51
|
Li Y, Zhou Y, Zhu L, Liu G, Wang X, Wang X, Wang J, You L, Ji C, Guo X, Zhao Y, Cui X. Genome‐wide analysis reveals that altered methylation in specific CpG loci is associated with childhood obesity. J Cell Biochem 2018; 119:7490-7497. [DOI: 10.1002/jcb.27059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/23/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Li
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Yahui Zhou
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
- Department of PediatricsJingjiang People's HospitalJingjiangJiangsuChina
| | - Lijun Zhu
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Guiyou Liu
- College of Life Science and ChemistryJiangsu Second Normal UniversityNanjingJiangsuChina
| | - Xing Wang
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Xingyun Wang
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Jian Wang
- Department of EndocrinologyNanjing First Hospital, Nanjing Medical UniversityNanjingJiangsuChina
| | - Lianghui You
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Chenbo Ji
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Xirong Guo
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Yingmin Zhao
- Department of PediatricsJingjiang People's HospitalJingjiangJiangsuChina
| | - Xianwei Cui
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| |
Collapse
|
52
|
Yang IV, Zhang W, Davidson EJ, Fingerlin TE, Kechris K, Dabelea D. Epigenetic marks of in utero exposure to gestational diabetes and childhood adiposity outcomes: the EPOCH study. Diabet Med 2018; 35:612-620. [PMID: 29461653 PMCID: PMC5991099 DOI: 10.1111/dme.13604] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
AIMS To identify gestational diabetes mellitus exposure-associated DNA methylation changes and assess whether such changes are also associated with adiposity-related outcomes. METHODS We performed an epigenome-wide association analysis, using Illumina 450k methylation arrays, on whole blood collected, on average, at 10.5 years of age from 81 gestational diabetes-exposed and 81 unexposed offspring enrolled in the EPOCH (Exploring Perinatal Outcomes in Children) study, and on the cord blood of 31 gestational diabetes-exposed and 64 unexposed offspring enrolled in the Colorado Healthy Start cohort. Validation was performed by pyrosequencing. RESULTS We identified 98 differentially methylated positions associated with gestational diabetes exposure at a false discovery rate of <10% in peripheral blood, with 51 loci remaining significant (plus additional 40 loci) after adjustment for cell proportions. We also identified 2195 differentially methylation regions at a false discovery rate of <5% after adjustment for cell proportions. We prioritized loci for pyrosequencing validation and association analysis with adiposity-related outcomes based on strengths of association and effect size, network and pathway analysis, analysis of cord blood, and previous publications. Methylation in six out of nine (67%) gestational diabetes-associated genes was validated and we also showed that methylation of SH3PXD2A was significantly (P<0.05) associated with multiple adiposity-related outcomes. CONCLUSIONS Our findings suggest that epigenetic marks may provide an important link between in utero exposure to gestational diabetes and obesity in childhood, and add to the growing body of evidence that DNA methylation is affected by gestational diabetes exposure.
Collapse
Affiliation(s)
- I V Yang
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora
- Department of Epidemiology, Colorado School of Public Health, Aurora
- Center for Genes, Environment and Health, National Jewish Health, Denver
| | - W Zhang
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, CO, USA
| | - E J Davidson
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora
| | - T E Fingerlin
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora
- Center for Genes, Environment and Health, National Jewish Health, Denver
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, CO, USA
| | - K Kechris
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, CO, USA
| | - D Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora
| |
Collapse
|
53
|
Samblas M, Milagro FI, Mansego ML, Marti A, Martinez JA. PTPRS and PER3 methylation levels are associated with childhood obesity: results from a genome-wide methylation analysis. Pediatr Obes 2018; 13:149-158. [PMID: 28614626 DOI: 10.1111/ijpo.12224] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/07/2017] [Accepted: 05/01/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The global prevalence of childhood overweight and obesity has increased in the last years. Epigenetic dysregulation affecting gene expression could be a determinant in early-life obesity onset and accompanying complications. OBJECTIVE The aim of the present investigation was to analyse the putative association between DNA methylation and childhood obesity. METHODS DNA was isolated from white blood cells of 24 children obtained from the GENOI study and was hybridized in a 450K methylation array. Two CpG sites associated with obesity were validated in 91 children by MassArray® EpiTyper™ technology. RESULTS Genome-wide analysis identified 734 CpGs (783 genes) differentially methylated between cases (n = 12) and controls (n = 12). Ingenuity Pathway Analysis showed that these genes were involved in oxidative stress and circadian rhythm signalling pathways. Moreover, the DNA methylation levels of VIPR2, GRIN2D, ADCYAP1R1, PER3 and PTPRS regions correlated with the obesity trait. EpiTyper™ validation also identified significant correlations between methylation levels of CpG sites on PTPRS and PER3 with BMI z-score. CONCLUSIONS This study identified several CpG sites and specifically several CpGs in the PTPRS and PER3 genes differentially methylated between obese and non-obese children, suggesting a role for DNA methylation concerning development of childhood obesity.
