51
|
Kamerer AM, AuBuchon A, Fultz SE, Kopun JG, Neely ST, Rasetshwane DM. The Role of Cognition in Common Measures of Peripheral Synaptopathy and Hidden Hearing Loss. Am J Audiol 2019; 28:843-856. [PMID: 31647880 DOI: 10.1044/2019_aja-19-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose The aim of this study was to quantify the portion of variance in several measures suggested to be indicative of peripheral noise-induced cochlear synaptopathy and hidden hearing disorder that can be attributed to individual cognitive capacity. Method Regression and relative importance analysis was used to model several behavioral and physiological measures of hearing in 32 adults ranging in age from 20 to 74 years. Predictors for the model were hearing sensitivity and performance on a number of cognitive tasks. Results There was a significant influence of cognitive capacity on several measures of cochlear synaptopathy and hidden hearing disorder. These measures include frequency modulation detection threshold, time-compressed word recognition in quiet and reverberation, and the strength of the frequency-following response of the speech-evoked auditory brainstem response. Conclusions Measures of hearing that involve temporal processing are significantly influenced by cognitive abilities, specifically, short-term and working memory capacity, executive function, and attention. Research using measures of temporal processing to diagnose peripheral disorders, such as noise-induced synaptopathy, need to consider cognitive influence even in a young, healthy population.
Collapse
Affiliation(s)
- Aryn M. Kamerer
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| | - Angela AuBuchon
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| | - Sara E. Fultz
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| | - Judy G. Kopun
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| | - Stephen T. Neely
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| | | |
Collapse
|
52
|
Themann CL, Masterson EA. Occupational noise exposure: A review of its effects, epidemiology, and impact with recommendations for reducing its burden. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3879. [PMID: 31795665 DOI: 10.1121/1.5134465] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exposure to hazardous noise is one of the most common occupational risks, both in the U.S. and worldwide. Repeated overexposure to noise at or above 85 dBA can cause permanent hearing loss, tinnitus, and difficulty understanding speech in noise. It is also associated with cardiovascular disease, depression, balance problems, and lower income. About 22 million U.S. workers are currently exposed to hazardous occupational noise. Approximately 33% of working-age adults with a history of occupational noise exposure have audiometric evidence of noise-induced hearing damage, and 16% of noise-exposed workers have material hearing impairment. While the Mining, Construction, and Manufacturing sectors typically have the highest prevalence of noise exposure and hearing loss, there are noise-exposed workers in every sector and every sector has workers with hearing loss. Noise-induced hearing loss is preventable. Increased understanding of the biological processes underlying noise damage may lead to protective pharmacologic or genetic therapies. For now, an integrated public health approach that (1) emphasizes noise control over reliance on hearing protection, (2) illustrates the full impact of hearing loss on quality of life, and (3) challenges the cultural acceptance of loud noise can substantially reduce the impact of noise on worker health.
