51
|
Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S. Folic acid-conjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00120-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
In the current study, folic acid-conjugated PEG-PCL-PEG triblock copolymer were synthesized and loaded with 5-fluorouracil and magnetite nanoparticles (5-FU-SPION-PEG-PCL-PEG-FA) for targeted delivery of drug to HT29 human colon cancer cells and CT26 mouse colon cancer model. The nanoparticles were synthesized and characterized by nuclear magnetic resonance spectroscopy (NMR) and transmission electron microscopy (TEM). The cellular uptake of nanoparticles was assessed in vitro (on HUVEC and HT29) and in vivo (on CT26 colon tumor tissues). The cytotoxic effect of nanoparticles was assessed on human colon cell lines (HT29, Caco-2, HTC116, and SW480) and normal HUVEC cells. In addition, antitumor effects of nanoparticles were investigated based on tumor volume, survival time and protein expression of Bax and Bcl-2 on CT26 tumor-bearing BALB/c mice.
Results
Characterization of nanoparticles showed 5-FU-SPION-PEG-PCL-PEG-FA (5-FU-NPs-FA) nanoparticles had spherical shape with hydrodynamic diameter of 85 nm. The drug-release profile exhibited sustained pH-responsive release with cumulative release reaching approximately 23% after 24 h. Cellular uptake studies revealed that HT29 cancer cells absorb higher amount of 5-FU-NPs-FA as compared to HUVEC normal cells (P < 0.05). In addition, 5-FU-NPs-FA was found to be more antitumor efficient in comparison to free 5-FU based on Bax/Bcl2 ratio, survival rate of tumoral mouse and inhibitory tumor volume (P < 0.05).
Conclusions
The results suggested that 5-FU-NPs-FA could be considered as promising sustained drug delivery platform for in vitro and in vivo conditions, which may provide selective treatment of tumor cancer cells.
Graphical Abstarct
Collapse
|
52
|
Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers (Basel) 2022; 14:polym14081611. [PMID: 35458361 PMCID: PMC9024559 DOI: 10.3390/polym14081611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”.
Collapse
|
53
|
Lage DP, Machado AS, Vale DL, Freitas CS, Linhares FP, Cardoso JMO, Pereira IAG, Ramos FF, Tavares GSV, Ludolf F, Oliveira-da-Silva JA, Bandeira RS, Silva AM, Simões LC, Reis TAR, Oliveira JS, Christodoulides M, Chávez-Fumagalli MA, Roatt BM, Martins VT, Coelho EAF. Recombinant guanosine-5'-triphosphate (GTP)-binding protein associated with Poloxamer 407-based polymeric micelles protects against Leishmania infantum infection. Cytokine 2022; 153:155865. [PMID: 35339043 DOI: 10.1016/j.cyto.2022.155865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 11/03/2022]
Abstract
Leishmania virulence proteins should be considered as vaccine candidates against disease, since they are involved in developing infection in mammalian hosts. In a previous study, a Leishmania guanosine-5'-triphosphate (GTP)-binding protein was identified as a potential parasite virulence factor. In the present work, the gene encoding GTP was cloned and the recombinant protein (rGTP) was evaluated as a vaccine candidate against Leishmania infantum infection. The protein was associated with saponin (rGTP/Sap) or Poloxamer 407-based micelles (rGTP/Mic) as adjuvants, and protective efficacy was investigated in BALB/c mice after parasite challenge. Both rGTP/Sap and rGTP/Mic compositions induced a Th1-type immune response in vaccinated animals, with significantly higher levels of IFN-γ, IL-12, IL-2, TNF-α, GM-CSF, nitrite, specific IgG2a isotype antibody and positive lymphoproliferation, when compared to the control groups. This response was accompanied by significantly lower parasite load in the spleens, livers, bone marrows and draining lymph nodes of the animals. Immunological and parasitological evaluations indicated that rGTP/Mic induced a more polarized Th1-type response and higher reduction in the organ parasitism, and with lower hepatotoxicity, when compared to the use of rGTP/Sap. In conclusion, our preliminary data suggest that rGTP could be considered for further development as a vaccine candidate to protect against VL.
Collapse
Affiliation(s)
- Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia P Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamille M O Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra M Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana C Simões
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago A R Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, England
| | | | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
54
|
Roy H, Nayak BS, Nandi S. Poloxamer based Urapidil Loaded Chitosan Microparticle in Approach to Improve the Mechanical Strength by Tensile Strength and Entrapment Determination. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220307120643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The literature review highlighted the issues related to the poor mechanical strength of chitosan-based microparticles. In an attempt to resolve the stated drawback, the microparticles are prepared with a suitable combination of poloxamer-188 (pluronic) and chitosan-based hydrogels.
Objective:
The current study deals with urapidil-loaded chitosan microparticles incorporating chitosan-based hydrogels and small polyanionic electrolytes. The mechanical strength was ascertained by entrapment efficiency and texture analyzer.
Method:
Chitosan-based hydrogels and the combination of poloxamer and further microparticles are prepared by counter-ion aggregation technique in polyanionic electrolyte medium (20 % w/v). During the preparation, poloxamer is incorporated to improve the mechanical strength, which is ascertained in terms of adhesive strength (tensile strength) by texture analyzer and entrapment efficiency. The prepared microparticles are also subjected to micrometric studies, swelling index, surface morphology study, drug-polymer interaction study, and zeta analysis.
Result:
It was observed that there is a remarkable increase in entrapment efficiency (maximum of 78.56 % from SSP4) with the progressive increase in poloxamer-188. In addition to that, adhesive strength was also studied by a texture analyzer for all microparticles. Sodium citrate-based products exhibited superior adhesive strength values compared to sodium sulfate and sodium tripolyphosphate-based and signified the incorporation of poloxamer-188. A significant finding was also recorded for the swelling properties to microenvironmental pH attributed to polyanions. It observed Sodium TPP microparticles continued to swell in phosphate buffer pH 6.8. Zeta value was found to be maximum with -5.2 mV; it could further be improved by adding electrolytes. TPP4 showed a comparatively larger particle size of 8.07 µm. Polydispersity index value ascertained homogenous dispersion of microparticles. SEM study revealed prominent porous surfaces for sodium tripolyphosphate microparticles.