Collapse
Affiliation(s)
- M Samblas
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - F I Milagro
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,CIBERobn, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain
| | - M L Mansego
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - A Marti
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,CIBERobn, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
| | - J A Martinez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,CIBERobn, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
| | | |
Collapse
|
54
|
Pei YF, Zhang YJ, Lei Y, Wu WD, Ma TH, Liu XQ. Hypermethylation of the CHRDL1 promoter induces proliferation and metastasis by activating Akt and Erk in gastric cancer. Oncotarget 2017; 8:23155-23166. [PMID: 28423564 PMCID: PMC5410293 DOI: 10.18632/oncotarget.15513] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
CHRDL1 (Chordin-like 1) is a secreted protein that acts as an antagonist of bone morphogenetic protein (BMP). BMP plays a role as an activator of BMP receptor II (BMPR II), which mediates extracellular to intracellular signal transmission and is involved in carcinogenesis and metastasis. Herein, we report that CHRDL1 expression was significantly down-regulated in gastric cancer tissues and associated with poor survival. Clinic-pathological parameters demonstrated a close relationship between low CHRDL1 expression and metastasis. In vitro, CHRDL1 knockdown promoted tumor cell proliferation and migration through BMPR II by activating Akt, Erk and β-catenin. Furthermore, we observed the hypermethylation of the CHRDL1 promoter in gastric cancer, which induced low expression of CHRDL1 and decreased its secretion to the supernatant. Finally, in vivo experiments confirmed that CHRDL1 acted as a tumor suppressor gene in suppressing tumor growth and metastasis.
Collapse
Affiliation(s)
- Yao-Fei Pei
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province 310014, PR China
| | - Ya-Jing Zhang
- Department of General Surgery, Bejing Anzhen Hospital, Capital Medical University, Beijing 100000, PR China
| | - Yao Lei
- Department of Interventional Therapy and Vascular Surgery, Hunan Provincial People's Hospital, Changsha, Hunan Province 410005, PR China
| | - Wei-ding Wu
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province 310014, PR China
| | - Tong-Hui Ma
- Genetron Health (Beijing) Technology, Co. Ltd., Changping, Beijing 100000, PR China
| | - Xi-Qiang Liu
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province 310014, PR China
| |
Collapse
|
55
|
Sayols-Baixeras S, Subirana I, Fernández-Sanlés A, Sentí M, Lluís-Ganella C, Marrugat J, Elosua R. DNA methylation and obesity traits: An epigenome-wide association study. The REGICOR study. Epigenetics 2017; 12:909-916. [PMID: 29099282 DOI: 10.1080/15592294.2017.1363951] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Obesity is associated with increased risk of several diseases and has become epidemic. Obesity is highly heritable but the genetic variants identified by genome-wide association studies explain only limited variability. Epigenetics could contribute to explain the missing variability. The study aim was to discover differential methylation patterns related to obesity. We designed an epigenome-wide association study with a discovery phase in a subsample of 641 REGICOR study participants, validated by analysis of 2,515 participants in the Framingham Offspring Study. Blood DNA methylation was assessed using Illumina HumanMethylation450 BeadChip. Next, we meta-analyzed the data using the fixed effects method and performed a functional and pathway analysis using the Ingenuity Pathway Analysis software. We were able to validate 94 CpGs associated with body mass index (BMI) and 49 CpGs associated with waist circumference, located in 95 loci. In addition, we newly discovered 70 CpGs associated with BMI and 33 CpGs related to waist circumference. These CpGs explained 25.94% and 29.22% of the variability of BMI and waist circumference, respectively, in the REGICOR sample. We also evaluated 65 of the 95 validated loci in the GIANT genome-wide association data; 10 of them had Tag SNPs associated with BMI. The top-ranked diseases and functions identified in the functional and pathway analysis were neurologic, psychological, endocrine, and metabolic.