifluoromethyl‐phenyl retinate (ATPR), a novel all‐trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show superior anticancer effect compared with ATRA on various cancers. However, its potential effect on AML remains largely unknown. Lactate dehydrogenase B (LDHB) is the key glycolytic enzyme that catalyses the interconversion between pyruvate and lactate. Currently, little is known about the role of LDHB in AML. In this study, we found that ATPR showed antileukaemic effects with RARα dependent in AML cells. LDHB was aberrantly overexpressed in human AML peripheral blood mononuclear cell (PBMC) and AML cell lines. A lentiviral vector expressing LDHB‐targeting shRNA was constructed to generate a stable AML cells with low expression of LDHB. The effect of LDHB knockdown on differentiation and cycle arrest of AML cells was assessed in vitro and vivo, including involvement of Raf/MEK/ERK signalling. Finally, these data suggested that ATPR showed antileukaemic effects by RARα/LDHB/ ERK‐glycolysis signalling axis. Further studies should focus on the underlying leukaemia‐promoting mechanisms and investigate LDHB as a therapeutic target.
Collapse
Affiliation(s)
- Yan Du
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Mei-Ju Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lan-Lan Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiao-Lin Xu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Hao Chen
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu-Bin Feng
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yan Li
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Qin Peng
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
57
|
Gizak A, Duda P, Pielka E, McCubrey JA, Rakus D. GSK3 and miRNA in neural tissue: From brain development to neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118696. [PMID: 32165184 DOI: 10.1016/j.bbamcr.2020.118696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRs) are small RNAs modulating gene expression and creating intricate regulatory networks that are dysregulated in many pathological states, including neurodegenerative disorders. In silico analyses denote a multifunctional kinase glycogen synthase kinase-3 (GSK3) as a putative target of numerous miRs identified in neural tissue. GSK3 is engaged in almost all aspects of neuronal development and functioning. Moreover, there is an autoregulatory feedback between GSK3 and miRNAs as the kinase can influence biogenesis of miRs. Members of the miR-GSK3 axes might thus represent convenient therapeutic targets in neuropathologies that display its abnormal regulation. This review summarizes the present knowledge about direct interactions of GSK3 and miRs in brain, and their putative roles in pathogenesis of neurodegenerative and neuropsychiatric disorders. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland.
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| | - Ewa Pielka
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| |
Collapse
|