Conclusion:
The study revealed that the addition of poloxamer-188 improved the mechanical strength, identified by entrapment efficiency and texture analysis. SCP4 microparticle was found to be the best formulation among all.
Collapse
Affiliation(s)
- Harekrishna Roy
- Biju Patnaik University of Technology, Rourkela, Odisha-769004, India
- Institute of Pharmacy and Technology, Salipur, Cuttack -754202, Odisha, India
- Nirmala College of Pharmacy, Mangalagiri, Guntur-522503, Andhra Pradesh, India
| | | | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Kashipur 244713, India
| |
Collapse
|
55
|
Vardaxi A, Kafetzi M, Pispas S. Polymeric Nanostructures Containing Proteins and Peptides for Pharmaceutical Applications. Polymers (Basel) 2022; 14:777. [PMID: 35215689 PMCID: PMC8877994 DOI: 10.3390/polym14040777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Over the last three decades, proteins and peptides have attracted great interest as drugs of choice for combating a broad spectrum of diseases, including diabetes mellitus, cancer, and infectious and neurological diseases. However, the delivery of therapeutic proteins to target sites should take into account the obstacles and limitations related to their intrinsic sensitivity to different environmental conditions, fragile tertiary structures, and short half-life. Polymeric nanostructures have emerged as competent vehicles for protein delivery, as they are multifunctional and can be tailored according to their peculiarities. Thus, the enhanced bioavailability and biocompatibility, the adjustable control of physicochemical features, and the colloidal stability of polymer-based nanostructures further enable either the embedding or conjugation of hydrophobic or hydrophilic bioactive molecules, which are some of the features of paramount importance that they possess and which contribute to their selection as vehicles. The present review aims to discuss the prevalent nanostructures composed of block copolymers from the viewpoint of efficient protein hospitality and administration, as well as the up-to-date scientific publications and anticipated applications of polymeric nanovehicles containing proteins and peptides.
Collapse
Affiliation(s)
| | | | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.V.); (M.K.)
| |
Collapse
|
56
|
One-Pot Synthesis of Amphiphilic Biopolymers from Oxidized Alginate and Self-Assembly as a Carrier for Sustained Release of Hydrophobic Drugs. Polymers (Basel) 2022; 14:polym14040694. [PMID: 35215606 PMCID: PMC8879484 DOI: 10.3390/polym14040694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, we developed an organic solvent-free, eco-friendly, simple and efficient one-pot approach for the preparation of amphiphilic conjugates (Ugi-OSAOcT) by grafting octylamine (OCA) to oxidized sodium alginate (OSA). The optimum reaction parameters that were obtained based on the degree of substitution (DS) of Ugi-OSAOcT were a reaction time of 12 h, a reaction temperature of 25 °C and a molar ratio of 1:2.4:3:3.3 (OSA:OCA:HAc:TOSMIC), respectively. The chemical structure and composition were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), thermogravimetry analyser (TGA), gel permeation chromatography (GPC) and elemental analysis (EA). It was found that the Ugi-OSAOcT conjugates with a CMC value in the range of 0.30–0.085 mg/mL could self-assemble into stable and spherical micelles with a particle size of 135.7 ± 2.4–196.5 ± 3.8 nm and negative surface potentials of −32.8 ± 0.4–−38.2 ± 0.8 mV. Furthermore, ibuprofen (IBU), which served as a model poorly water-soluble drug, was successfully incorporated into the Ugi-OSAOcT micelles by dialysis method. The drug loading capacity (%DL) and encapsulation efficiency (%EE) of the IBU-loaded Ugi-OSAOcT micelles (IBU/Ugi-OSAOcT = 3:10) reached as much as 10.9 ± 0.4–14.6 ± 0.3% and 40.8 ± 1.6–57.2 ± 1.3%, respectively. The in vitro release study demonstrated that the IBU-loaded micelles had a sustained and pH-responsive drug release behavior. In addition, the DS of the hydrophobic segment on an OSA backbone was demonstrated to have an important effect on IBU loading and drug release behavior. Finally, the in vitro cytotoxicity assay demonstrated that the Ugi-OSAOcT conjugates exhibited no significant cytotoxicity against RAW 264.7 cells up to 1000 µg/mL. Therefore, the amphiphilic Ugi-OSAOcT conjugates synthesized by the green method exhibited great potential to load hydrophobic drugs, acting as a promising nanocarrier capable of responding to pH for sustained release of hydrophobic drugs.
Collapse
|
57
|
Yakaew S, Luangpradikun K, Phimnuan P, Nuengchamnong N, Kamonsutthipaijit N, Rugmai S, Nakyai W, Ross S, Ungsurungsei M, Viyoch J, Ross G. Investigation into poloxamer 188‐based cubosomes as a polymeric carrier for poor water‐soluble actives. J Appl Polym Sci 2022. [DOI: 10.1002/app.51612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Swanya Yakaew
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry Naresuan University Phitsanulok Thailand
| | - Kunlathida Luangpradikun
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry Naresuan University Phitsanulok Thailand
| | - Preeyawass Phimnuan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry Naresuan University Phitsanulok Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Center, Faculty of Science Naresuan University Phitsanulok Thailand
| | | | - Supagorn Rugmai
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima Thailand
| | - Wongnapa Nakyai
- Department of Chemistry, Faculty of Science Ramkhamhaeng University Bangkok Thailand
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
| | - Malyn Ungsurungsei
- Research & Development Division S & J International Enterprises Public Company Limited Bangkok Thailand
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry Naresuan University Phitsanulok Thailand
| | - Gareth Ross
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
| |
Collapse
|
58
|
Timotijević MD, Ilić T, Savić S, Pantelić I. Simultaneous Physico-Mechanical and In Vivo Assessment towards Factual Skin Performance Profile of Topical Polymeric Film-Forming Systems. Pharmaceutics 2022; 14:pharmaceutics14020223. [PMID: 35213956 PMCID: PMC8877452 DOI: 10.3390/pharmaceutics14020223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Topical film-forming systems (FFS) change drastically after solvent displacement, therefore indicating their skin metamorphosis/transformation as a property of special regulatory and research interest. This paper deals with the lack of suitable characterization techniques, suggesting a set of methods able to provide a comprehensive notion of FFS skin performance. After screening the physico-chemical, mechanical and sensory properties of FFS and resulting films, an elaborate three-phase in vivo study was performed, covering skin irritation, friction and substantivity. Upon removal of 24-hour occlusion, no significant change in erythema index was observed, while the film-former type (cellulose ether, acrylate and/or vinyl polymer) affected transepidermal water loss (TEWL); hydrophobic methacrylate copolymer-based samples decreased TEWL by 40–50%, suggesting a semi-occlusive effect. Although both the tribological parameters related to the friction coefficient and the friction curve’s plateau provided valuable data, their analysis indicated the importance of the moment the plateau is reached as the onset of the secondary formulation, while the tertiary state is still best described by the completion of the film’s drying time. The final part of the in vivo study proved the high in-use substantivity of all samples but confirmed the optimal 4:1 ratio of hydrophobic cationic and hydrophilic polymers, as indicated during early physico-mechanical screening.
