51
|
Ekanayake P, Hupfeld C, Mudaliar S. Sodium-Glucose Cotransporter Type 2 (SGLT-2) Inhibitors and Ketogenesis: the Good and the Bad. Curr Diab Rep 2020; 20:74. [PMID: 33230620 DOI: 10.1007/s11892-020-01359-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The micro/macrovascular complications of diabetes cause considerable morbidity and premature mortality. The SGLT2 inhibitors are the first diabetes medications with significant benefits on microvascular disease (nephropathy) and macrovascular cardiovascular disease. In this review, we evaluate one of the potential mechanisms for these cardiorenal benefits-the production of ketones, their benefits, and risks. RECENT FINDINGS In recent cardiovascular outcome trials (CVOTs), the SGLT2 inhibitors demonstrated significant cardiorenal benefits and they are now approved to reduce CV events/death, heart failure hospitalization, and progression to end-stage renal disease. Glucosuria induced by the SGLT2 inhibitors leads to increased ketone production. Ketones are an efficient fuel source and can improve myocardial and renal function. Further, the ketone body beta-hydroxybutyrate exhibits anti-inflammatory/anti-oxidative actions, which favorably impact myocardial and renal remodeling/fibrosis. Uncontrolled ketogenesis leads to ketoacidosis, especially during conditions of acute illness and excessive insulin dose reductions. The SGLT2 inhibitors have demonstrated significant cardiorenal benefits in large CVOTs. Studies are in progress to elucidate whether SGLT2 inhibitor-induced low-grade hyperketonemia contributes to these benefits.
Collapse
Affiliation(s)
- Preethika Ekanayake
- Veterans Affairs Medical Center, San Diego, CA, USA
- Department of Medicine, University of California at San Diego, San Diego School of Medicine, San Diego, USA
| | - Christopher Hupfeld
- Veterans Affairs Medical Center, San Diego, CA, USA
- Department of Medicine, University of California at San Diego, San Diego School of Medicine, San Diego, USA
| | - Sunder Mudaliar
- Veterans Affairs Medical Center, San Diego, CA, USA.
- Department of Medicine, University of California at San Diego, San Diego School of Medicine, San Diego, USA.
- Diabetes/Metabolism Section, VA San Diego HealthCare System, 3350 La Jolla Village Drive (Mail Code: 111G), San Diego, CA, 92161, USA.
| |
Collapse
|
52
|
Zhang H, Ji L, Yang Y, Zhang X, Gang Y, Bai L. The Role of HDACs and HDACi in Cartilage and Osteoarthritis. Front Cell Dev Biol 2020; 8:560117. [PMID: 33102472 PMCID: PMC7554620 DOI: 10.3389/fcell.2020.560117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Epigenetics plays an important role in the pathogenesis and treatment of osteoarthritis (OA). In recent decades, HDAC family members have been associated with OA. This paper aims to describe the different role of HDACs in the pathogenesis of OA through interaction with microRNAs and the regulation of relevant signaling pathways. We found that HDACs are involved in cartilage and chondrocyte development but also play a crucial role in OA. However, the distinct HDAC mechanism in the pathogenesis and treatment of OA require further investigation. Furthermore, HDAC inhibitors (HDACi) can protect cartilage from disease, which may represent a potential therapeutic approach against OA.
Collapse
Affiliation(s)
- He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lu Ji
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Gang
- Department of Orthopedic Surgery, Panjin Central Hospital, Panjin, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
53
|
Pfleger J, Coleman RC, Ibetti J, Roy R, Kyriazis ID, Gao E, Drosatos K, Koch WJ. Genomic Binding Patterns of Forkhead Box Protein O1 Reveal Its Unique Role in Cardiac Hypertrophy. Circulation 2020; 142:882-898. [PMID: 32640834 DOI: 10.1161/circulationaha.120.046356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ryan C Coleman
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Ibetti
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rajika Roy
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ioannis D Kyriazis
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
54
|
Bain CR, Ziemann M, Kaspi A, Khan AW, Taylor R, Trahair H, Khurana I, Kaipananickal H, Wallace S, El-Osta A, Myles PS, Bozaoglu K. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure. ESC Heart Fail 2020; 7:2468-2478. [PMID: 32618141 PMCID: PMC7524212 DOI: 10.1002/ehf2.12810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Aims Natriuretic peptides are useful for diagnosis and prognostication of heart failure of any cause. Now, research aims to discover novel biomarkers that will more specifically define the heart failure phenotype. DNA methylation plays a critical role in the development of cardiovascular disease with the potential to predict fundamental pathogenic processes. There is a lack of data relating DNA methylation in heart failure that specifically focuses on patients with severe multi‐vessel coronary artery disease. To begin to address this, we conducted a pilot study uniquely exploring the utility of powerful whole‐genome methyl‐binding domain‐capture sequencing in a cohort of cardiac surgery patients, matched for the severity of their coronary artery disease, aiming to identify candidate peripheral blood DNA methylation markers of ischaemic cardiomyopathy and heart failure. Methods and results We recruited a cohort of 20 male patients presenting for coronary artery bypass graft surgery with phenotypic extremes of heart failure but who otherwise share a similar coronary ischaemic burden, age, sex, and ethnicity. Methylation profiling in patient blood samples was performed using methyl‐binding domain‐capture sequencing. Differentially methylated regions were validated using targeted bisulfite sequencing. Gene set enrichment analysis was performed to identify differences in methylation at or near gene promoters in certain known Reactome pathways. We detected 567 188 methylation peaks of which our general linear model identified 68 significantly differentially methylated regions in heart failure with a false discovery rate <0.05. Of these regions, 48 occurred within gene bodies and 25 were located near enhancer elements, some within coding genes and some in non‐coding genes. Gene set enrichment analyses identified 103 significantly enriched gene sets (false discovery rate <0.05) in heart failure. Validation analysis of regions with the strongest differential methylation data was performed for two genes: HDAC9 and the uncharacterized miRNA gene MIR3675. Genes of particular interest as novel candidate markers of the heart failure phenotype with reduced methylation were HDAC9, JARID2, and GREM1 and with increased methylation PDSS2. Conclusions We demonstrate the utility of methyl‐binding domain‐capture sequencing to evaluate peripheral blood DNA methylation markers in a cohort of cardiac surgical patients with severe multi‐vessel coronary artery disease and phenotypic extremes of heart failure. The differential methylation status of specific coding genes identified are candidates for larger longitudinal studies. We have further demonstrated the value and feasibility of examining DNA methylation during the perioperative period to highlight biological pathways and processes contributing to complex phenotypes.
Collapse
Affiliation(s)
- Chris R Bain
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Anaesthesiology and Perioperative Medicine, The Alfred Hospital and Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Mark Ziemann
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Antony Kaspi
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Rachael Taylor
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hugh Trahair
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ishant Khurana
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Harikrishnan Kaipananickal
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Sophie Wallace
- Department of Anaesthesiology and Perioperative Medicine, The Alfred Hospital and Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Assam El-Osta
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Faculty of Health, Department of Technology, Biomedical Laboratory Science, University College Copenhagen, Copenhagen, Denmark
| | - Paul S Myles
- Department of Anaesthesiology and Perioperative Medicine, The Alfred Hospital and Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kiymet Bozaoglu
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
55
|
Evans LW, Athukorala M, Martinez-Guryn K, Ferguson BS. The Role of Histone Acetylation and the Microbiome in Phytochemical Efficacy for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E4006. [PMID: 32503339 PMCID: PMC7313062 DOI: 10.3390/ijms21114006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVD) are the main cause of death worldwide and create a substantial financial burden. Emerging studies have begun to focus on epigenetic targets and re-establishing healthy gut microbes as therapeutic options for the treatment and prevention of CVD. Phytochemicals, commonly found in fruits and vegetables, have been shown to exert a protective effect against CVD, though their mechanisms of action remain incompletely understood. Of interest, phytochemicals such as curcumin, resveratrol and epigallocatechin gallate (EGCG) have been shown to regulate both histone acetylation and microbiome re-composition. The purpose of this review is to highlight the microbiome-epigenome axis as a therapeutic target for food bioactives in the prevention and/or treatment of CVD. Specifically, we will discuss studies that highlight how the three phytochemicals above alter histone acetylation leading to global changes in gene expression and CVD protection. Then, we will expand upon these phytochemicals to discuss the impact of phytochemical-microbiome-histone acetylation interaction in CVD.