Collapse
Affiliation(s)
- Christa L Themann
- National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, MS C-27, Cincinnati, Ohio 45226, USA
| | - Elizabeth A Masterson
- National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, MS C-27, Cincinnati, Ohio 45226, USA
| |
Collapse
|
53
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4051. [PMID: 31795668 PMCID: PMC7195863 DOI: 10.1121/1.5132951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
Animal models have been used to gain insight into the risk of noise-induced hearing loss (NIHL) and its potential prevention using investigational new drug agents. A number of compounds have yielded benefit in pre-clinical (animal) models. However, the acute traumatic injury models commonly used in pre-clinical testing are fundamentally different from the chronic and repeated exposures experienced by many human populations. Diverse populations that are potentially at risk and could be considered for enrollment in clinical studies include service members, workers exposed to occupational noise, musicians and other performing artists, and children and young adults exposed to non-occupational (including recreational) noise. Both animal models and clinical populations were discussed in this special issue, followed by discussion of individual variation in vulnerability to NIHL. In this final contribution, study design considerations for NIHL otoprotection in pre-clinical and clinical testing are integrated and broadly discussed with evidence-based guidance offered where possible, drawing on the contributions to this special issue as well as other existing literature. The overarching goals of this final paper are to (1) review and summarize key information across contributions and (2) synthesize information to facilitate successful translation of otoprotective drugs from animal models into human application.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinanati, Ohio 45226-1998, USA
| |
Collapse
|
54
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
55
|
Hecht QA, Hammill TL, Calamia PT, Smalt CJ, Brungart DS. Characterization of acute hearing changes in United States military populations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3839. [PMID: 31795720 DOI: 10.1121/1.5132710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Until recently, most hearing conservation programs, including those in the military, have used permanent shifts in the pure-tone audiometric threshold as the gold standard for measuring hearing impairment in noise-exposed populations. However, recent results from animal studies suggest that high-level noise exposures can cause the permanent destruction of synapses between the inner hair cells and auditory nerve fibers, even in cases where pure-tone audiometric thresholds eventually return to their normal pre-exposure baselines. This has created a dilemma for researchers, who are now increasingly interested in studying the long-term effects that temporary hearing shifts might have on hearing function, but are also concerned about the ethical considerations of exposing human listeners to high levels of noise for research purposes. One method that remains viable to study the effects of high noise exposures on human listeners, or to evaluate the efficacy of interventions designed to prevent noise-related inner ear damage, is to identify individuals in occupations with unavoidable noise exposures and measure hearing before and as soon as possible after exposure. This paper discusses some of the important factors to be considered in studies that attempt to measure acute hearing changes in noise-exposed military populations.
Collapse
Affiliation(s)
- Quintin A Hecht
- Department of Defense Hearing Center of Excellence, 1100 Wilford Hall Loop, Building 4554, Joint Base San Antonio (JBSA), Lackland, Texas 78236, USA
| | - Tanisha L Hammill
- Department of Defense Hearing Center of Excellence, 1100 Wilford Hall Loop, Building 4554, Joint Base San Antonio (JBSA), Lackland, Texas 78236, USA
| | - Paul T Calamia
- Bioengineering Systems and Technologies Group, Massachusetts Institute of Technology (MIT) Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02421, USA
| | - Christopher J Smalt
- Bioengineering Systems and Technologies Group, Massachusetts Institute of Technology (MIT) Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02421, USA
| | - Douglas S Brungart
- Walter-Reed National Military Medical Center (WRNMMC), Building 19, Room 5600, 4954 North Palmer Road Bethesda, Maryland 20889-5630, USA
| |
Collapse
|
56
|
Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4033. [PMID: 31795697 DOI: 10.1121/1.5132707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The influence of dietary nutrient intake on the onset and trajectory of hearing loss during aging and in mediating protection from challenges such as noise is an important relationship yet to be fully appreciated. Dietary intake provides essential nutrients that support basic cellular processes related to influencing cellular stress response, immune response, cardiometabolic status, neural status, and psychological well-being. Dietary quality has been shown to alter risk for essentially all chronic health conditions including hearing loss and tinnitus. Evidence of nutrients with antioxidant, anti-inflammatory, and anti-ischemic properties, and overall healthy diet quality as otoprotective strategies are slowly accumulating, but many questions remain unanswered. In this article, the authors will discuss (1) animal models in nutritional research, (2) evidence of dietary nutrient-based otoprotection, and (3) consideration of confounds and limitations to nutrient and dietary study in hearing sciences. Given that there are some 60 physiologically essential nutrients, unraveling the intricate biochemistry and multitude of interactions among nutrients may ultimately prove infeasible; however, the wealth of available data suggesting healthy nutrient intake to be associated with improved hearing outcomes suggests the development of evidence-based guidance regarding diets that support healthy hearing may not require precise understanding of all possible interactions among variables. Clinical trials evaluating otoprotective benefits of nutrients should account for dietary quality, noise exposure history, and exercise habits as potential covariates that may influence the efficacy and effectiveness of test agents; pharmacokinetic measures are also encouraged.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