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- a Cardiovascular Epidemiology and Genetics Research Group , IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Catalonia , Spain.,b Universitat Pompeu Fabra (UPF) , Barcelona , Catalonia , Spain.,c CIBER Cardiovascular diseases (CIBERCV) , Barcelona , Catalonia , Spain
| | - Isaac Subirana
- a Cardiovascular Epidemiology and Genetics Research Group , IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Catalonia , Spain.,d CIBER Epidemiology and Public Health (CIBERESP) , Barcelona , Catalonia , Spain
| | - Alba Fernández-Sanlés
- a Cardiovascular Epidemiology and Genetics Research Group , IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Catalonia , Spain.,b Universitat Pompeu Fabra (UPF) , Barcelona , Catalonia , Spain
| | - Mariano Sentí
- b Universitat Pompeu Fabra (UPF) , Barcelona , Catalonia , Spain.,c CIBER Cardiovascular diseases (CIBERCV) , Barcelona , Catalonia , Spain
| | - Carla Lluís-Ganella
- a Cardiovascular Epidemiology and Genetics Research Group , IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Catalonia , Spain
| | - Jaume Marrugat
- a Cardiovascular Epidemiology and Genetics Research Group , IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Catalonia , Spain.,c CIBER Cardiovascular diseases (CIBERCV) , Barcelona , Catalonia , Spain
| | - Roberto Elosua
- a Cardiovascular Epidemiology and Genetics Research Group , IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Catalonia , Spain.,c CIBER Cardiovascular diseases (CIBERCV) , Barcelona , Catalonia , Spain
| |
Collapse
|
56
|
DNA-Methylation and Body Composition in Preschool Children: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study. Sci Rep 2017; 7:14349. [PMID: 29084944 PMCID: PMC5662763 DOI: 10.1038/s41598-017-13099-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/19/2017] [Indexed: 01/16/2023] Open
Abstract
Adiposity and obesity result from the interaction of genetic variation and environmental factors from very early in life, possibly mediated by epigenetic processes. Few Epigenome-Wide-Association-Studies have identified DNA-methylation (DNAm) signatures associated with BMI and body composition in children. Body composition by Bio-Impedance-Analysis and genome-wide DNAm in whole blood were assessed in 374 pre-school children from four European countries. Associations were tested by linear regression adjusted for sex, age, centre, education, 6 WBC-proportions according to Houseman and 30 principal components derived from control probes. Specific DNAm variants were identified to be associated with BMI (212), fat-mass (230), fat-free-mass (120), fat-mass-index (24) and fat-free-mass-index (15). Probes in genes SNED1(IRE-BP1), KLHL6, WDR51A(POC1A), CYTH4-ELFN2, CFLAR, PRDM14, SOS1, ZNF643(ZFP69B), ST6GAL1, C3orf70, CILP2, MLLT4 and ncRNA LOC101929268 remained significantly associated after Bonferroni-correction of P-values. We provide novel evidence linking DNAm with (i) altered lipid and glucose metabolism, (ii) diabetes and (iii) body size and composition in children. Both common and specific epigenetic signatures among measures were also revealed. The causal direction with phenotypic measures and stability of DNAm variants throughout the life course remains unclear and longitudinal analysis in other populations is required. These findings give support for potential epigenetic programming of body composition and obesity.
