51
|
Echeverria-Esnal D, Martín-Ontiyuelo C, Navarrete-Rouco ME, Barcelo-Vidal J, Conde-Estévez D, Carballo N, De-Antonio Cuscó M, Ferrández O, Horcajada JP, Grau S. Pharmacological management of antifungal agents in pulmonary aspergillosis: an updated review. Expert Rev Anti Infect Ther 2021; 20:179-197. [PMID: 34328373 DOI: 10.1080/14787210.2021.1962292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Aspergillus may cause different types of lung infections: invasive, chronic pulmonary or allergic bronchopulmonary aspergillosis. Pharmacological management with antifungals poses as a challenge. Patients diagnosed with pulmonary aspergillosis are complex, as well as the problems associated with antifungal agents. AREAS COVERED This article reviews the pharmacology of antifungal agents in development and currently used to treat pulmonary aspergillosis, including the mechanisms of action, pharmacokinetics, pharmacodynamics, dosing, therapeutic drug monitoring and safety. Recommendations to manage situations that arise in daily clinical practice are provided. A literature search of PubMed was conducted on November 15th, 2020 and updated on March 30th, 2021. EXPERT OPINION Recent and relevant developments in the treatment of pulmonary aspergillosis have taken place. Novel antifungals with new mechanisms of action that extend antifungal spectrum and improve pharmacokinetic-related aspects, drug-drug interactions and safety are under current study. For those antifungals already marketed, new data related to pharmacokinetics, pharmacodynamics, dose adjustments in special situations, therapeutic drug monitoring and safety are available. To maximize efficacy and reduce the risk of associated toxicities, it is essential to choose the most appropriate antifungal; optimize its dose, interval, route of administration and length of treatment; and prevent side effects.
Collapse
Affiliation(s)
- Daniel Echeverria-Esnal
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | | | | | - David Conde-Estévez
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Nuria Carballo
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | | | - Olivia Ferrández
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Juan Pablo Horcajada
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain.,Infectious Diseases Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
52
|
Safety, Tolerability, and Population Pharmacokinetics of Intravenous and Oral Isavuconazonium Sulfate in Pediatric Patients. Antimicrob Agents Chemother 2021; 65:e0029021. [PMID: 34031051 PMCID: PMC8284446 DOI: 10.1128/aac.00290-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Isavuconazole, administered as the water-soluble prodrug isavuconazonium sulfate, is a new triazole agent used to treat invasive fungal infections. This phase 1 study evaluated the pharmacokinetics (PK), safety, and tolerability of isavuconazole in 46 immunocompromised pediatric patients, stratified by age (1 to <6 [intravenous (i.v.) only], 6 to <12, and 12 to <18 years), receiving 10 mg/kg body weight (maximum, 372 mg) isavuconazonium sulfate either i.v. or orally. A population PK model using weight-based allometric scaling was constructed with the pediatric i.v. and oral data plus i.v. data from a phase 1 study in adults. The best model was a 3-compartment model with combined zero-order and first-order input, with linear elimination. Stepwise covariate modeling was performed in Perl-speaks-NONMEM version 4.7.0. None of the covariates examined, including age, sex, race, and body mass index, were statistically significant for any of the PK parameters. The area under the concentration-time curve at steady state (AUCSS) was predicted for pediatric patients using 1,000 Monte Carlo simulations per age cohort for each administration route. The probability of target attainment (AUCSS range, 60 to 233 μg · h/ml) was estimated; this target range was derived from plasma drug exposures in adults receiving the recommended clinical dose. Predicted plasma drug exposures were within the target range for >80% and >76% of simulated pediatric patients following i.v. or oral administration, respectively. Intravenous and oral administration of isavuconazonium sulfate at the studied dosage of 10 mg/kg was well tolerated and resulted in exposure in pediatric patients similar to that in adults. (This study has been registered at ClinicalTrials.gov under identifier NCT03241550).
Collapse
|
53
|
Wilmes D, Coche E, Rodriguez-Villalobos H, Kanaan N. Fungal pneumonia in kidney transplant recipients. Respir Med 2021; 185:106492. [PMID: 34139578 DOI: 10.1016/j.rmed.2021.106492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Fungal pneumonia is a dreaded complication encountered after kidney transplantation, complicated by increased mortality and often associated with graft failure. Diagnosis can be challenging because the clinical presentation is non-specific and diagnostic tools have limited sensitivity and specificity in kidney transplant recipients and must be interpreted in the context of the clinical setting. Management is difficult due to the increased risk of dissemination and severity, multiple comorbidities, drug interactions and reduced immunosuppression which should be applied as an important adjunct to therapy. This review will focus on the main causes of fungal pneumonia in kidney transplant recipients including Pneumocystis, Aspergillus, Cryptococcus, mucormycetes and Histoplasma. Epidemiology, clinical presentation, laboratory and radiographic features, specific characteristics will be discussed with an update on diagnostic procedures and treatment.