57
|
Kamerer AM, Kopun JG, Fultz SE, Allen C, Neely ST, Rasetshwane DM. Examining physiological and perceptual consequences of noise exposure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3947. [PMID: 31795718 PMCID: PMC6881192 DOI: 10.1121/1.5132291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 05/08/2023]
Abstract
The consequences of noise exposure on the auditory system are not entirely understood. In animals, noise exposure causes selective synaptopathy-an uncoupling of auditory nerve fibers from sensory cells-mostly in fibers that respond to high sound levels. Synaptopathy can be measured physiologically in animals, but a direct relationship between noise exposure and synaptopathy in humans has yet to be proven. Sources of variability, such as age, indirect measures of noise exposure, and comorbid auditory disorders, obfuscate attempts to find concrete relationships between noise exposure, synaptopathy, and perceptual consequences. This study adds to the ongoing effort by examining relationships between noise exposure, auditory brainstem response (ABR) amplitudes, and speech perception in adults of various ages and audiometric thresholds and a subset of younger adults with clinically normal hearing. Regression models including noise exposure, age, hearing thresholds, and sex as covariates were compared to find a best-fitting model of toneburst ABR wave I amplitude at two frequencies and word recognition performance in three listening conditions: background noise, time compression, and time compression with reverberation. The data suggest the possibility of detecting synaptopathy in younger adults using physiological measures, but that age and comorbid hearing disorders may hinder attempts to assess noise-induced synaptopathy.
Collapse
Affiliation(s)
- Aryn M Kamerer
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Judy G Kopun
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Sara E Fultz
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Carissa Allen
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Stephen T Neely
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | |
Collapse
|
58
|
Morgan D, Arteaga A, Bosworth N, Proctor G, Vetter D, Lobarinas E, Spankovich C. Repeated temporary threshold shift and changes in cochlear and neural function. Hear Res 2019; 381:107780. [DOI: 10.1016/j.heares.2019.107780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022]
|
59
|
Bramhall N, Beach EF, Epp B, Le Prell CG, Lopez-Poveda EA, Plack CJ, Schaette R, Verhulst S, Canlon B. The search for noise-induced cochlear synaptopathy in humans: Mission impossible? Hear Res 2019; 377:88-103. [DOI: 10.1016/j.heares.2019.02.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
60
|
Prendergast G, Couth S, Millman RE, Guest H, Kluk K, Munro KJ, Plack CJ. Effects of Age and Noise Exposure on Proxy Measures of Cochlear Synaptopathy. Trends Hear 2019; 23:2331216519877301. [PMID: 31558119 PMCID: PMC6767746 DOI: 10.1177/2331216519877301] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Although there is strong histological evidence for age-related synaptopathy in humans, evidence for the existence of noise-induced cochlear synaptopathy in humans is inconclusive. Here, we sought to evaluate the relative contributions of age and noise exposure to cochlear synaptopathy using a series of electrophysiological and behavioral measures. We extended an existing cohort by including 33 adults in the age range 37 to 60, resulting in a total of 156 participants, with the additional older participants resulting in a weakening of the correlation between lifetime noise exposure and age. We used six independent regression models (corrected for multiple comparisons), in which age, lifetime noise exposure, and high-frequency audiometric thresholds were used to predict measures of synaptopathy, with a focus on differential measures. The models for auditory brainstem responses, envelope-following responses, interaural phase discrimination, and the co-ordinate response measure of speech perception were not statistically significant. However, both age and noise exposure were significant predictors of performance on the digit triplet test of speech perception in noise, with greater noise exposure (unexpectedly) predicting better performance in the 80 dB sound pressure level (SPL) condition and greater age predicting better performance in the 40 dB SPL condition. Amplitude modulation detection thresholds were also significantly predicted by age, with older listeners performing better than younger listeners at 80 dB SPL. Overall, the results are inconsistent with the predicted effects of synaptopathy.
Collapse
Affiliation(s)
- Garreth Prendergast
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Samuel Couth
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Rebecca E. Millman
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Hannah Guest
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Karolina Kluk
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Kevin J. Munro
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Christopher J. Plack
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
- Department of Psychology, Lancaster
University, UK
| |
Collapse
|