Collapse
|
57
|
Cheng Z, Zheng L, Almeida FA. Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem 2017; 54:1-10. [PMID: 29154162 DOI: 10.1016/j.jnutbio.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
Environmental factors (e.g., malnutrition and physical inactivity) contribute largely to metabolic disorders including obesity, type 2 diabetes, cardiometabolic disease and nonalcoholic fatty liver diseases. The abnormalities in metabolic activity and pathways have been increasingly associated with altered DNA methylation, histone modification and noncoding RNAs, whereas lifestyle interventions targeting diet and physical activity can reverse the epigenetic and metabolic changes. Here we review recent evidence primarily from human studies that links DNA methylation reprogramming to metabolic derangements or improvements, with a focus on cross-tissue (e.g., the liver, skeletal muscle, pancreas, adipose tissue and blood samples) epigenetic markers, mechanistic mediators of the epigenetic reprogramming, and the potential of using epigenetic traits to predict disease risk and intervention response. The challenges in epigenetic studies addressing the mechanisms of metabolic diseases and future directions are also discussed and prospected.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Louise Zheng
- Department of Human Nutrition, Foods, and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Fabio A Almeida
- Department of Health Promotion, Social & Behavioral Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
58
|
DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int J Obes (Lond) 2017; 42:28-35. [PMID: 29064478 DOI: 10.1038/ijo.2017.228] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/13/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES There is increasing evidence that metabolic diseases originate in early life, and epigenetic changes have been implicated as key drivers of this early life programming. This led to the hypothesis that epigenetic marks present at birth may predict an individual's future risk of obesity and type 2 diabetes. In this study, we assessed whether epigenetic marks in blood of newborn children were associated with body mass index (BMI) and insulin sensitivity later in childhood. SUBJECTS/METHODS DNA methylation was measured in neonatal blood spot samples of 438 children using the Illumina Infinium 450 k BeadChip. Associations were assessed between DNA methylation at birth and BMI z-scores, body fat mass, fasting plasma glucose, insulin and homeostatic model assessment of insulin resistance (HOMA-IR) at age 5 years, as well as birth weight, maternal BMI and smoking status. RESULTS No individual methylation sites at birth were associated with obesity or insulin sensitivity measures at 5 years. DNA methylation in 69 genomic regions at birth was associated with BMI z-scores at age 5 years, and in 63 regions with HOMA-IR. The methylation changes were generally small (<5%), except for a region near the non-coding RNA nc886 (VTRNA2-1) where a clear link between methylation status at birth and BMI in childhood was observed (P=0.001). Associations were also found between DNA methylation, maternal smoking and birth weight. CONCLUSIONS We identified a number of DNA methylation regions at birth that were associated with obesity or insulin sensitivity measurements in childhood. These findings support the mounting evidence on the role of epigenetics in programming of metabolic health. Whether many of these small changes in DNA methylation are causally related to the health outcomes, and of clinical relevance, remains to be determined, but the nc886 region represents a promising obesity risk marker that warrants further investigation.
Collapse
|
59
|
Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr Rev 2017; 38:267-296. [PMID: 28898979 PMCID: PMC5546881 DOI: 10.1210/er.2017-00111] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Obesity is among the most common and costly chronic disorders worldwide. Estimates suggest that in the United States obesity affects one-third of adults, accounts for up to one-third of total mortality, is concentrated among lower income groups, and increasingly affects children as well as adults. A lack of effective options for long-term weight reduction magnifies the enormity of this problem; individuals who successfully complete behavioral and dietary weight-loss programs eventually regain most of the lost weight. We included evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding mechanisms underlying excess body-fat accumulation, the biological defense of excess fat mass, and the tendency for lost weight to be regained. A major area of emphasis is the science of energy homeostasis, the biological process that maintains weight stability by actively matching energy intake to energy expenditure over time. Growing evidence suggests that obesity is a disorder of the energy homeostasis system, rather than simply arising from the passive accumulation of excess weight. We need to elucidate the mechanisms underlying this "upward setting" or "resetting" of the defended level of body-fat mass, whether inherited or acquired. The ongoing study of how genetic, developmental, and environmental forces affect the energy homeostasis system will help us better understand these mechanisms and are therefore a major focus of this statement. The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences.