Collapse
|
59
|
Injectable thermosensitive lipo-hydrogels loaded with ropivacaine for prolonging local anesthesia. Int J Pharm 2022; 611:121291. [PMID: 34780929 DOI: 10.1016/j.ijpharm.2021.121291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023]
Abstract
Reducing post-surgical pain can promote recovery of mobility, improve patient satisfaction, and reduce the risk of chronic pain syndrome. When managing post-surgical pain, single-injection local anesthesia is more convenient and involves lower risk to the patient than multi-injection regimes, but the effects are not long-lasting. Here we developed a system that can prolong local anesthesia after a single injection. In this system, ropivacaine (Ro) is encapsulated into liposomes, which are then loaded into Poloxamer 407-based thermosensitive hydrogels. The Ro-loaded liposome-in-gel system (Ro-Lip-Gel) is in a sol state before injection, and immediately after subcutaneous injection, it forms a gel in situ. We show through in vitro release and in vivo pharmacokinetics studies that this gel acts as a drug release depot. In rats, the initial burst release of Ro was smaller from Ro-Lip-Gel than from Ro solution or Ro-Gel, and Ro-Lip-Gel caused nerve blockade lasting four times longer than Ro solution. Ro-Lip-Gel degraded in vivo and showed good biocompatibility. Our results suggest that a liposome-in-gel system can show small initial burst release, long-term nerve blockade and good biocompatibility in vitro and in vivo. Therefore, such a system may be useful for sustained local anesthesia without systemic toxicity.
Collapse
|
60
|
|
61
|
New Strategies for Improving Budesonide Skin Retention. Pharmaceutics 2021; 14:pharmaceutics14010030. [PMID: 35056927 PMCID: PMC8781796 DOI: 10.3390/pharmaceutics14010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to evaluate the ex vivo effect of the combination of two strategies, complexation with cyclodextrin, and poloxamer hydrogels, for improving water solubility in the dermal absorption of budesonide. Two hydrogels containing 20% poloxamer 407, alone or in combination with poloxamer 403, were prepared. Each formulation was loaded with 0.05% budesonide, using either pure budesonide or its inclusion complex with hydroxypropyl-β-cyclodextrin, and applied in finite dose conditions on porcine skin. The obtained results showed that for all formulations, budesonide accumulated preferentially in the epidermis compared to the dermis. The quantity of budesonide recovered in the receptor compartment was, in all cases, lower than the LOQ of the analytical method, suggesting the absence of possible systemic absorption. The use of a binary poloxamer mixture reduced skin retention, in line with the lower release from the vehicle. When the hydrogels were formulated with the inclusion complex, an increase in budesonide skin retention was observed with both hydrogels. Poloxamer hydrogel proved to be a suitable vehicle for cutaneous administration of budesonide.
Collapse
|
62
|
Block copolymers in Alzheimer's disease therapy: A perceptive to revolutionize biomaterials. J Control Release 2021; 340:271-281. [PMID: 34763003 DOI: 10.1016/j.jconrel.2021.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease is a fatal illness associated with two persistent problems in treatment i. ineffective drug transportation across the bio-membranes and ii. on-site targeting. Such problems originate from the combinational factors for non-specific targets, physicochemical limitations in the delivery of the active agents and insignificant permeability across blood-brain-barrier. In this context, block copolymers such as PLGA-PEG, PEG-PLA, Poloxamers, PLGA-PEG-PLGA triblock copolymers, etc. present interesting potential in the development of nano-sized carrier systems like polymerosomes, polymeric micelles, etc. for the management and treatment of Alzheimer's disease. Modifications of block copolymers display improvement in solubility and reduction in toxicity due to the process of complexation, functionalization, dose reduction and modification of kinetics for the rate of release. This review article focuses on new insights into different copolymers and their superiority over conventional polymers in Alzheimer's disease for long-term therapy in the body. Association of block copolymers to therapy of Alzheimer's disease overcome the limitations of drug delivery by offering attributes such as smaller molecular size (less than 150 nm), higher solubility owing to hydrophilic interactions between polymeric components and systemic environment, better entrapment efficiency (above 80%) due to large effective surface area and long-term stability for sensitive actives such as peptides, monoclonal antibodies, curcumin, resveratrol, catechins, etc. With such multifunctional features, block copolymers actively permeate the bio-membrane as polymeric nanoparticles, nanomicelles and polymerosomes using different mechanisms such as transcellular- and receptor-mediated transportation to reach target neural network as well as extra-neuronal amyloid-β plaques for anti-Alzheimer's disease activity with neuroprotective action. These polymers emerge as important components for personalized therapy with potential applications in biosensing, drug delivery, theranostics, etc. for qualitative and quantitative predictions in the detection and treatment of Alzheimer's disease.
Collapse
|
63
|
Kancharla S, Bedrov D, Tsianou M, Alexandridis P. Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small-angle neutron scattering with contrast variation. J Colloid Interface Sci 2021; 609:456-468. [PMID: 34815085 DOI: 10.1016/j.jcis.2021.10.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Complex fluids comprising polymers and surfactants exhibit interesting properties which depend on the overall composition and solvent quality. The ultimate determinants of the macroscopic properties are the nano-scale association domains. Hence it is important to ascertain the structure and composition of the domains, and how they respond to the overall composition. EXPERIMENTS The structure and composition of mixed micelles formed in aqueous solution between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics or Poloxamers) and the ionic surfactant sodium dodecylsulfate (SDS) are determined from an analysis of small-angle neutron scattering (SANS) intensity data obtained at different contrasts. Different polymers and concentrations have been probed. FINDINGS The SDS + Pluronic mixed micelles include polymer and some water in the micelle core that is formed primarily by alkyl chains. This is different than what was previously reported, but is consistent with a variety of experimental observations. This is the first report on the structure of SDS + Pluronic P123 (EO19PO69EO19) assemblies. The effects on the mixed micelle structure and composition of the surfactant concentration and the polymer hydrophobicity are discussed here in the context of interactions between the different components.