Collapse
Affiliation(s)
- Levi W. Evans
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | - Maheshi Athukorala
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | | | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
- Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
56
|
Yang M, Zhang Y, Ren J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165836. [PMID: 32413386 DOI: 10.1016/j.bbadis.2020.165836] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Acetylation belongs to a class of post-translational modification (PTM) processes that epigenetically regulate gene expression and gene transcriptional activity. Reversible histone acetylation on lysine residues governs the interactions between DNA and histones to mediate chromatin remodeling and gene transcription. Non-histone protein acetylation complicates cellular function whereas acetylation of key mitochondrial enzymes regulates bioenergetic metabolism. Acetylation and deacetylation of functional proteins are essential to the delicated homeostatic regulation of embryonic development, postnatal maturation, cardiomyocyte differentiation, cardiac remodeling and onset of various cardiovascular diseases including obesity, diabetes mellitus, cardiometabolic diseases, ischemia-reperfusion injury, cardiac remodeling, hypertension, and arrhythmias. Histone acetyltransferase (HATs) and histone deacetylases (HDACs) are essential enzymes mainly responsible for the regulation of lysine acetylation levels, thus providing possible drugable targets for therapeutic interventions in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| |
Collapse
|
57
|
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep 2020; 37:653-676. [PMID: 31993614 PMCID: PMC7577396 DOI: 10.1039/c9np00057g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
58
|
Shi L, Tian Z, Fu Q, Li H, Zhang L, Tian L, Mi W. miR-217-regulated MEF2D-HDAC5/ND6 signaling pathway participates in the oxidative stress and inflammatory response after cerebral ischemia. Brain Res 2020; 1739:146835. [PMID: 32311345 DOI: 10.1016/j.brainres.2020.146835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022]
Abstract
Multiple factors are known to contribute to the pathogenesis of cerebral ischemic injury, including microRNAs (miRNAs). However, the precise mechanism of miRNAs involvement in cerebral ischemia remains largely unclear. In the current study, we found that miR-217 was significantly upregulated in ischemic stroke models, and the upregulation of miR-217 was associated with the development of post-stroke cognitive impairment. Further investigation revealed that myocyte enhancer factor 2D (MEF2D) was the direct target of miR-217. In vitro experiments showed that miR-217 promoted aggregation of histone deacetylase 5 (HDAC5) in cell nuclei by targeting MEF2D, which led to decreased expression of interleukin (IL)-10. In addition, miR-217 inhibited the expression of NADH dehydrogenase subunit 6 (ND6) in a MEF2D-dependent manner. Overexpression of MEF2D can reverse oxygen-glucose deprivation (OGD)-induced downregulation of ND6 and OGD-mediated neuronal apoptosis, and also reduce the elevated generation of reactive oxygen species (ROS) induced by OGD. Additionally, we found that in vivo administration of MEF2D overexpression plasmids increased IL-10 production and ameliorated cognitive impairment after cerebral ischemia. Taken together, these findings reveal a novel pathogenetic mechganism of cerebral ischemia-related brain injury involving the miR-217/MEF2D/HDAC5 axis and the miR-217/MEF2D/ND6 axis.
Collapse
Affiliation(s)
- Likai Shi
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Zhenpu Tian
- Department of Anesthesiology, Hainan Hospital of the Chinese People's Liberation Army (PLA) General Hospital, Jianglin Road, Haitang District, Sanya, Hainan 572013, China
| | - Qiang Fu
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Lifeng Zhang
- Department of Anesthesiology, Hainan Hospital of the Chinese People's Liberation Army (PLA) General Hospital, Jianglin Road, Haitang District, Sanya, Hainan 572013, China
| | - Li Tian
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, No. 1878 Sichuanbei Road, Shanghai 200081,China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
59
|
Jiang H, Jia D, Zhang B, Yang W, Dong Z, Sun X, Cui X, Ma L, Wu J, Hu K, Sun A, Ge J. Exercise improves cardiac function and glucose metabolism in mice with experimental myocardial infarction through inhibiting HDAC4 and upregulating GLUT1 expression. Basic Res Cardiol 2020; 115:28. [PMID: 32236769 DOI: 10.1007/s00395-020-0787-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
This study aims to determine the effect of exercise on the cardiac function, metabolic profiles and related molecular mechanisms in mice with ischemic-induced heart failure (HF). HF was induced by myocardial infarction (MI) in C57BL6/N mice. Cardiac function and physical endurance were improved in HF mice after exercise. Micro-PET/CT scanning revealed enhanced myocardial glucose uptake in vivo in HF mice after exercise. Exercise reduced mitochondrial structural damage in HF mice. Cardiomyocytes isolated from HF + exercise mice showed increased glycolysis capacity, respiratory function and ATP production. Both mRNA and protein expression of glucose transporter 1 (GLUT1) were upregulated after exercise. Results of ChIP-PCR revealed a novel interaction between transcription factor myocyte enhancer factor 2a (MEF2a) and GLUT1 in hearts of HF + exercise mice. Exercise also activated myocardial AMP-activated protein kinase (AMPK), which in turn phosphorylated histone deacetylase 4 (HDAC4), and thereby modulated the GLUT1 expression through reducing its inhibition on MEF2a in HF mice. Inhibition of HDAC4 also improved cardiac function in HF mice. Moreover, knockdown of GLUT1 impaired the systolic and diastolic function of isolated cardiomyocytes. In conclusion, exercise improves cardiac function and glucose metabolism in HF mice through inhibiting HDAC4 and upregulating GLUT1 expression.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaotong Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Institute of Cardiovascular Diseases, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Institute of Cardiovascular Diseases, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
60
|
Cong M, Wang Y, Yang Y, Lian C, Zhuang X, Li X, Zhang P, Liu Y, Tang J, Yang Q, Zhang X, Xiong H, Hu R, Hu G. MTSS1 suppresses mammary tumor-initiating cells by enhancing RBCK1-mediated p65 ubiquitination. NATURE CANCER 2020; 1:222-234. [PMID: 35122005 DOI: 10.1038/s43018-019-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Tumor-initiating cells (TICs) are considered the culprits of cancer development and progression. Dysregulation of metastasis suppressor protein 1 (MTSS1) has been widely observed in tumor metastasis, but its functional contribution and mechanism in cancer is poorly understood. Here we report a role of MTSS1 in suppressing TICs in breast cancer. Mtss1 knockout (KO) enhances the mammary epithelial TIC subpopulation in both luminal and basal-like breast cancer mouse models. MTSS1 also suppresses tumorsphere formation in breast cancer cells. Mechanistically, MTSS1 interacts with the E3 ligase RanBP2-type and C3HC4-type zinc finger containing 1 (RBCK1) to facilitate RBCK1-mediated p65 ubiquitination and degradation, thus suppressing the NF-κB signaling pathway and tumorigenesis. In addition, actin beta-like 2 (ACTBL2) competes with RBCK1 for MTSS1 binding, leading to p65 stabilization. Importantly, MTSS1 silencing promotes patient-derived organoid formation and xenograft growth. MTSS1 downregulation in clinical tumors is also linked to worse prognosis. Overall our data reveal a new paradigm of NF-κB regulation and may have important implications in therapeutics targeting TICs.
Collapse
Affiliation(s)
- Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Cheng Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueqian Zhuang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxun Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China; Department of Breast Oncology, Sun Yat-Sen University, Guangzhou, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, China
| | - Xue Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
61
|
Watanabe T, Okada H, Kanamori H, Miyazaki N, Tsujimoto A, Takada C, Suzuki K, Naruse G, Yoshida A, Nawa T, Tanaka T, Kawasaki M, Ito H, Ogura S, Okura H, Fujiwara T, Fujiwara H, Takemura G. In situ nuclear DNA methylation in dilated cardiomyopathy: an endomyocardial biopsy study. ESC Heart Fail 2020; 7:493-502. [PMID: 31971668 DOI: 10.1002/ehf2.12593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS Although distinct DNA methylation patterns have been reported, its localization and roles remain to be defined in heart failure. We investigated the cellular and subcellular localization of DNA methylation and its pathophysiological significance in human failing hearts. METHODS AND RESULTS Using left ventricular (LV) endomyocardial biopsy specimens from 75 patients with dilated cardiomyopathy (DCM; age: 58 ± 14 years old, %female: 32%) and 20 patients without heart failure (controls; age: 56 ± 17 years old, %female: 45%), we performed immunohistochemistry and immunoelectron microscopy for methylated DNA, 5-methylcytosine (5-mC). We next investigated possible relations of the incidence of 5-mC-positive (%5-mC+ ) cardiomyocytes with clinicopathological parameters. Immunopositivity for 5-mC was detected in the cardiomyocytes and other cell types. The %5-mC+ cardiomyocytes was significantly greater in DCM hearts than in controls (57 ± 13% in DCM vs. 25 ± 12% in controls, P < 0.0001). The localization of 5-mC immunopositivity in cardiomyocyte nuclei coincided well with that of heterochromatin, as confirmed by immunoelectron microscopy. Substantial DNA methylation was also observed in interstitial non-cardiomyocytes, but the incidences did not differ between control and DCM hearts (39 ± 7.9% in DCM vs. 41 ± 10% in controls, P = 0.4099). In DCM patients, the %5-mC+ cardiomyocytes showed a significant inverse correlation with LV functional parameters such as heart rate (r = 0.2391, P = 0.0388), end-diastolic pressure (r = 0.2397, P = 0.0397), and ejection fraction (r = -0.2917, P = 0.0111) and a positive correlation with LV dilatation (volume index at diastole; r = 0.2442, P = 0.0347; and volume index at systole; r = 0.3136, P = 0.0062) and LV hypertrophy (mass index; r = 0.2287, P = 0.0484)-that is, LV remodelling parameters. No significant correlations between DNA methylation and the histological parameters of the biopsies, including cardiomyocyte hypertrophy, fibrosis, and inflammatory cell infiltration, were noted. CONCLUSIONS The present study revealed increased nuclear DNA methylation in cardiomyocytes, but not other cell types, from DCM hearts, with predominant localization in the heterochromatin. Its significant relations with LV functional and remodelling parameters imply a pathophysiological significance of DNA methylation in heart failure.