Collapse
Affiliation(s)
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Adam Drewnowski
- Center for Public Health Nutrition, University of Washington, Seattle, Washington 98195
| | - Eric Ravussin
- John S. McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Leanne M Redman
- John S. McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, New York 10032.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York 10032
| |
Collapse
|
60
|
|
61
|
Genome-Wide Methylation Analysis Identifies Specific Epigenetic Marks In Severely Obese Children. Sci Rep 2017; 7:46311. [PMID: 28387357 PMCID: PMC5384222 DOI: 10.1038/srep46311] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity is a heterogeneous disease with many different subtypes. Epigenetics could contribute to these differences. The aim of this study was to investigate genome-wide DNA methylation searching for methylation marks associated with obesity in children and adolescents. We studied DNA methylation profiles in whole blood cells from 40 obese children and controls using Illumina Infinium HumanMethylation450 BeadChips. After correction for cell heterogeneity and multiple tests, we found that compared to lean controls, 31 CpGs are differentially methylated in obese patients. A greatest proportion of these CpGs is hypermethylated in obesity and located in CpG shores regions. We next focused on severely obese children and identified 151 differentially methylated CpGs among which 10 with a difference in methylation greater than 10%. The top pathways enriched among the identified CpGs included the "IRS1 target genes" and several pathways in cancer diseases. This study represents the first effort to search for differences in methylation in obesity and severe obesity, which may help understanding these different forms of obesity and their complications.
Collapse
|
62
|
Meakin AS, Saif Z, Jones AR, Aviles PFV, Clifton VL. Review: Placental adaptations to the presence of maternal asthma during pregnancy. Placenta 2017; 54:17-23. [PMID: 28131319 DOI: 10.1016/j.placenta.2017.01.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
Asthma is a highly prevalent chronic medical condition affecting an estimated 12% of pregnant, women each year, with prevalence of asthma greatest (up to 16%) among the socially disadvantaged. Maternal asthma is associated with significant perinatal morbidity and mortality including preterm births, neonatal hospitalisations and low birthweight outcomes each year. We have identified that the placenta adapts to the presence of chronic, maternal asthma during pregnancy in a sex specific manner that may confer sex differences in fetal outcome. The male fetus was at greater risk of a poor outcome than a female fetus in the presence of maternal asthma and an acute inflammatory event such as an asthma exacerbation. This review will examine the role of sex specific differences in placental function on fetal growth and survival.
Collapse
Affiliation(s)
- A S Meakin
- Mater Medical Research Institute, University of Queensland, Brisbane, Australia
| | - Z Saif
- Mater Medical Research Institute, University of Queensland, Brisbane, Australia
| | - A R Jones
- Mater Medical Research Institute, University of Queensland, Brisbane, Australia
| | | | - V L Clifton
- Mater Medical Research Institute, University of Queensland, Brisbane, Australia.
| |
Collapse
|
63
|
Mendelson MM, Marioni RE, Joehanes R, Liu C, Hedman ÅK, Aslibekyan S, Demerath EW, Guan W, Zhi D, Yao C, Huan T, Willinger C, Chen B, Courchesne P, Multhaup M, Irvin MR, Cohain A, Schadt EE, Grove ML, Bressler J, North K, Sundström J, Gustafsson S, Shah S, McRae AF, Harris SE, Gibson J, Redmond P, Corley J, Murphy L, Starr JM, Kleinbrink E, Lipovich L, Visscher PM, Wray NR, Krauss RM, Fallin D, Feinberg A, Absher DM, Fornage M, Pankow JS, Lind L, Fox C, Ingelsson E, Arnett DK, Boerwinkle E, Liang L, Levy D, Deary IJ. Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach. PLoS Med 2017; 14:e1002215. [PMID: 28095459 PMCID: PMC5240936 DOI: 10.1371/journal.pmed.1002215] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. METHODS AND FINDINGS We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. CONCLUSIONS We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.
Collapse
Affiliation(s)
- Michael M. Mendelson
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Riccardo E. Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Roby Joehanes
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chunyu Liu
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
| | - Åsa K. Hedman
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Degui Zhi
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chen Yao
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tianxiao Huan
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine Willinger
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian Chen
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Courchesne
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Multhaup
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ariella Cohain
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eric E. Schadt
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Megan L. Grove
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Johan Sundström
- Cardiovascular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stefan Gustafsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sonia Shah
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Allan F. McRae
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jude Gibson
- Wellcome Trust Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Redmond
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee Murphy
- Wellcome Trust Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Erica Kleinbrink
- Center for Molecular Medicine and Genetics and Department of Neurology, Wayne State University, Detroit, Michigan, United States of America
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics and Department of Neurology, Wayne State University, Detroit, Michigan, United States of America
| | - Peter M. Visscher
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Naomi R. Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Ronald M. Krauss
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Daniele Fallin
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Devin M. Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Brown Foundation Institute of Molecular Medicine, University of Texas, Houston, Texas, United States of America
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lars Lind
- Cardiovascular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Caroline Fox
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Erik Ingelsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
64
|
Abstract
Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.