Collapse
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
64
|
Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood-Brain Barrier Opening via Lipid-PLGA Nanobubbles. Int J Nanomedicine 2021; 16:7433-7447. [PMID: 34764649 PMCID: PMC8575349 DOI: 10.2147/ijn.s327737] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder. Owing to the presence of blood-brain barrier (BBB), conventional pharmaceutical agents are difficult to the diseased nuclei and exert their action to inhibit or delay the progress of PD. Recent literatures have demonstrated that curcumin shows the great potential to treat PD. However, its applications are still difficult in vivo due to its poor druggability and low bioavailability through the BBB. Methods Melt-crystallization methods were used to improve the solubility of curcumin, and curcumin-loaded lipid-PLGA nanobubbles (Cur-NBs) were fabricated through encapsulating the curcumin into the cavity of lipid-PLGA nanobubbles. The bubble size, zeta potentials, ultrasound imaging capability and drug encapsulation efficiency of the Cur-NBs were characterized by a series of analytical methods. Low-intensity focused ultrasound (LIFU) combined with Cur-NB was used to open the BBB to facilitate curcumin delivery into the deep brain of PD mice, followed by behavioral evaluation for the treatment efficacy. Results The solubility of curcumin was improved by melt-crystallization methods, with 2627-fold higher than pure curcumin. The resulting Cur-NBs have a nanoscale size about 400 nm and show excellent contrast imaging performance. Curcumin drugs encapsulated into Cur-NBs could be effectively released when Cur-NBs were irradiated by LIFU at the optimized acoustic pressure, achieving 30% cumulative release rate within 6 h. Importantly, Cur-NBs combined with LIFU can open the BBB and locally deliver the curcumin into the deep-seated brain nuclei, significantly enhancing efficacy of curcumin in the Parkinson C57BL/6J mice model in comparison with only Cur-NBs and LIFU groups. Conclusion In this work, we greatly improved the solubility of curcumin and developed Cur-NBs for brain delivery of curcumin against PD through combining with LIFU-mediating BBB. Cur-NBs provide a platform for these potential drugs which are difficult to cross the BBB to treat PD disease or other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhongxun Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Wanting Niu
- VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Haifeng Liang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhiwen Su
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| |
Collapse
|
65
|
Bassi da Silva J, da Silva Souza Campanholi K, Braga G, de Souza PR, Caetano W, Cook MT, Bruschi ML. The effect of erythrosine-B on the structuration of poloxamer 407 and cellulose derivative blends: In silico modelling supporting experimental studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112440. [PMID: 34702525 DOI: 10.1016/j.msec.2021.112440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Erythrosine is a dye approved for medical use that has shown promising photodynamic activity, allowing for the inactivation of microorganisms and activity against malignant cells. Despite the great photodynamic potential, erythrosine exhibits hydrophilicity, negatively impacting its action in biological membranes. Therefore, the incorporation of erythrosine in micellar polymeric systems, such as poloxamers, may overcome this limitation. Moreover, using bioadhesive and thermoresponsive polymers to combine in situ gelation and bioadhesion may enhance retention of this topically applied drug. In this work, mucoadhesive and thermoresponsive micellar systems were prepared containing erythrosine in two states: the native form (ERI) and the disodium salt (ERIs). The systems were evaluated based on the effect of ERI/ERIs on the micellar structure of the binary polymer mixtures. Optimised combinations of poloxamer 407 (polox407) and mucoadhesive sodium carboxymethylcellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC) were used as micellar systems for ERI or ERIs delivery. The systems were studied with respect to theoretical interactions, qualitative composition, morphology, and micellar properties. In silico modelling indicated a higher interaction of the drug with poly(ethylene oxide) (PEO) than poly(propylene oxide) (PPO) fragments of polox407. Systems containing NaCMC displayed a repulsive effect in the presence of erythrosine, due to the polymer's charge density. Both systems could convert the photosensitizer in its monomeric form, ensuring photodynamic activity. In these mixtures, crystallinity, critical micellar temperature and enthalpy of polox407 micellisation were reduced, and micellar size, evaluated by transmission electron microscopy (TEM), showed low impact of ERI/ERIs in HPMC preparations. Aiming toward photodynamic applications, the findings showed how ERI or ERIs can affect the micellar formation of gels composed of 17.5% (w/w) polox407 and 3% (w/w) HPMC or 1% (w/w) NaCMC, important for understating their behaviour and future utilisation as erythrosine delivery systems.