Collapse
Affiliation(s)
- Takatomo Watanabe
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nagisa Miyazaki
- Department of Internal Medicine, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, 501-0296, Japan
| | - Akiko Tsujimoto
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chihiro Takada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Genki Naruse
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Yoshida
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahide Nawa
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Tanaka
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Okura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takako Fujiwara
- Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | | | - Genzou Takemura
- Department of Internal Medicine, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, 501-0296, Japan
| |
Collapse
|
62
|
Wallner M, Eaton DM, Berretta RM, Liesinger L, Schittmayer M, Gindlhuber J, Wu J, Jeong MY, Lin YH, Borghetti G, Baker ST, Zhao H, Pfleger J, Blass S, Rainer PP, von Lewinski D, Bugger H, Mohsin S, Graier WF, Zirlik A, McKinsey TA, Birner-Gruenberger R, Wolfson MR, Houser SR. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci Transl Med 2020; 12:eaay7205. [PMID: 31915304 PMCID: PMC7065257 DOI: 10.1126/scitranslmed.aay7205] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major health problem without effective therapies. This study assessed the effects of histone deacetylase (HDAC) inhibition on cardiopulmonary structure, function, and metabolism in a large mammalian model of pressure overload recapitulating features of diastolic dysfunction common to human HFpEF. Male domestic short-hair felines (n = 31, aged 2 months) underwent a sham procedure (n = 10) or loose aortic banding (n = 21), resulting in slow-progressive pressure overload. Two months after banding, animals were treated daily with suberoylanilide hydroxamic acid (b + SAHA, 10 mg/kg, n = 8), a Food and Drug Administration-approved pan-HDAC inhibitor, or vehicle (b + veh, n = 8) for 2 months. Echocardiography at 4 months after banding revealed that b + SAHA animals had significantly reduced left ventricular hypertrophy (LVH) (P < 0.0001) and left atrium size (P < 0.0001) versus b + veh animals. Left ventricular (LV) end-diastolic pressure and mean pulmonary arterial pressure were significantly reduced in b + SAHA (P < 0.01) versus b + veh. SAHA increased myofibril relaxation ex vivo, which correlated with in vivo improvements of LV relaxation. Furthermore, SAHA treatment preserved lung structure, compliance, blood oxygenation, and reduced perivascular fluid cuffs around extra-alveolar vessels, suggesting attenuated alveolar capillary stress failure. Acetylation proteomics revealed that SAHA altered lysine acetylation of mitochondrial metabolic enzymes. These results suggest that acetylation defects in hypertrophic stress can be reversed by HDAC inhibitors, with implications for improving cardiac structure and function in patients.
Collapse
Affiliation(s)
- Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz 8010, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Laura Liesinger
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Matthias Schittmayer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Juergen Gindlhuber
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Jichuan Wu
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Mark Y Jeong
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ying H Lin
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sandy T Baker
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sandra Blass
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
| | - Andreas Zirlik
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth Birner-Gruenberger
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
- Institute of Chemical Technology and Analytical Chemistry, Vienna University of Technology, Vienna 1060, Austria
| | - Marla R Wolfson
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
63
|
Scholz B, Schulte JS, Hamer S, Himmler K, Pluteanu F, Seidl MD, Stein J, Wardelmann E, Hammer E, Völker U, Müller FU. HDAC (Histone Deacetylase) Inhibitor Valproic Acid Attenuates Atrial Remodeling and Delays the Onset of Atrial Fibrillation in Mice. Circ Arrhythm Electrophysiol 2019; 12:e007071. [PMID: 30879335 PMCID: PMC6426346 DOI: 10.1161/circep.118.007071] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background: A structural, electrical and metabolic atrial remodeling is central in the development of atrial fibrillation (AF) contributing to its initiation and perpetuation. In the heart, HDACs (histone deacetylases) control remodeling associated processes like hypertrophy, fibrosis, and energy metabolism. Here, we analyzed, whether the HDAC class I/IIa inhibitor valproic acid (VPA) is able to attenuate atrial remodeling in CREM-IbΔC-X (cAMP responsive element modulator isoform IbΔC-X) transgenic mice, a mouse model of extensive atrial remodeling with age-dependent progression from spontaneous atrial ectopy to paroxysmal and finally long-lasting AF. Methods: VPA was administered for 7 or 25 weeks to transgenic and control mice. Atria were analyzed macroscopically and using widefield and electron microscopy. Action potentials were recorded from atrial cardiomyocytes using patch-clamp technique. ECG recordings documented the onset of AF. A proteome analysis with consecutive pathway mapping identified VPA-mediated proteomic changes and related pathways. Results: VPA attenuated many components of atrial remodeling that are present in transgenic mice, animal AF models, and human AF. VPA significantly (P<0.05) reduced atrial dilatation, cardiomyocyte enlargement, atrial fibrosis, and the disorganization of myocyte’s ultrastructure. It significantly reduced the occurrence of atrial thrombi, reversed action potential alterations, and finally delayed the onset of AF by 4 to 8 weeks. Increased histone H4-acetylation in atria from VPA-treated transgenic mice verified effective in vivo HDAC inhibition. Cardiomyocyte-specific genetic inactivation of HDAC2 in transgenic mice attenuated the ultrastructural disorganization of myocytes comparable to VPA. Finally, VPA restrained dysregulation of proteins in transgenic mice that are involved in a multitude of AF relevant pathways like oxidative phosphorylation or RhoA (Ras homolog gene family, member A) signaling and disease functions like cardiac fibrosis and apoptosis of muscle cells. Conclusions: Our results suggest that VPA, clinically available, well-tolerated, and prescribed to many patients for years, has the therapeutic potential to delay the development of atrial remodeling and the onset of AF in patients at risk.
Collapse
Affiliation(s)
- Beatrix Scholz
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Jan Sebastian Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Sabine Hamer
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Kirsten Himmler
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Florentina Pluteanu
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Matthias Dodo Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Juliane Stein
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.)
| | - Elke Hammer
- Interfaculty Institute of Genetics und Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.).,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany (E.H., U.V.)
| | - Uwe Völker
- Interfaculty Institute of Genetics und Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.).,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany (E.H., U.V.)
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| |
Collapse
|
64
|
Stowers RS, Shcherbina A, Israeli J, Gruber JJ, Chang J, Nam S, Rabiee A, Teruel MN, Snyder MP, Kundaje A, Chaudhuri O. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat Biomed Eng 2019; 3:1009-1019. [PMID: 31285581 PMCID: PMC6899165 DOI: 10.1038/s41551-019-0420-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/31/2019] [Indexed: 11/10/2022]
Abstract
In breast cancer, the increased stiffness of the extracellular matrix is a key driver of malignancy. Yet little is known about the epigenomic changes that underlie the tumorigenic impact of extracellular matrix mechanics. Here, we show in a three-dimensional culture model of breast cancer that stiff extracellular matrix induces a tumorigenic phenotype through changes in chromatin state. We found that increased stiffness yielded cells with more wrinkled nuclei and with increased lamina-associated chromatin, that cells cultured in stiff matrices displayed more accessible chromatin sites, which exhibited footprints of Sp1 binding, and that this transcription factor acts along with the histone deacetylases 3 and 8 to regulate the induction of stiffness-mediated tumorigenicity. Just as cell culture on soft environments or in them rather than on tissue-culture plastic better recapitulates the acinar morphology observed in mammary epithelium in vivo, mammary epithelial cells cultured on soft microenvironments or in them also more closely replicate the in vivo chromatin state. Our results emphasize the importance of culture conditions for epigenomic studies, and reveal that chromatin state is a critical mediator of mechanotransduction.