Collapse
Affiliation(s)
- Sarah S Park
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695 USA
| | - David A Skaar
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695 USA
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695 USA.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Sport & Exercise Sciences, Institute of Sport & Physical Activity Research, University of Bedfordshire, Bedford, Bedfordshire, UK
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
65
|
Plourde KV, Labrie Y, Ouellette G, Pouliot MC, Durocher F. Genome-wide methylation analysis of DNMT3B gene isoforms revealed specific methylation profiles in breast cell lines. Epigenomics 2016; 8:1209-26. [PMID: 27586997 DOI: 10.2217/epi-2016-0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM The goal of this study is to characterize the specific methylation profile triggered by DNMT3B protein isoforms expressed at different levels in breast cell lines. MATERIALS & METHODS Microarray DNA methylation data were analyzed and associated with functional genome annotation data. RESULTS A large spectrum of DNMT3B3/DNMT3B2 expression ratio values was observed in parental breast cell lines. According to their methylation profiles, hierarchical clustering of untransfected cell lines revealed clustering based on their ER/PR status. Overexpression of DNMT3B3 triggered methylation changes of thousands of CpG sites in breast cells. Based on the trend of methylation changes, the results suggest an antiproliferative action of the DNMT3B3 isoform through a dominant negative effect on its wild-type counterpart DNMT3B2. CONCLUSION This study revealed specific pathways modulated by DNMT3B isoforms, which could regulate cell proliferation and other biological mechanisms. This illustrates the importance of multiple interactions between isoforms in the complexity of methylation processes.
Collapse
Affiliation(s)
- Karine V Plourde
- CHU de Québec Research Centre-Université Laval, Department of Molecular Medicine, Québec, G1V 4G2, Canada
| | - Yvan Labrie
- CHU de Québec Research Centre-Université Laval, Department of Molecular Medicine, Québec, G1V 4G2, Canada
| | - Geneviève Ouellette
- CHU de Québec Research Centre-Université Laval, Department of Molecular Medicine, Québec, G1V 4G2, Canada
| | - Marie-Christine Pouliot
- CHU de Québec Research Centre-Université Laval, Department of Molecular Medicine, Québec, G1V 4G2, Canada
| | - Francine Durocher
- CHU de Québec Research Centre-Université Laval, Department of Molecular Medicine, Québec, G1V 4G2, Canada
| |
Collapse
|
66
|
Monnereau C, Vogelezang S, Kruithof CJ, Jaddoe VWV, Felix JF. Associations of genetic risk scores based on adult adiposity pathways with childhood growth and adiposity measures. BMC Genet 2016; 17:120. [PMID: 27538985 PMCID: PMC4991119 DOI: 10.1186/s12863-016-0425-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Results from genome-wide association studies (GWAS) identified many loci and biological pathways that influence adult body mass index (BMI). We aimed to identify if biological pathways related to adult BMI also affect infant growth and childhood adiposity measures. METHODS We used data from a population-based prospective cohort study among 3,975 children with a mean age of 6 years. Genetic risk scores were constructed based on the 97 SNPs associated with adult BMI previously identified with GWAS and on 28 BMI related biological pathways based on subsets of these 97 SNPs. Outcomes were infant peak weight velocity, BMI at adiposity peak and age at adiposity peak, and childhood BMI, total fat mass percentage, android/gynoid fat ratio, and preperitoneal fat area. Analyses were performed using linear regression models. RESULTS A higher overall adult BMI risk score was associated with infant BMI at adiposity peak and childhood BMI, total fat mass, android/gynoid fat ratio, and preperitoneal fat area (all p-values < 0.05). Analyses focused on specific biological pathways showed that the membrane proteins genetic risk score was associated with infant peak weight velocity, and the genetic risk scores related to neuronal developmental processes, hypothalamic processes, cyclicAMP, WNT-signaling, membrane proteins, monogenic obesity and/or energy homeostasis, glucose homeostasis, cell cycle, and muscle biology pathways were associated with childhood adiposity measures (all p-values <0.05). None of the pathways were associated with childhood preperitoneal fat area. CONCLUSIONS A genetic risk score based on 97 SNPs related to adult BMI was associated with peak weight velocity during infancy and general and abdominal fat measurements at the age of 6 years. Risk scores based on genetic variants linked to specific biological pathways, including central nervous system and hypothalamic processes, influence body fat development from early life onwards.