Collapse
Affiliation(s)
- Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | | | - Gustavo Braga
- Department of Chemistry, State University of Maringa, Maringa, PR, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Maringa, PR, Brazil
| | - Michael Thomas Cook
- Research Centre in Topical Drug Delivery and Toxicology, Department of Pharmacy, Pharmacology, and Postgraduate Medicine, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
66
|
Levit M, Vdovchenko A, Dzhuzha A, Zashikhina N, Katernyuk E, Gostev A, Sivtsov E, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Self-Assembled Nanoparticles Based on Block-Copolymers of Poly(2-Deoxy-2-methacrylamido-d-glucose)/Poly( N-Vinyl Succinamic Acid) with Poly( O-Cholesteryl Methacrylate) for Delivery of Hydrophobic Drugs. Int J Mol Sci 2021; 22:ijms222111457. [PMID: 34768888 PMCID: PMC8583880 DOI: 10.3390/ijms222111457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The self-assembly of amphiphilic block-copolymers is a convenient way to obtain soft nanomaterials of different morphology and scale. In turn, the use of a biomimetic approach makes it possible to synthesize polymers with fragments similar to natural macromolecules but more resistant to biodegradation. In this study, we synthesized the novel bio-inspired amphiphilic block-copolymers consisting of poly(N-methacrylamido-d-glucose) or poly(N-vinyl succinamic acid) as a hydrophilic fragment and poly(O-cholesteryl methacrylate) as a hydrophobic fragment. Block-copolymers were synthesized by radical addition-fragmentation chain-transfer (RAFT) polymerization using dithiobenzoate or trithiocarbonate chain-transfer agent depending on the first monomer, further forming the hydrophilic block. Both homopolymers and copolymers were characterized by 1H NMR and Fourier transform infrared spectroscopy, as well as thermogravimetric analysis. The obtained copolymers had low dispersity (1.05-1.37) and molecular weights in the range of ~13,000-32,000. The amphiphilic copolymers demonstrated enhanced thermal stability in comparison with hydrophilic precursors. According to dynamic light scattering and nanoparticle tracking analysis, the obtained amphiphilic copolymers were able to self-assemble in aqueous media into nanoparticles with a hydrodynamic diameter of approximately 200 nm. An investigation of nanoparticles by transmission electron microscopy revealed their spherical shape. The obtained nanoparticles did not demonstrate cytotoxicity against human embryonic kidney (HEK293) and bronchial epithelial (BEAS-2B) cells, and they were characterized by a low uptake by macrophages in vitro. Paclitaxel loaded into the developed polymer nanoparticles retained biological activity against lung adenocarcinoma epithelial cells (A549).
Collapse
Affiliation(s)
- Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
| | - Alena Vdovchenko
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Apollinariia Dzhuzha
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
| | - Elena Katernyuk
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Alexey Gostev
- Saint-Petersburg State Institute of Technology, Technical University, Moskovskiy pr. 26, 190013 St. Petersburg, Russia;
| | - Eugene Sivtsov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Saint-Petersburg State Institute of Technology, Technical University, Moskovskiy pr. 26, 190013 St. Petersburg, Russia;
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Correspondence:
| |
Collapse
|
67
|
Kattar A, Concheiro A, Alvarez-Lorenzo C. Diabetic eye: associated diseases, drugs in clinic, and role of self-assembled carriers in topical treatment. Expert Opin Drug Deliv 2021; 18:1589-1607. [PMID: 34253138 DOI: 10.1080/17425247.2021.1953466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Diabetes is a pandemic disease that causes relevant ocular pathologies. Diabetic retinopathy, macular edema, cataracts, glaucoma, or keratopathy strongly impact the quality of life of the patients. In addition to glycemic control, intense research is devoted to finding more efficient ocular drugs and improved delivery systems that can overcome eye barriers. Areas covered: The aim of this review is to revisit first the role of diabetes in the development of chronic eye diseases. Then, commercially available drugs and new candidates in clinical trials are tackled together with the pros and cons of their administration routes. Subsequent sections deal with self-assembled drug carriers suitable for eye instillation combining patient-friendly administration with high ocular bioavailability. Performance of topically administered polymeric micelles, liposomes, and niosomes for the management of diabetic eye diseases is analyzed in the light of ex vivo and in vivo results and outcomes of clinical trials. Expert opinion: Self-assembled carriers are being shown useful for efficient delivery of not only a variety of small drugs but also macromolecules (e.g. antibodies) and genes. Successful design of drug carriers may offer alternatives to intraocular injections and improve the treatment of both anterior and posterior segments diabetic eye diseases.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
68
|
Giuliano E, Fresta M, Cosco D. Development and characterization of poloxamine 908-hydrogels for potential pharmaceutical applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
69
|
|
70
|
Araújo CDCB, Simon A, Honório TDS, da Silva SVC, Valle IMM, da Silva LCRP, Rodrigues CR, de Sousa VP, Cabral LM, Sathler PC, do Carmo FA. Development of rivaroxaban microemulsion-based hydrogel for transdermal treatment and prevention of venous thromboembolism. Colloids Surf B Biointerfaces 2021; 206:111978. [PMID: 34293580 DOI: 10.1016/j.colsurfb.2021.111978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022]
Abstract
We have developed a microemulsion (ME)-based hydrogel, containing propylene glycol, Azone®, Labrasol®, isobutanol and water (20:3:18:3:56), for the transdermal delivery of rivaroxaban (RVX). Formulation ME-1:RVX, which was loaded with 0.3 mg/g of RVX, presented as a clear, homogenous fluid with a droplet size of 82.01 ± 6.32 nm and a PdI of 0.207 ± 0.01. To provide gelation properties, 20 % (w/w) of Pluronic® F-127 was added to ME-1:RVX to generate formulation PME-1a. An added benefit was an increased capacity for RVX to 0.4 mg/g (formulation PME-1b). PME-1b displayed spherical droplets with a nanoscale diameter as observed by Transmission Electron Microscopy. The release of RVX from PME-1b was 20.71 ± 0.76 μg/cm2 with a permeation through pig epidermis of 18.32 ± 8.87 μg/cm2 as measured in a Franz Cell for 24 h. PME-1b presented a pseudoplastic behavior, pH value compatible with the skin and good stability over 60 days at room and elevated temperatures. The prothrombin time was assessed for each concentration of RVX obtained in the permeation assay and each demonstrated a relevant anticoagulant activity. PME-1b also presented no cytotoxicity against HaCaT cells. Utilizing GastroPlus® software, an in silico analysis was performed to simulate the delivery of PME-1b through a transdermal system that suggested a minimum dose of RVX for the treatment and prevention of venous thromboembolism could be achieved with an 8 h administration regimen. These results suggest that PME-1b is a promising transdermal formulation for the effective delivery of RVX that could be a viable alternative for the treatment and prevention of venous thromboembolism.