Collapse
Affiliation(s)
- Ryan S Stowers
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Anna Shcherbina
- Department of Biological Data Science, Stanford University, Stanford, CA, USA
| | - Johnny Israeli
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Joshua J Gruber
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Oncology Division, Stanford University, Stanford, CA, USA
| | - Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Atefeh Rabiee
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Mary N Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
65
|
Su C, Wang Q, Zhang H, Jiao W, Luo H, Li L, Chen X, Liu B, Yu X, Li S, Wang W, Guo S. Si-Miao-Yong-An Decoction Protects Against Cardiac Hypertrophy and Dysfunction by Inhibiting Platelet Aggregation and Activation. Front Pharmacol 2019; 10:990. [PMID: 31619988 PMCID: PMC6759602 DOI: 10.3389/fphar.2019.00990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: The aim of this study was to determine whether Si-Miao-Yong-An decoction (SMYAD) could ameliorate pressure overload-induced heart hypertrophy and its mechanisms. Methods: C57BL/6 mice were subjected to either sham or transverse aortic constriction (TAC) surgery to induce heart hypertrophy. SMYAD (14.85 g/kg/day, ig) or captopril (16.5 mg/kg/day, ig) was administered to the mice for 4 weeks. Cardiac function was evaluated based on echocardiography. Heart hypertrophy was detected using hematoxylin and eosin or wheat germ agglutinin staining. Protein expression of CD41, CD61, and P-selectin were measured with Western blot and immunohistochemistry. The expression levels of atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain, β-thromboglobulin, and von Willebrand factor were evaluated by quantitative polymerase chain reaction. Results: Four weeks after TAC, mice developed exaggerated cardiac hypertrophy and demonstrated a strong decrease in left ventricular ejection fraction compared with sham (29.9 ± 9.3% versus 66.0 ± 9.9%; P < 0.001). Conversely, SMYAD improved cardiac dysfunction with preserved left ventricular ejection fraction (66.5 ± 17.2%; P < 0.001). Shortening fraction was increased by SMYAD, while the left ventricular internal diameter and left ventricular volume were decreased in SMYAD group. SMYAD treatment significantly attenuated cardiac hypertrophy as reflected by the inhibition of atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain mRNA expression, and by the decreasing of cardiac myocyte cross-sectional area. Furthermore, Western blot and immunohistochemistry indicated that the protein expression of platelet aggregation markers (CD41 and CD61) and platelet activation marker (P-selectin) were significantly higher in model mice compared with control. These pathological alterations in TAC-induced mice were significantly ameliorated or blocked by SMYAD administration. Conclusions: Our results suggested that SMYAD exerted its effect by inhibiting platelet aggregation and activation as revealed by CD41/CD61/P-selectin downregulation. Inhibition the activation of the platelets might contribute to the therapeutic effect of SMYAD in failing heart.
Collapse
Affiliation(s)
- Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
66
|
Jung H, Lee E, Kim I, Song JH, Kim GJ. Histone deacetylase inhibition has cardiac and vascular protective effects in rats with pressure overload cardiac hypertrophy. Physiol Res 2019; 68:727-737. [PMID: 31424255 DOI: 10.33549/physiolres.934110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have shown beneficial effects in animal models of cardiovascular diseases. We hypothesized that HDAC inhibitor, sodium valproate (VPA), has cardiac and vascular protective effects in rats with pressure overload cardiac hypertrophy induced by transverse aortic constriction (TAC). Sections of the heart were visualized after hematoxylin and eosin staining, picrosirius red staining and immunohistochemistry. The expression of genes related to cardiac hypertrophy, fibrosis, and oxidative stress was determined by quantitative real-time polymerase chain reaction. The aortic ring tension analysis was conducted using both the ascending aorta and descending thoracic aorta. TAC increased the expression of hypertrophic, fibrotic, and oxidative stress genes, which was attenuated by VPA. In the ascending aorta with intact endothelium, there was a significant decrease in the relaxation response, which was recovered by VPA treatment. These results indicate that VPA has cardiac and vascular protective effects in rats with pressure overload cardiac hypertrophy.
Collapse
Affiliation(s)
- H Jung
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
| | | | | | | | | |
Collapse
|
67
|
McIntyre RL, Daniels EG, Molenaars M, Houtkooper RH, Janssens GE. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 2019; 11:e9854. [PMID: 31368626 PMCID: PMC6728603 DOI: 10.15252/emmm.201809854] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Reversing or slowing the aging process brings great promise to treat or prevent age‐related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the “classical” histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age‐related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Lyu X, Hu M, Peng J, Zhang X, Sanders YY. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther Adv Chronic Dis 2019; 10:2040622319862697. [PMID: 31367296 PMCID: PMC6643173 DOI: 10.1177/2040622319862697] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Fibrosis usually results from dysregulated wound repair and is characterized by
excessive scar tissue. It is a complex process with unclear mechanisms.
Accumulating evidence indicates that epigenetic alterations, including histone
acetylation, play a pivotal role in this process. Histone acetylation is
governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs).
HDACs are enzymes that remove the acetyl groups from both histone and nonhistone
proteins. Aberrant HDAC activities are observed in fibrotic diseases, including
cardiac and pulmonary fibrosis. HDAC inhibitors (HDACIs) are molecules that
block HDAC functions. HDACIs have been studied extensively in a variety of
tumors. Currently, there are four HDACIs approved by the US Food and Drug
Administration for cancer treatment yet none for fibrotic diseases. Emerging
evidence from in vitro and in vivo preclinical
studies has presented beneficial effects of HDACIs in preventing or reversing
fibrogenesis. In this review, we summarize the latest findings of the roles of
HDACs in the pathogenesis of cardiac and pulmonary fibrosis and highlight the
potential applications of HDACIs in these two fibrotic diseases.
Collapse
Affiliation(s)
- Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
69
|
Ngwenyama N, Salvador AM, Velázquez F, Nevers T, Levy A, Aronovitz M, Luster AD, Huggins GS, Alcaide P. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction. JCI Insight 2019; 4:125527. [PMID: 30779709 DOI: 10.1172/jci.insight.125527] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is associated in humans and mice with increased circulating levels of CXCL9 and CXCL10, chemokine ligands of the CXCR3 receptor, predominantly expressed on CD4+ Th1 cells. Chemokine engagement of receptors is required for T cell integrin activation and recruitment to sites of inflammation. Th1 cells drive adverse cardiac remodeling in pressure overload-induced cardiac dysfunction, and mice lacking the integrin ligand ICAM-1 show defective T cell recruitment to the heart. Here, we show that CXCR3+ T cells infiltrate the heart in humans and mice with pressure overload-induced cardiac dysfunction. Genetic deletion of CXCR3 disrupts CD4+ T cell heart infiltration and prevents adverse cardiac remodeling. We demonstrate that cardiac fibroblasts and cardiac myeloid cells that include resident and infiltrated macrophages are the source of CXCL9 and CXCL10, which mechanistically promote Th1 cell adhesion to ICAM-1 under shear conditions in a CXCR3-dependent manner. To our knowledge, our findings identify a previously unrecognized role for CXCR3 in Th1 cell recruitment into the heart in pressure overload-induced cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Levy
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | - Mark Aronovitz
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gordon S Huggins
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
70
|
Mechanism of Action for HDAC Inhibitors-Insights from Omics Approaches. Int J Mol Sci 2019; 20:ijms20071616. [PMID: 30939743 PMCID: PMC6480157 DOI: 10.3390/ijms20071616] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing catalytic domain of the histone deacetylase (HDACs) and they repress the deacetylase enzymatic activity. The broad therapeutic effect of HDIs with seemingly low toxicity is somewhat puzzling when considering that most HDIs lack strict specificity toward any individual HDAC and, even if they do, each individual HDAC has diverse functions under different physiology scenarios. Here, we review recent mechanistic studies using omics approaches, including epigenomics, transcriptomics, proteomics, metabolomics, and chemoproteomics, methods. These omics studies provide non-biased insights into the mechanism of action for HDIs.
Collapse
|
71
|
Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci 2019; 20:E1110. [PMID: 30841513 PMCID: PMC6429312 DOI: 10.3390/ijms20051110] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) counteract with each other to regulate gene expression by altering chromatin structure. Aberrant HDAC activity was reported in many human diseases including wide range of cancers, viral infections, cardiovascular complications, auto-immune diseases and kidney diseases. HDAC inhibitors are small molecules designed to block the malignant activity of HDACs. Chemokines and cytokines control inflammation, immunological and other key biological processes and are shown to be involved in various malignancies. Various HDACs and HDAC inhibitors were reported to regulate chemokines and cytokines. Even though HDAC inhibitors have remarkable anti-tumor activity in hematological cancers, they are not effective in treating many diseases and many patients relapse after treatment. However, the role of HDACs and cytokines in regulating these diseases still remain unclear. Therefore, understanding exact mechanisms and effector functions of HDACs are urgently needed to selectively inhibit them and to establish better a platform to combat various malignancies. In this review, we address regulation of chemokines and cytokines by HDACs and HDAC inhibitors and update on HDAC inhibitors in human diseases.