Collapse
Affiliation(s)
- Claire Monnereau
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Suzanne Vogelezang
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Claudia J Kruithof
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands. .,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands. .,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
67
|
Arany I, Hall S, Reed DK, Dixit M. The pro-oxidant gene p66shc increases nicotine exposure-induced lipotoxic oxidative stress in renal proximal tubule cells. Mol Med Rep 2016; 14:2771-7. [PMID: 27486058 DOI: 10.3892/mmr.2016.5543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/14/2016] [Indexed: 11/05/2022] Open
Abstract
Nicotine (NIC) exposure augments free fatty acid (FFA) deposition and oxidative stress, with a concomitant increase in the expression of the pro-oxidant p66shc. In addition, a decrease in the antioxidant manganese superoxide dismutase (MnSOD) has been observed in the kidneys of mice fed a high‑fat diet. The present study aimed to determine whether the pro‑oxidant p66shc mediates NIC‑dependent increases in renal oxidative stress by augmenting the production of reactive oxygen species (ROS) and suppressing the FFA‑induced antioxidant response in cultured NRK52E renal proximal tubule cells. Briefly, NRK52E renal proximal tubule cells were treated with 200 µM NIC, 100 µM oleic acid (OA), or a combination of NIC and OA. The expression levels of p66shc and MnSOD were modulated according to genetic methods. ROS production and cell injury, in the form of lactate dehydrogenase release, were subsequently detected. Promoter activity of p66shc and MnSOD, as well as forkhead box (FOXO)‑dependent transcription, was investigated using reporter luciferase assays. The results demonstrated that NIC exacerbated OA‑mediated intracellular ROS production and cell injury through the transcriptional activation of p66shc. NIC also suppressed OA‑mediated induction of the antioxidant MnSOD promoter activity through p66shc‑dependent inactivation of FOXO activity. Overexpression of p66shc and knockdown of MnSOD had the same effect as treatment with NIC on OA‑mediated lipotoxicity. These data may be used to generate a therapeutic means to ameliorate renal lipotoxicity in obese smokers.
Collapse
Affiliation(s)
- Istvan Arany
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Samuel Hall
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dustin K Reed
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mehul Dixit
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
68
|
Zhang YP, Zhang YY, Duan DD. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:185-231. [PMID: 27288830 DOI: 10.1016/bs.pmbts.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a condition in which excess body fat has accumulated over an extent that increases the risk of many chronic diseases. The current clinical classification of obesity is based on measurement of body mass index (BMI), waist-hip ratio, and body fat percentage. However, these measurements do not account for the wide individual variations in fat distribution, degree of fatness or health risks, and genetic variants identified in the genome-wide association studies (GWAS). In this review, we will address this important issue with the introduction of phenome, phenomics, and phenome-wide association study (PheWAS). We will discuss the new paradigm shift from GWAS to PheWAS in obesity research. In the era of precision medicine, phenomics and PheWAS provide the required approaches to better definition and classification of obesity according to the association of obese phenome with their unique molecular makeup, lifestyle, and environmental impact.
Collapse
Affiliation(s)
- Y-P Zhang
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Y-Y Zhang
- Department of Cardiology, Changzhou Second People's Hospital, Changzhou, Jiangsu, China
| | - D D Duan
- Laboratory of Cardiovascular Phenomics, Center for Cardiovascular Research, Department of Pharmacology, and Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV, United States.
| |
Collapse
|