Collapse
Affiliation(s)
- Cristina da Costa Bernardes Araújo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Thiago da Silva Honório
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Silvia Valéria Cruz da Silva
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Isabella Mourão Machado Valle
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Luiz Cláudio Rodrigues Pereira da Silva
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Carlos Rangel Rodrigues
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Plínio Cunha Sathler
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Flávia Almada do Carmo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil.
| |
Collapse
|
71
|
Constantinou AP, Zhang K, Somuncuoğlu B, Feng B, Georgiou TK. PEG-Based Methacrylate Tetrablock Terpolymers: How Does the Architecture Control the Gelation? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna P. Constantinou
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Kaiwen Zhang
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Birsen Somuncuoğlu
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Bailin Feng
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Theoni K. Georgiou
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
72
|
Development polymeric micellar system for targeted delivery of antitumor drugs. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01876-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
73
|
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021; 334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Amphiphilic block copolymers are widely utilized in the design of formulations owing to their unique physicochemical properties, flexible structures and functional chemistry. Amphiphilic polymeric micelles (APMs) formed from such copolymers have gained attention of the drug delivery scientists in past few decades for enhancing the bioavailability of lipophilic drugs, molecular targeting, sustained release, stimuli-responsive properties, enhanced therapeutic efficacy and reducing drug associated toxicity. Their properties including ease of surface modification, high surface area, small size, and enhanced permeation as well as retention (EPR) effect are mainly responsible for their utilization in the diagnosis and therapy of various diseases. However, some of the challenges associated with their use are premature drug release, low drug loading capacity, scale-up issues and their poor stability that need to be addressed for their wider clinical utility and commercialization. This review describes comprehensively their physicochemical properties, various methods of preparation, limitations followed by approaches employed for the development of optimized APMs, the impact of each preparation technique on the physicochemical properties of the resulting APMs as well as various biomedical applications of APMs. Based on the current scenario of their use in treatment and diagnosis of diseases, the directions in which future studies need to be carried out to explore their full potential are also discussed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, Jaipur, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gopal L Khatik
- National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi road, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
74
|
Sahu S, Karan P, Mishra AK. Nature of Saccharide-Induced F127 Micellar Dehydration: An Insight with FDAPT (2-Formyl-5-(4'- N, N-dimethylaminophenyl)thiophene), a Multiparametric Fluorescent Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3067-3074. [PMID: 33650876 DOI: 10.1021/acs.langmuir.0c03284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
FDAPT (2-formyl-5-(4'-N,N-dimethylaminophenyl)thiophene) is an efficient environment-sensitive fluorescent probe, which senses the alteration of its microenvironment with six different fluorescent parameters, namely, emission intensity, wavelength, fluorescence anisotropy, and corresponding three time-dependent parameters fluorescence lifetime, time-resolved emission spectrum, and anisotropy decay. In the present work, the nature of saccharide-induced dehydration of a F127 polymeric micelle is investigated in detail with FDAPT emission. Using a multiparametric fluorescence approach, it is observed that the saccharide molecules not only decrease the critical micellization temperature of the F127 solution but also strongly alter the physical properties inside the micellar structures. The local polarity and fluidity significantly decrease in the saccharide-induced micelle as compared to the normal F127 micelle. The probe solvation dynamics study reveals that the water content in the core as well as corona domain diminishes significantly in the saccharide-induced micelle as compared to the normal micelle. More precisely, dehydration occurs more in the core region than in the corona region. Also, the saccharide-induced dehydration alters the relative size of the core and corona regions. The extent of dehydration varies with different saccharide molecules. It is also found that the dehydration efficiency order is trisaccharide (raffinose) > disaccharide (sucrose) > monosaccharide (glucose and fructose).
Collapse
Affiliation(s)
- Saugata Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai 600036, India
| | - Pulak Karan
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai 600036, India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai 600036, India
| |
Collapse
|
75
|
Recent advances in peptide-targeted micelleplexes: Current developments and future perspectives. Int J Pharm 2021; 597:120362. [PMID: 33556489 DOI: 10.1016/j.ijpharm.2021.120362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
The decoding of the human genome revolutionized the understanding of how genetics influence the interplay between health and disease, in a multidisciplinary perspective. Thus, the development of exogenous nucleic acids-based therapies has increased to overcome hereditary or acquired genetic-associated diseases. Gene drug delivery using non-viral systems, for instance micelleplexes, have been recognized as promising options for gene-target therapies. Micelleplexes are core-shell structures, at a nanometric scale, designed using amphiphilic block copolymers. These can self-assemble in an aqueous medium, leading to the formation of a hydrophilic and positively charged corona - that can transport nucleic acids, - and a hydrophobic core - which can transport poor water-soluble drugs. However, the performance of these types of carriers usually is hindered by several in vivo barriers. Fortunately, due to a significant amount of research, strategies to overcome these shortcomings emerged. With a wide range of structural features, good stability against proteolytic degradation, affordable characteristic, easy synthesis, low immunogenicity, among other advantages, peptides have increasingly gained popularity as target ligands for non-viral carriers. Hence, this review addresses the use of peptides with micelleplexes illustrating, through the analysis of in vitro and in vivo studies, the potential and future perspectives of this combination.
Collapse
|
76
|
Vlassi E, Papagiannopoulos A, Pispas S. Amphiphilic
A
x
B
y
mikto‐arm star copolymers with
PLMA
and
POEGMA
arms: Self‐assembly and drug encapsulation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eleni Vlassi
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | | | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
77
|
Zheng K, Du D. Recent advances of hydrogel-based biomaterials for intervertebral disc tissue treatment: A literature review. J Tissue Eng Regen Med 2021; 15:299-321. [PMID: 33660950 DOI: 10.1002/term.3172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Low back pain is an increasingly prevalent symptom mainly associated with intervertebral disc (IVD) degeneration. It is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and annulus fibrosus fissure formatting, which finally results in the IVD herniation and related clinical symptoms. Hydrogels have been drawing increasing attention as the ideal candidates for IVD degeneration because of their unique properties such as biocompatibility, highly tunable mechanical properties, and especially the water absorption and retention ability resembling the normal NP tissue. Numerous innovative hydrogel polymers have been generated in the most recent years. This review article will first briefly describe the anatomy and pathophysiology of IVDs and current therapies with their limitations. Following that, the article introduces the hydrogel materials in the classification of their origins. Next, it reviews the recent hydrogel polymers explored for IVD regeneration and analyses what efforts have been made to overcome the existing limitations. Finally, the challenges and prospects of hydrogel-based treatments for IVD tissue are also discussed. We believe that these novel hydrogel-based strategies may shed light on new possibilities in IVD degeneration disease.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
78
|
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332:127-147. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
In recent years, polymeric micelles have been extensively utilized in pre-clinical studies for delivering poorly soluble chemotherapeutic agents in cancer. Polymeric micelles are formed via self-assembly of amphiphilic polymers in facile manners. The wide availability of hydrophobic and, to some extent, hydrophilic polymeric blocks allow researchers to explore various polymeric combinations for optimum loading, stability, systemic circulation, and delivery to the target cancer tissues. Moreover, polymeric micelles could easily be tailor-made by increasing and decreasing the number of monomers in each polymeric chain. Some of the widely accepted hydrophobic polymers are poly(lactide) (PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), polyesters, poly(amino acids), lipids. The hydrophilic polymers used to wrap the hydrophobic core are poly(ethylene glycol), poly(oxazolines), chitosan, dextran, and hyaluronic acids. Drugs could be conjugated to polymers at the distal ends to prepare pharmacologically active polymeric systems that impart enhanced solubility and stability of the conjugates and provide an opportunity for combination drug delivery. Their nano-size enables them to accumulate to the tumor microenvironment via the Enhanced Permeability and Retention (EPR) effect. Moreover, the stimuli-sensitive breakdown provides the micelles an effective means to deliver the therapeutic cargo effectively. The tumor micro-environmental stimuli are pH, hypoxia, and upregulated enzymes. Externally applied stimuli to destroy micellar disassembly to release the payload include light, ultrasound, and temperature. This article delineates the current trend in developing polymeric micelles combining various block polymeric scaffolds. The development of stimuli-sensitive micelles to achieve enhanced therapeutic activity are also discussed.