Collapse
Affiliation(s)
- Himavanth Reddy Gatla
- Department of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Prashanth Thevkar
- Department of Microbiology, New York University, New York, NY 10016, USA.
| | - Siddhartha Yavvari
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Sahithi Sukhavasi
- Center for Distance Learning, GITAM University, Visakhapatnam, AP 530045, India.
| | - Monish Ram Makena
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
72
|
Berezin AE. Prognostication of clinical outcomes in diabetes mellitus: Emerging role of cardiac biomarkers. Diabetes Metab Syndr 2019; 13:995-1003. [PMID: 31336558 DOI: 10.1016/j.dsx.2019.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) remains substantial health problem and one of the most prevalent metabolic diseases worldwide. The impact of T2DM on CV mortality and morbidity is embedded through a nature evolution of the disease and is modulated by numerous risk factors, such as hypertension, obesity, dyslipidemia. There is large body of evidence regarding use of the cardiac biomarkers to risk stratification at higher CV risk individuals who belongs to general population and cohort with established CV disease. Although T2DM patients have higher incidence of cardiac and vascular complications than the general population, whether cardiac biomarkers would be effective to risk stratification of the T2DM is not fully understood. The aim of the review is to summarize our knowledge regarding clinical implementation of cardiac biomarkers in risk assessment for T2DM patients. The role of natriuretic peptides, soluble ST2, galectin-3, growth differentiation factor-15, and cardiac troponins are widely discussed.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, Medical University of Zaporozhye, Mayakovsky av., 25, Zaporozhye, 69035, Ukraine.
| |
Collapse
|
73
|
Epigenetics, cardiovascular disease, and cellular reprogramming. J Mol Cell Cardiol 2019; 128:129-133. [PMID: 30690032 DOI: 10.1016/j.yjmcc.2019.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/29/2022]
Abstract
Under the seeming disorder of "junk" sequences the last decade has seen developments in our understanding of non-coding RNA's (ncRNAs). It's a complex revised order and nowhere is this more relevant than in the developing heart whereby old rules have been set aside to make room for new ones. The development of the mammalian heart has been studied at the genetic and cellular level for several decades because these areas were considered ideal control points. As such, detailed mechanisms governing cell lineages are well described. Emerging evidence suggests a complex new order regulated by epigenetic mechanisms mark cardiac cell lineage. Indeed, molecular cardiologists are in the process of shedding light on the roles played by ncRNAs, nucleic acid methylation and histone/chromatin modifications in specific pathologies of the heart. The aim of this article is to discuss some of the recent advances in the field of cardiovascular epigenetics that are related to direct cell reprogramming and repair. As such, we explore ncRNAs as nodes regulating signaling networks and attempt to make sense of regulatory disorder by reinforcing the importance of epigenetic components in the developmental program.
Collapse
|
74
|
Forini F, Nicolini G, Pitto L, Iervasi G. Novel Insight Into the Epigenetic and Post-transcriptional Control of Cardiac Gene Expression by Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:601. [PMID: 31555215 PMCID: PMC6727178 DOI: 10.3389/fendo.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) signaling is critically involved in the regulation of cardiovascular physiology. Even mild reductions of myocardial TH levels, as occur in hypothyroidism or low T3 state conditions, are thought to play a role in the progression of cardiac disorders. Due to recent advances in molecular mechanisms underlying TH action, it is now accepted that TH-dependent modulation of gene expression is achieved at multiple transcriptional and post-transcriptional levels and involves the cooperation of many processes. Among them, the epigenetic remodeling of chromatin structure and the interplay with non-coding RNA have emerged as novel TH-dependent pathways that add further degrees of complexity and broaden the network of genes controlled by TH signaling. Increasing experimental and clinical findings indicate that aberrant function of these regulatory mechanisms promotes the evolution of cardiac disorders such as post-ischemic injury, pathological hypertrophy, and heart failure, which may be reversed by the correction of the underlying TH dyshomeostasis. To encourage the clinical implementation of a TH replacement strategy in cardiac disease, here we discuss the crucial effect of epigenetic modifications and control of non-coding RNA in TH-dependent regulation of biological processes relevant for cardiac disease evolution.
Collapse
|
75
|
Habibian J, Ferguson BS. The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart. Int J Mol Sci 2018; 20:E102. [PMID: 30597863 PMCID: PMC6337125 DOI: 10.3390/ijms20010102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022] Open
Abstract
Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.
Collapse
Affiliation(s)
- Justine Habibian
- Cellular and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
76
|
Rafehi H, Kaspi A, Ziemann M, Okabe J, Karagiannis TC, El-Osta A. Systems approach to the pharmacological actions of HDAC inhibitors reveals EP300 activities and convergent mechanisms of regulation in diabetes. Epigenetics 2018; 12:991-1003. [PMID: 28886276 DOI: 10.1080/15592294.2017.1371892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Given the skyrocketing costs to develop new drugs, repositioning of approved drugs, such as histone deacetylase (HDAC) inhibitors, may be a promising strategy to develop novel therapies. However, a gap exists in the understanding and advancement of these agents to meaningful translation for which new indications may emerge. To address this, we performed systems-level analyses of 33 independent HDAC inhibitor microarray studies. Based on network analysis, we identified enrichment for pathways implicated in metabolic syndrome and diabetes (insulin receptor signaling, lipid metabolism, immunity and trafficking). Integration with ENCODE ChIP-seq datasets identified suppression of EP300 target genes implicated in diabetes. Experimental validation indicates reversal of diabetes-associated EP300 target genes in primary vascular endothelial cells derived from a diabetic individual following inhibition of HDACs (by SAHA), EP300, or EP300 knockdown. Our computational systems biology approach provides an adaptable framework for the prediction of novel therapeutics for existing disease.
Collapse
Affiliation(s)
- Haloom Rafehi
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Antony Kaspi
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Mark Ziemann
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Jun Okabe
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Tom C Karagiannis
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia.,b Department of Pathology, The University of Melbourne , Parkville , Victoria , Australia
| | - Assam El-Osta
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia.,b Department of Pathology, The University of Melbourne , Parkville , Victoria , Australia.,c Faculty of Medicine, Nursing and Health Sciences, Department of Diabetes, Monash University , Melbourne , Victoria , Australia.,d Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong , Hong Kong SAR
| |
Collapse
|
77
|
Li S, Luo XM, Peng BH, Yang CJ, Peng C. [Interactive regulatory effect of histone H3K9ac acetylation and histone H3K9me3 methylation on cardiomyogenesis in mice]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:950-954. [PMID: 30477629 PMCID: PMC7389033 DOI: 10.7499/j.issn.1008-8830.2018.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the interactive regulatory effect of histone acetylation and methylation on cardiomyogenesis, and to provide a theoretical basis for the prevention and treatment of congenital heart disease. METHODS A total of 24 Kunming mice were randomly divided into embryo day 14.5 (ED 14.5) group, embryo day 16.5 (ED 16.5) group, postnatal day 0.5 (PND 0.5) group, and postnatal day 7 (PND 7) group, with 6 mice in each group, and the heart tissue of fetal and neonatal mice was collected. Colorimetry was used to measure the activities of histone acetylases (HATs) and histone methyltransferases (HMTs) in the myocardium. Western blot was used to measure the expression of H3K9ac and H3K9me3 in the myocardium. RESULTS Colorimetry showed that the activities of HATs and HMTs were higher before birth and were lower after birth. There was a significant difference in the activity of HATs in the myocardium between the PND 0.5 and PND 7 groups and the ED 14.5 group (P<0.05), as well as between the PND 7 group and the ED 16.5 group (P<0.05). There was also a significant difference in the activity of HMTs in the myocardium between the PND 7 group and the ED 14.5 and ED 16.5 groups (P<0.05). Western blot showed higher expression of H3K9ac and H3K9me3 before birth and lower expression of H3K9ac and H3K9me3 after birth, and there were significant differences in the expression H3K9ac and H3K9me3 in the myocardium between the PND 0.5 and PND 7 groups and the ED 14.5 and ED 16.5 groups (P<0.05). CONCLUSIONS The dynamic expression of HATs, HMTs, H3K9ac, and H3K9me3 is observed during cardiomyogenesis, suggesting that histone H3K9ac acetylation and histone H3K9me3 methylation mediated by HATs and HMTs may play a role in interactive regulation during cardiomyogenesis.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China.
| | | | | | | | | |
Collapse
|
78
|
Abstract
The dramatic increase in global prevalence of metabolic disease is inexplicable when considering only environmental or only genetic factors, leading to the need to explore the possible roles of epigenetic factors. A great deal of progress has been made in this interdisciplinary field in recent years, with many studies investigating various aspects of the metabolic syndrome and its associated epigenetic changes. Rodent models of metabolic diseases have been particularly illuminating because of the ability to leverage tools such as genetic and environmental modifications. The current review summarizes recent breakthroughs regarding epigenetic markers in studies of obesity, Type II diabetes, and cardiovascular disease, the three major disorders associated with metabolic syndrome. We also discuss open questions and future directions for integrating genomic, epigenomic, and phenotypic big biodata toward understanding metabolic syndrome etiology.
Collapse
Affiliation(s)
- Caryn Carson
- Department of Genetics, Washington University School of Medicine , Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine , Saint Louis, Missouri
| |
Collapse
|
79
|
McKinsey TA, Vondriska TM, Wang Y. Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture. F1000Res 2018; 7. [PMID: 30416708 PMCID: PMC6206605 DOI: 10.12688/f1000research.15797.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Epigenetic processes are known to have powerful roles in organ development across biology. It has recently been found that some of the chromatin modulatory machinery essential for proper development plays a previously unappreciated role in the pathogenesis of cardiac disease in adults. Investigations using genetic and pharmacologic gain- and loss-of-function approaches have interrogated the function of distinct epigenetic regulators, while the increased deployment of the suite of next-generation sequencing technologies have fundamentally altered our understanding of the genomic targets of these chromatin modifiers. Here, we review recent developments in basic and translational research that have provided tantalizing clues that may be used to unlock the therapeutic potential of the epigenome in heart failure. Additionally, we provide a hypothesis to explain how signal-induced crosstalk between histone tail modifications and long non-coding RNAs triggers chromatin architectural remodeling and culminates in cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas M Vondriska
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
80
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
81
|
Huang Y, Jian W, Zhao J, Wang G. Overexpression of HDAC9 is associated with poor prognosis and tumor progression of breast cancer in Chinese females. Onco Targets Ther 2018; 11:2177-2184. [PMID: 29713186 PMCID: PMC5909784 DOI: 10.2147/ott.s164583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Breast cancer represents a serious health issue among females. HDAC9 has been identified as an oncogene in human cancers. This study sought to assess the prognostic value and the biologic function of HDAC9 in breast cancer patients. METHODS Expression of HDAC9 in breast cancer tissues and cells was evaluated by quantitative real-time polymerase chain reaction. Kaplan-Meier survival analysis and Cox regression assay were conducted to explore the prognostic significance of HDAC9. Cell experiments were performed to investigate the effects of HDAC9 on the biologic behaviors of breast cancer cells. RESULTS Expression of HDAC9 was significantly upregulated in both cancerous tissues and cells compared with the normal controls (all P<0.05). Overexpression of HDAC9 was correlated with lymph node metastasis (P=0.021) and TNM stage (P=0.004). Patients with high HDAC9 had poor overall survival compared to those with low levels of HDAC9 (log-rank P<0.05). Elevated HDAC9 was found to be an independent prognostic factor for the patients (hazard ratio=2.996, 95% CI=1.611-5.572, P=0.001). According to the cell experiments, tumor cell proliferation, migration and invasion were suppressed by knockdown of HDAC9. CONCLUSION All data demonstrated that overexpression of HDAC9 serves as a prognostic biomarker and may be involved in the tumor progression of breast cancer.
Collapse
Affiliation(s)
- Yixiang Huang
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wei Jian
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Junyong Zhao
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Gang Wang
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|
82
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
83
|
Bing OHL. Hypothesis: role for ammonia neutralization in the prevention and reversal of heart failure. Am J Physiol Heart Circ Physiol 2018; 314:H1049-H1052. [PMID: 29547022 DOI: 10.1152/ajpheart.00003.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ammonia plays a central role in the life and death of all living organisms and has been studied for over 100 yr. Ammonia is necessary for growth and development, but it is toxic in excess, and, as a result, differing methods of ammonia neutralization have evolved. After physiological and pathological stress to the heart, tissue ammonia levels rise. Local ammonia neutralization may be inadequate, and excess ammonia may exert its toxic effects. Phenylbutyrate (PBA), which is Federal Drug Administration approved for the treatment of elevated blood ammonia in urea cycle disorders, provides an accessory pathway for ammonia excretion. Recently, PBA has also been found to prevent specific cardiomyopathies. The central theme presents the hypothesis that stress to the myocardium from a variety of environmental sources causes injury, cell death, necrosis, and ammonia production. Ammonia, if not neutralized, exerts downstream toxic effects. Here, data are presented showing that neutralization with PBA alone and PBA combined with angiotensin-converting enzyme inhibition prevent and reverse pathophysiology associated with specific cardiomyopathies. NEW & NOTEWORTHY Ammonia produced after myocardial injury is hypothesized to be an upstream stress contributing to the pathophysiology of heart failure, effects that may be attenuated by a documented ammonia-reducing treatment. Reversal of heart failure can be achieved using an angiotensin-converting enzyme inhibitor combined with an ammonia-reducing treatment.
Collapse
Affiliation(s)
- Oscar H L Bing
- Boston Veterans Affairs Medical Center , Boston, Massachusetts
| |
Collapse
|
84
|
Cullell N, Muiño E, Carrera C, Torres N, Krupinski J, Fernandez-Cadenas I. Role of TRAF3 in neurological and cardiovascular diseases: an overview of recent studies. Biomol Concepts 2018; 8:197-202. [PMID: 28753533 DOI: 10.1515/bmc-2017-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/10/2017] [Indexed: 12/17/2022] Open
Abstract
Tumour necrosis factor receptor-associated factor 3 (TRAF3) is a member of the TRAF adaptor protein family, which exerts different effects on the cell depending on the receptor to which it binds and the cell type in which it is expressed. TRAF3 is a major regulator of the innate immune response. To perform its functions properly, TRAF3 is transcriptionally and epigenetically regulated. At the transcriptional level, TRAF3 expression has been associated with neurological and cardiovascular diseases including stroke, among other pathologies. Epigenetic modifications of TRAF3 have been observed at the histone and DNA levels. It has been observed that acetylation of TRAF3, as well as other NF-κβ target genes, is associated with cardiac hypertrophy. Furthermore, TRAF3 methylation has been associated with vascular recurrence after ischemic stroke in patients treated with clopidogrel. In this overview, we summarise the most interesting studies related to transcriptional and epigenetic regulation of TRAF3 focusing on those studies performed in neurological and cardiovascular diseases.
Collapse
|
85
|
Cunningham CM, Eghbali M. An Introduction to Epigenetics in Cardiovascular Development, Disease, and Sexualization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:31-47. [PMID: 30051375 DOI: 10.1007/978-3-319-77932-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic regulation of gene expression is integral to cell differentiation, development, and disease. Modes of epigenetic regulation-including DNA methylation, histone modifications, and ncRNA-based regulation-alter chromatin structure, promotor accessibility, and contribute to posttranscriptional modifications. In the cardiovascular system, epigenetic regulation is necessary for proper cardiovascular development and homeostasis, while epigenetic dysfunction is associated with improper cardiac development and disease.Early sexualization of tissues, including X-inactivation in females and maternal and paternal imprinting, is also orchestrated through epigenetic mechanisms. Furthermore, sex chromosomes encode various sex-specific genes involved in epigenetic regulation, while sex hormones can act as regulatory cofactors that may predispose or protect males and females against developing diseases with a marked sex bias.The following book chapter summarizes the field of epigenetics in the context of cardiovascular development and disease while also highlighting the role of epigenetic regulation as a powerful source of sex differences within the cardiovascular system.
Collapse
Affiliation(s)
- Christine M Cunningham
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
86
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
87
|
Mandoli A, Singh AA, Prange KHM, Tijchon E, Oerlemans M, Dirks R, Ter Huurne M, Wierenga ATJ, Janssen-Megens EM, Berentsen K, Sharifi N, Kim B, Matarese F, Nguyen LN, Hubner NC, Rao NA, van den Akker E, Altucci L, Vellenga E, Stunnenberg HG, Martens JHA. The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs. Cell Rep 2017; 17:2087-2100. [PMID: 27851970 DOI: 10.1016/j.celrep.2016.08.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/06/2016] [Accepted: 08/16/2016] [Indexed: 01/24/2023] Open
Abstract
The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and binding of the hematopoietic transcription factors LYL1 and LMO2. In contrast, ERG, FLI1, TAL1, and RUNX1 bind at all AML1-ETO-occupied regulatory regions, including those of the AML1-ETO gene itself, suggesting their involvement in regulating AML1-ETO expression levels. While expression of AML1-ETO in myeloid differentiated induced pluripotent stem cells (iPSCs) induces leukemic characteristics, overexpression increases cell death. We find that expression of wild-type transcription factors RUNX1 and ERG in AML is required to prevent this oncogene overexpression. Together our results show that the interplay of the epigenome and transcription factors prevents apoptosis in t(8;21) AML cells.
Collapse
Affiliation(s)
- Amit Mandoli
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Abhishek A Singh
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Koen H M Prange
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Esther Tijchon
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Marjolein Oerlemans
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Rene Dirks
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Menno Ter Huurne
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Albertus T J Wierenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Eva M Janssen-Megens
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Kim Berentsen
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Nilofar Sharifi
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Bowon Kim
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Filomena Matarese
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Luan N Nguyen
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Nina C Hubner
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Nagesha A Rao
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Emile van den Akker
- Sanquin Research Department of Hematopoiesis, P.O. Box 9190, 1006 AD Amsterdam, the Netherlands
| | - Lucia Altucci
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica "Adriano Buzzati Traverso," Via P. Castellino 131, 80131 Napoli, Italy
| | - Edo Vellenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Hendrik G Stunnenberg
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Joost H A Martens
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands; Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, 80138 Napoli, Italy.