Collapse
Affiliation(s)
- Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
79
|
|
80
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
81
|
Insights in the rheological properties of PLGA-PEG-PLGA aqueous dispersions: Structural properties and temperature-dependent behaviour. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
82
|
Lu Y, Lin M, Zong J, Zong L, Zhao Z, Wang S, Zhang Z, Han M. Highly bioavailable curcumin preparation with a co-grinding and solvent-free process. Food Sci Nutr 2020; 8:6415-6425. [PMID: 33312527 PMCID: PMC7723189 DOI: 10.1002/fsn3.1930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Curcumin (Cur.) is a natural product isolated from the rhizome of Curcuma longa, with a variety of biological and pharmacological activities in food and pharmaceutical products. However, curcumin's poor solubility in water greatly limits its bioavailability and clinical applications. In this study, co-grinding curcumin with food additives produced a mixture, which was evaluated for the solubility in water, dissolution, material morphology, in vivo bioavailability, cell uptake and entry mechanism. We tested 9 food additives in total and found that poloxamers performed the best. The 2 co-grinding mixtures Cur./Kolliphor® P407 and Cur./Kolliphor® P188 with high drug loading at 65.5% significantly improved the curcumin aqueous solubility, subsequently increased its intestinal epithelial cell uptake and oral bioavailability. The relative bioavailabilities for the 2 co-grinding mixtures were 309% and 163%, respectively, compared with curcumin API. Co-grinding process has a broad application prospect and is suitable for industrial production.
Collapse
Affiliation(s)
- Yiying Lu
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouPeople’s Republic of China
| | - Mengting Lin
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouPeople’s Republic of China
| | | | - Lei Zong
- Chenland Nutritionals, Inc.IrvineCAUSA
| | - Zhen Zhao
- Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Zengliang Zhang
- Chenland Nutritionals, Inc.IrvineCAUSA
- Traditional Chinese Medicine CollegeInner Mongolia Medical UniversityHohhotChina
| | - Min Han
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouPeople’s Republic of China
| |
Collapse
|
83
|
Franco MKKD, Sepulveda AF, Vigato AA, Oshiro A, Machado IP, Kent B, Clemens D, Yokaichiya F, Araujo DR. Supramolecular Structure of Temperature‐Dependent Polymeric Hydrogels Modulated by Drug Incorporation. ChemistrySelect 2020. [DOI: 10.1002/slct.202001116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Anderson F. Sepulveda
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| | - Aryane A. Vigato
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| | - Alisson Oshiro
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
| | - Ian Pompermayer Machado
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo SP Brazil
| | - Ben Kent
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
- School of Chemistry University of New South Wales. Kensington Australia
| | - Daniel Clemens
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
| | - Fabiano Yokaichiya
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
| | - Daniele Ribeiro Araujo
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| |
Collapse
|
84
|
Mirgorodskaya AB, Kuznetsova DA, Kushnazarova RA, Gabdrakhmanov DR, Zhukova NA, Lukashenko SS, Sapunova AS, Voloshina AD, Sinyashin OG, Mamedov VA, Zakharova LY. Soft nanocarriers for new poorly soluble conjugate of pteridine and benzimidazole: Synthesis and cytotoxic activity against tumor cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
85
|
Development of efficient luminescent soft media by incorporation of a hetero-ligand macrocyclic terbium complex into a lyomesophase. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2960-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
86
|
|
87
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
88
|
Mirgorodskaya AB, Kushnazarova RA, Lukashenko SS, Zakharova LY. Mixed Micellar Solutions of Hexadecylpiperidinium Surfactants and Tween 80: Aggregation Behavior and Solubilizing Properties. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420090198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
89
|
Meng XY, Li JJ, Ni TJ, Xiao-tong L, He T, Men ZN, Liu JS, Shen T. Electro-responsive brain-targeting mixed micelles based on Pluronic F127 and d-α-tocopherol polyethylene glycol succinate–ferrocene. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
90
|
Kamkar M, Bazazi P, Kannan A, Suja VC, Hejazi SH, Fuller GG, Sundararaj U. Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology. J Colloid Interface Sci 2020; 576:252-263. [DOI: 10.1016/j.jcis.2020.04.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/17/2023]
|
91
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
92
|
Kancharla S, Zoyhofski NA, Bufalini L, Chatelais BF, Alexandridis P. Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization. Polymers (Basel) 2020; 12:polym12081831. [PMID: 32824165 PMCID: PMC7464887 DOI: 10.3390/polym12081831] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions.
Collapse
|
93
|
Kumar S, Binder WH. Peptide-induced RAFT polymerization via an amyloid-β 17-20-based chain transfer agent. SOFT MATTER 2020; 16:6964-6968. [PMID: 32717010 DOI: 10.1039/d0sm01169j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We here describe the synthesis of a novel peptide/polymer-conjugate, embedding the amyloid-β (Aβ) protein core sequence Leu-Val-Phe-Phe (LVFF, Aβ17-20) via RAFT polymerization. Based on a novel chain transfer-agent, the "grafting-from" approach effectively generates the well-defined peptide-polymer conjugates with appreciably high monomer conversion rate, resulting in mechanically stiffer peptide-functional cross-linked polymeric hydrogels.