| |
Collapse
|
88
|
Falik-Zaccai TC, Barsheshet Y, Mandel H, Segev M, Lorber A, Gelberg S, Kalfon L, Ben Haroush S, Shalata A, Gelernter-Yaniv L, Chaim S, Raviv Shay D, Khayat M, Werbner M, Levi I, Shoval Y, Tal G, Shalev S, Reuveni E, Avitan-Hersh E, Vlodavsky E, Appl-Sarid L, Goldsher D, Bergman R, Segal Z, Bitterman-Deutsch O, Avni O. Sequence variation in PPP1R13L results in a novel form of cardio-cutaneous syndrome. EMBO Mol Med 2017; 9:319-336. [PMID: 28069640 PMCID: PMC5331242 DOI: 10.15252/emmm.201606523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening disorder whose genetic basis is heterogeneous and mostly unknown. Five Arab Christian infants, aged 4-30 months from four families, were diagnosed with DCM associated with mild skin, teeth, and hair abnormalities. All passed away before age 3. A homozygous sequence variation creating a premature stop codon at PPP1R13L encoding the iASPP protein was identified in three infants and in the mother of the other two. Patients' fibroblasts and PPP1R13L-knocked down human fibroblasts presented higher expression levels of pro-inflammatory cytokine genes in response to lipopolysaccharide, as well as Ppp1r13l-knocked down murine cardiomyocytes and hearts of Ppp1r13l-deficient mice. The hypersensitivity to lipopolysaccharide was NF-κB-dependent, and its inducible binding activity to promoters of pro-inflammatory cytokine genes was elevated in patients' fibroblasts. RNA sequencing of Ppp1r13l-knocked down murine cardiomyocytes and of hearts derived from different stages of DCM development in Ppp1r13l-deficient mice revealed the crucial role of iASPP in dampening cardiac inflammatory response. Our results determined PPP1R13L as the gene underlying a novel autosomal-recessive cardio-cutaneous syndrome in humans and strongly suggest that the fatal DCM during infancy is a consequence of failure to regulate transcriptional pathways necessary for tuning cardiac threshold response to common inflammatory stressors.
Collapse
Affiliation(s)
- Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel .,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yiftah Barsheshet
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Hanna Mandel
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Meital Segev
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Avraham Lorber
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pediatric Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Shachaf Gelberg
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shani Ben Haroush
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Adel Shalata
- The Winter Genetic Institute, Bnei Zion Medical Center, Haifa, Israel
| | | | - Sarah Chaim
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Dorith Raviv Shay
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Morad Khayat
- The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Michal Werbner
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Inbar Levi
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Yishay Shoval
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Galit Tal
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Stavit Shalev
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Eli Reuveni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | | | - Eugene Vlodavsky
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Liat Appl-Sarid
- Department of Pathology, Galilee Medical Center, Nahariya, Israel
| | - Dorit Goldsher
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Diagnostic Imaging, Rambam Health Care Campus, Haifa, Israel
| | - Reuven Bergman
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Zvi Segal
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Department of Ophthalmology, Galilee Medical Center, Nahariya, Israel
| | - Ora Bitterman-Deutsch
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Dermatology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Orly Avni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
89
|
Pereyra AS, Hasek LY, Harris KL, Berman AG, Damen FW, Goergen CJ, Ellis JM. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. J Biol Chem 2017; 292:18443-18456. [PMID: 28916721 DOI: 10.1074/jbc.m117.800839] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy is closely linked to impaired fatty acid oxidation, but the molecular basis of this link is unclear. Here, we investigated the loss of an obligate enzyme in mitochondrial long-chain fatty acid oxidation, carnitine palmitoyltransferase 2 (CPT2), on muscle and heart structure, function, and molecular signatures in a muscle- and heart-specific CPT2-deficient mouse (Cpt2M-/-) model. CPT2 loss in heart and muscle reduced complete oxidation of long-chain fatty acids by 87 and 69%, respectively, without altering body weight, energy expenditure, respiratory quotient, or adiposity. Cpt2M-/- mice developed cardiac hypertrophy and systolic dysfunction, evidenced by a 5-fold greater heart mass, 60-90% reduction in blood ejection fraction relative to control mice, and eventual lethality in the absence of cardiac fibrosis. The hypertrophy-inducing mammalian target of rapamycin complex 1 (mTORC1) pathway was activated in Cpt2M-/- hearts; however, daily rapamycin exposure failed to attenuate hypertrophy in Cpt2M-/- mice. Lysine acetylation was reduced by ∼50% in Cpt2M-/- hearts, but trichostatin A, a histone deacetylase inhibitor that improves cardiac remodeling, failed to attenuate Cpt2M-/- hypertrophy. Strikingly, a ketogenic diet increased lysine acetylation in Cpt2M-/- hearts 2.3-fold compared with littermate control mice fed a ketogenic diet, yet it did not improve cardiac hypertrophy. Together, these results suggest that a shift away from mitochondrial fatty acid oxidation initiates deleterious hypertrophic cardiac remodeling independent of fibrosis. The data also indicate that CPT2-deficient hearts are impervious to hypertrophy attenuators, that mitochondrial metabolism regulates cardiac acetylation, and that signals derived from alterations in mitochondrial metabolism are the key mediators of cardiac hypertrophic growth.
Collapse
Affiliation(s)
| | | | | | - Alycia G Berman
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Frederick W Damen
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Craig J Goergen
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
90
|
Xu Z, Tong Q, Zhang Z, Wang S, Zheng Y, Liu Q, Qian LB, Chen SY, Sun J, Cai L. Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin Sci (Lond) 2017; 131:1841-1857. [PMID: 28533215 PMCID: PMC5737625 DOI: 10.1042/cs20170064] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Inhibition of total histone deacetylases (HDACs) was phenomenally associated with the prevention of diabetic cardiomyopathy (DCM). However, which specific HDAC plays the key role in DCM remains unclear. The present study was designed to determine whether DCM can be prevented by specific inhibition of HDAC3 and to elucidate the mechanisms by which inhibition of HDAC3 prevents DCM. Type 1 diabetes OVE26 and age-matched wild-type (WT) mice were given the selective HDAC3 inhibitor RGFP966 or vehicle for 3 months. These mice were then killed immediately or 3 months later for cardiac function and pathological examination. HDAC3 activity was significantly increased in the heart of diabetic mice. Administration of RGFP966 significantly prevented DCM, as evidenced by improved diabetes-induced cardiac dysfunction, hypertrophy, and fibrosis, along with diminished cardiac oxidative stress, inflammation, and insulin resistance, not only in the mice killed immediately or 3 months later following the 3-month treatment. Furthermore, phosphorylated extracellular signal-regulated kinases (ERK) 1/2, a well-known initiator of cardiac hypertrophy, was significantly increased, while dual specificity phosphatase 5 (DUSP5), an ERK1/2 nuclear phosphatase, was substantially decreased in diabetic hearts. Both of these changes were prevented by RGFP966. Chromatin immunoprecipitation (ChIP) assay showed that HDAC3 inhibition elevated histone H3 acetylation on the DUSP5 gene promoter at both two time points. These findings suggest that diabetes-activated HDAC3 inhibits DUSP5 expression through deacetylating histone H3 on the primer region of DUSP5 gene, leading to the derepression of ERK1/2 and the initiation of DCM. The present study indicates the potential application of HDAC3 inhibitor for the prevention of DCM.
Collapse
MESH Headings
- Acrylamides/therapeutic use
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/prevention & control
- Drug Evaluation, Preclinical/methods
- Dual-Specificity Phosphatases/metabolism
- Epigenesis, Genetic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/therapeutic use
- Histone Deacetylases/drug effects
- Histone Deacetylases/metabolism
- Histone Deacetylases/physiology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Male
- Mice, Transgenic
- Myocardium/enzymology
- Oxidative Stress/drug effects
- Phenylenediamines/therapeutic use
- Receptor, Insulin/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Zheng Xu
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
| | - Qian Tong
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Zhiguo Zhang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Shudong Wang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Qiuju Liu
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Ling-Bo Qian
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
- Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, KY 40202, U.S.A
| | - Jian Sun
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
| |
Collapse
|
91
|
Abstract
Myocardial injury, mechanical stress, neurohormonal activation, inflammation, and/or aging all lead to cardiac remodeling, which is responsible for cardiac dysfunction and arrhythmogenesis. Of the key histological components of cardiac remodeling, fibrosis either in the form of interstitial, patchy, or dense scars, constitutes a key histological substrate of arrhythmias. Here we discuss current research findings focusing on the role of fibrosis, in arrhythmogenesis. Numerous studies have convincingly shown that patchy or interstitial fibrosis interferes with myocardial electrophysiology by slowing down action potential propagation, initiating reentry, promoting after-depolarizations, and increasing ectopic automaticity. Meanwhile, there has been increasing appreciation of direct involvement of myofibroblasts, the activated form of fibroblasts, in arrhythmogenesis. Myofibroblasts undergo phenotypic changes with expression of gap-junctions and ion channels thereby forming direct electrical coupling with cardiomyocytes, which potentially results in profound disturbances of electrophysiology. There is strong evidence that systemic and regional inflammatory processes contribute to fibrogenesis (i.e., structural remodeling) and dysfunction of ion channels and Ca2+ homeostasis (i.e., electrical remodeling). Recognizing the pivotal role of fibrosis in the arrhythmogenesis has promoted clinical research on characterizing fibrosis by means of cardiac imaging or fibrosis biomarkers for clinical stratification of patients at higher risk of lethal arrhythmia, as well as preclinical research on the development of antifibrotic therapies. At the end of this review, we discuss remaining key questions in this area and propose new research approaches. © 2017 American Physiological Society. Compr Physiol 7:1009-1049, 2017.