Collapse
Affiliation(s)
- Sonu Kumar
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany. and Department of Applied Sciences (Chemistry), Punjab Engineering College (Deemed to be University), Sector 12, Chandigarh, 160012, India
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany.
| |
Collapse
|
94
|
Shen C, Zhu J, Song J, Wang J, Shen B, Yuan H, Li X. Formulation of pluronic F127/TPGS mixed micelles to improve the oral absorption of glycyrrhizic acid. Drug Dev Ind Pharm 2020; 46:1100-1107. [DOI: 10.1080/03639045.2020.1775634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chengying Shen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Air Force Medical Center, PLA, Beijing, China
| | - Junjun Zhu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Air Force Medical Center, PLA, Beijing, China
| | - Jiawen Song
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Air Force Medical Center, PLA, Beijing, China
| | - Baode Shen
- Air Force Medical Center, PLA, Beijing, China
| | | | - Xiaofang Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
95
|
Karanikolopoulos N, Choinopoulos I, Pitsikalis M. Poly{
dl
‐lactide‐
b
‐[oligo(ethylene glycol) methyl ether (meth)acrylate)]} block copolymers. Synthesis, characterization, micellization behavior in aqueous solutions and encapsulation of model hydrophobic compounds. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nikos Karanikolopoulos
- Industrial Chemistry Laboratory, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| | - Ioannis Choinopoulos
- Industrial Chemistry Laboratory, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
96
|
Giuliano E, Paolino D, Cristiano MC, Fresta M, Cosco D. Rutin-Loaded Poloxamer 407-Based Hydrogels for In Situ Administration: Stability Profiles and Rheological Properties. NANOMATERIALS 2020; 10:nano10061069. [PMID: 32486354 PMCID: PMC7352531 DOI: 10.3390/nano10061069] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/04/2023]
Abstract
Rutin is a flavone glycoside contained in many plants, and exhibits antioxidant, anti-inflammatory, anticancer, and wound-healing properties. The main disadvantage related to the use of this molecule for pharmaceutical application is its poor bioavailability, due to its low solubility in aqueous media. Poloxamer 407-hydrogels show interesting thermo-sensitive properties that make them attractive candidates as pharmaceutical formulations. The hydrophobic domains in the chemical structure of the copolymer, a polymer made up of two or more monomer species, are useful for retaining poorly water-soluble compounds. In this investigation various poloxamer 407-based hydrogels containing rutin were developed and characterized as a function of the drug concentration. In detail, the Turbiscan stability index, the micro- and dynamic rheological profiles and in vitro drug release were investigated and discussed. Rutin (either as a free powder or solubilized in ethanol) did not modify the stability or the rheological properties of these poloxamer 407-based hydrogels. The drug leakage was constant and prolonged for up to 72 h. The formulations described are expected to represent suitable systems for the in situ application of the bioactive as a consequence of their peculiar versatility.
Collapse
Affiliation(s)
- Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (E.G.); (M.F.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (D.P.); (M.C.C.)
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (D.P.); (M.C.C.)
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (E.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (E.G.); (M.F.)
- Correspondence: ; Tel.: +39-0961-369-4119
| |
Collapse
|
97
|
Jones G, Goswami SK, Kang H, Choi HS, Kim J. Combating iron overload: a case for deferoxamine-based nanochelators. Nanomedicine (Lond) 2020; 15:1341-1356. [PMID: 32429801 PMCID: PMC7304435 DOI: 10.2217/nnm-2020-0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
While iron is a nutrient metal, iron overload can result in multiple organ failures. Iron chelators, such as deferoxamine, are commonly used to ameliorate iron overload conditions. However, their uses are limited due to poor pharmacokinetics and adverse effects. Many novel chelator formulations have been developed to overcome these drawbacks. In this review, we have discussed various nanochelators, including linear and branched polymers, dendrimers, polyrotaxane, micelles, nanogels, polymeric nanoparticles and liposomes. Although these research efforts have mainly been focused on nanochelators with longer half-lives, prolonged residence of polymers in the body could raise potential safety issues. We also discussed recent advances in nanochelation technologies, including mechanism-based, long-acting nanochelators.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Sumanta Kumar Goswami
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
98
|
Calori IR, Caetano W, Tedesco AC, Hioka N. Determination of critical micelle temperature of Pluronic® in Pluronic/gel phase liposome mixtures using steady-state anisotropy. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
99
|
Yazdani H, Kaul E, Bazgir A, Maysinger D, Kakkar A. Telodendrimer-Based Macromolecular Drug Design using 1,3-Dipolar Cycloaddition for Applications in Biology. Molecules 2020; 25:E857. [PMID: 32075239 PMCID: PMC7071137 DOI: 10.3390/molecules25040857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
An architectural polymer containing hydrophobic isoxazole-based dendron and hydrophilic polyethylene glycol linear tail is prepared by a combination of the robust ZnCl2 catalyzed alkyne-nitrile oxide 1,3-dipolar cycloaddition and esterification chemistry. This water soluble amphiphilic telodendrimer acts as a macromolecular biologically active agent and shows concentration dependent reduction of glioblastoma (U251) cell survival.
Collapse
Affiliation(s)
- Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Esha Kaul
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ayoob Bazgir
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
| |
Collapse
|
100
|
Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv Colloid Interface Sci 2020; 275:102061. [PMID: 31767119 DOI: 10.1016/j.cis.2019.102061] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin. These are environmentally safe and biodegradable, making them attractive candidates for applications spanning cosmetics to oil recovery. Biosurfactants spontaneously adsorb at various interfaces and self-assemble in aqueous solution, resulting in useful physicochemical properties such as decreased surface and interfacial tension, low critical micellization concentrations (CMCs), and ability to solubilize hydrophobic compounds. This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior. It also describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurfactant-containing solutions and dispersions. Comparison between biosurfactants and their synthetic counterparts are drawn to illustrate differences in their structure-property relationships and potential benefits. Knowledge of biosurfactant properties organized along these lines is useful for those seeking to formulate so-called green or natural products with novel and useful properties.
Collapse
|