Collapse
Affiliation(s)
- My-Nhan Nguyen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiao-Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
92
|
Metabolism and chromatin dynamics in health and disease. Mol Aspects Med 2017; 54:1-15. [DOI: 10.1016/j.mam.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
|
93
|
Fork C, Vasconez AE, Janetzko P, Angioni C, Schreiber Y, Ferreirós N, Geisslinger G, Leisegang MS, Steinhilber D, Brandes RP. Epigenetic control of microsomal prostaglandin E synthase-1 by HDAC-mediated recruitment of p300. J Lipid Res 2016; 58:386-392. [PMID: 27913583 DOI: 10.1194/jlr.m072280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/17/2016] [Indexed: 01/25/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs are the most widely used medicine to treat pain and inflammation, and to inhibit platelet function. Understanding the expression regulation of enzymes of the prostanoid pathway is of great medical relevance. Histone acetylation crucially controls gene expression. We set out to identify the impact of histone deacetylases (HDACs) on the generation of prostanoids and examine the consequences on vascular function. HDAC inhibition (HDACi) with the pan-HDAC inhibitor, vorinostat, attenuated prostaglandin (PG)E2 generation in the murine vasculature and in human vascular smooth muscle cells. In line with this, the expression of the key enzyme for PGE2 synthesis, microsomal PGE synthase-1 (PTGES1), was reduced by HDACi. Accordingly, the relaxation to arachidonic acid was decreased after ex vivo incubation of murine vessels with HDACi. To identify the underlying mechanism, chromatin immunoprecipitation (ChIP) and ChIP-sequencing analysis were performed. These results suggest that HDACs are involved in the recruitment of the transcriptional activator p300 to the PTGES1 gene and that HDACi prevented this effect. In line with the acetyltransferase activity of p300, H3K27 acetylation was reduced after HDACi and resulted in the formation of heterochromatin in the PTGES1 gene. In conclusion, HDAC activity maintains PTGES1 expression by recruiting p300 to its gene.
Collapse
Affiliation(s)
- Christian Fork
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany .,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Andrea E Vasconez
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany
| | - Patrick Janetzko
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany
| | - Carlo Angioni
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yannick Schreiber
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Dieter Steinhilber
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
94
|
Berezin A. Epigenetics in heart failure phenotypes. BBA CLINICAL 2016; 6:31-37. [PMID: 27335803 PMCID: PMC4909708 DOI: 10.1016/j.bbacli.2016.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/29/2022]
Abstract
Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF.
Collapse
|
95
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
96
|
Cencioni C, Atlante S, Savoia M, Martelli F, Farsetti A, Capogrossi MC, Zeiher AM, Gaetano C, Spallotta F. The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration. Pharmacol Ther 2016; 171:43-55. [PMID: 27742569 DOI: 10.1016/j.pharmthera.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organ-specific mesenchymal cells naturally reside in the stroma, where they are exposed to some environmental variables affecting their biology and functions. Risk factors such as diabetes or aging influence their adaptive response. In these cases, permanent epigenetic modifications may be introduced in the cells with important consequences on their local homeostatic activity and therapeutic potential. Numerous results suggest that mesenchymal cells, virtually present in every organ, may contribute to tissue regeneration mostly by paracrine mechanisms. Intriguingly, the heart is emerging as a source of different cells, including pericytes, cardiac progenitors, and cardiac fibroblasts. According to phenotypic, functional, and molecular criteria, these should be classified as mesenchymal cells. Not surprisingly, in recent years, the attention on these cells as therapeutic tools has grown exponentially, although only very preliminary data have been obtained in clinical trials to date. In this review, we summarized the state of the art about the phenotypic features, functions, regenerative properties, and clinical applicability of mesenchymal cells, with a particular focus on those of cardiac origin.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Sandra Atlante
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Matteo Savoia
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Universitá Cattolica, Institute of Medical Pathology, 00138 Rome, Italy; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20097, Italy.
| | - Antonella Farsetti
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, Roma, Italy; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Roma, Italy.
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| |
Collapse
|
97
|
Chen F, Li X, Aquadro E, Haigh S, Zhou J, Stepp DW, Weintraub NL, Barman SA, Fulton DJR. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radic Biol Med 2016; 99:167-178. [PMID: 27498117 PMCID: PMC5240036 DOI: 10.1016/j.freeradbiomed.2016.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Excessive levels of reactive oxygen species (ROS) and increased expression of NADPH oxidases (Nox) have been proposed to contribute to pulmonary artery hypertension (PAH) and other cardiovascular diseases (CVD). Nox enzymes are major sources of ROS but the mechanisms regulating changes in Nox expression in disease states remain poorly understood. Epigenetics encompasses a number of mechanisms that cells employ to regulate the ability to read and transcribe DNA. Histone acetylation is a prominent example of an epigenetic mechanism regulating the expression of numerous genes by altering chromatin accessibility. The goal of this study was to determine whether inhibition of histone deacetylases (HDAC) affects the expression of Nox isoforms and reduces pulmonary hypertension. In immune cells, we found that multiple HDAC inhibitors robustly decreased Nox2 mRNA and protein expression in a dose-dependent manner concomitant with reduced superoxide production. This effect was not restricted to Nox2 as expression of Nox1, Nox4 and Nox5 was also reduced by HDAC inhibition. Surprisingly, Nox promoter-luciferase activity was unchanged in the presence of HDAC inhibitors. In macrophages and lung fibroblasts, ChIP experiments revealed that HDAC inhibitors block the binding of RNA polymerase II and the histone acetyltransferase p300 to the Nox2, Nox4 and Nox5 promoter regions and decrease histones activation marks (H3K4me3 and H3K9ac) at these promoter sites. We further show that the ability of CRISPR-ON to drive transcription of Nox1, Nox2, Nox4 and Nox5 genes is blocked by HDAC inhibitors. In a monocrotaline (MCT) rat model of PAH, multiple HDAC isoforms are upregulated in isolated pulmonary arteries, and HDAC inhibitors attenuate Nox expression in isolated pulmonary arteries and reduce indices of PAH. In conclusion, HDAC inhibitors potently suppress Nox gene expression both in vitro and in vivo via epigenetically regulating chromatin accessibility.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029 China; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.
| | - Xueyi Li
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Emily Aquadro
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Stephen Haigh
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Jiliang Zhou
- Department of Pharmacology, Augusta University, Augusta, GA 30912, USA
| | - David W Stepp
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Scott A Barman
- Department of Pharmacology, Augusta University, Augusta, GA 30912, USA
| | - David J R Fulton
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
98
|
|
99
|
Lee E, Song MJ, Lee HA, Kang SH, Kim M, Yang EK, Lee DY, Ro S, Cho JM, Kim I. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:477-85. [PMID: 27610034 PMCID: PMC5014994 DOI: 10.4196/kjpp.2016.20.5.477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 11/15/2022]
Abstract
CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.
Collapse
Affiliation(s)
- Eunjo Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Min-Ji Song
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Hae-Ahm Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Seol-Hee Kang
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Mina Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Eun Kyoung Yang
- Department of Physiology, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Do Young Lee
- Translational Research Center, CrystalGenomics, Inc., Seongnam 13488, Korea
| | - Seonggu Ro
- Translational Research Center, CrystalGenomics, Inc., Seongnam 13488, Korea
| | - Joong Myung Cho
- Translational Research Center, CrystalGenomics, Inc., Seongnam 13488, Korea
| | - Inkyeom Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| |
Collapse
|
100
|
HDAC Inhibition in Vascular Endothelial Cells Regulates the Expression of ncRNAs. Noncoding RNA 2016; 2:ncrna2020004. [PMID: 29657262 PMCID: PMC5831901 DOI: 10.3390/ncrna2020004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022] Open
Abstract
While clinical and pre-clinical trials indicate efficacy of histone deacetylase (HDAC) inhibitors in disease mediated by dynamic lysine modification, the impact on the expression of non-coding RNAs (ncRNAs) remains poorly understood. In this study, we investigate high throughput RNA sequencing data derived from primary human endothelial cells stimulated with HDAC inhibitors suberanilohydroxamic acid (SAHA) and Trichostatin A (TSA). We observe robust regulation of ncRNA expression. Integration of gene expression data with histone 3 lysine 9 and 14 acetylation (H3K9/14ac) and histone 3 lysine 4 trimethylation (H3K4me3) datasets identified complex and class-specific expression of ncRNAs. We show that EP300 target genes are subject to histone deacetylation at their promoter following HDAC inhibition. This deacetylation drives suppression of protein-coding genes. However, long intergenic non-coding RNAs (lincRNAs) regulated by EP300 are activated following HDAC inhibition, despite histone deacetylation. This increased expression was driven by increased H3K4me3 at the gene promoter. For example, elevated promoter H3K4me3 increased lincRNA MALAT1 expression despite broad EP300-associated histone deacetylation. In conclusion, we show that HDAC inhibitors regulate the expression of ncRNA by complex and class-specific epigenetic mechanisms.
Collapse
|