Collapse
Affiliation(s)
- D Wilmes
- Division of Internal Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - E Coche
- Division of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - H Rodriguez-Villalobos
- Division of Microbiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - N Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
54
|
Bui S, Dournes G, Fayon M, Bouchet S, Burgel PR, Macey J, Murris M, Delhaes L. [Allergic Broncho-Pulmonary Aspergillosis (ABPA) in cystic fibrosis: Mechanisms, diagnosis and therapeutic options]. Rev Mal Respir 2021; 38:466-476. [PMID: 33926779 DOI: 10.1016/j.rmr.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Fungal aspergillosis colonization and allergic bronchopulmonary aspergillosis (ABPA) can have a strong impact on the prognosis in cystic fibrosis (CF). We conducted round table discussions involving French experts from pediatric and adult centers caring for patients with CF, microbiologists, radiologists and pharmacists. The aim was to explore the current state of knowledge on: the pathophysiological mechanisms of Aspergillus and other micromycetes infections in CF (such as Scedosporium sp.), and on the clinico-biological diagnosis of ABPA. In perspective, the experts explored the role of imaging in the diagnosis of APBA, specifically CT and MRI; as well as the role of bronchoscopy in the management. We also reviewed the therapeutic management, including different corticosteroid regimens, antifungals and anti-IgE antibodies. CONCLUSION The diagnosis of ABPA in CF should be based on more standardized biological assays and imaging to optimize treatment and follow-up.
Collapse
Affiliation(s)
- S Bui
- CRCM pédiatrique, Centre d'investigation clinique (CIC 1401), hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France.
| | - G Dournes
- Service de radiologie, hôpital Haut L'Evêque, CHU de Bordeaux, Bordeaux, France
| | - M Fayon
- CRCM pédiatrique, Centre d'investigation clinique (CIC 1401), hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - S Bouchet
- Service de pharmacologie, hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - P R Burgel
- CRCM Adultes, AP-HP, hôpital Cochin, Paris, France
| | - J Macey
- CRCM adultes, hôpital Haut L'Evêque, CHU de Bordeaux, Bordeaux, France
| | - M Murris
- CRCM adultes, hôpital Larrey, CHU de Toulouse, Toulouse, France
| | - L Delhaes
- Service de parasitologie, CHU de Bordeaux, hôpital Pellegrin, Bordeaux, France
| |
Collapse
|
55
|
Johnson MD, Lewis RE, Dodds Ashley ES, Ostrosky-Zeichner L, Zaoutis T, Thompson GR, Andes DR, Walsh TJ, Pappas PG, Cornely OA, Perfect JR, Kontoyiannis DP. Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. J Infect Dis 2021; 222:S175-S198. [PMID: 32756879 DOI: 10.1093/infdis/jiaa394] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the global public health community has increasingly recognized the importance of antimicrobial stewardship (AMS) in the fight to improve outcomes, decrease costs, and curb increases in antimicrobial resistance around the world. However, the subject of antifungal stewardship (AFS) has received less attention. While the principles of AMS guidelines likely apply to stewarding of antifungal agents, there are additional considerations unique to AFS and the complex field of fungal infections that require specific recommendations. In this article, we review the literature on AMS best practices and discuss AFS through the lens of the global core elements of AMS. We offer recommendations for best practices in AFS based on a synthesis of this evidence by an interdisciplinary expert panel of members of the Mycoses Study Group Education and Research Consortium. We also discuss research directions in this rapidly evolving field. AFS is an emerging and important component of AMS, yet requires special considerations in certain areas such as expertise, education, interventions to optimize utilization, therapeutic drug monitoring, and data analysis and reporting.
Collapse
Affiliation(s)
- Melissa D Johnson
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Russell E Lewis
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elizabeth S Dodds Ashley
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Laboratory of Mycology Research, McGovern Medical School, Houston, Texas, USA
| | - Theoklis Zaoutis
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - George R Thompson
- Division of Infectious Diseases, Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - David R Andes
- Department of Medicine and Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research, partner site Bonn-Cologne, Cologne, Germany.,CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.,Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany
| | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
56
|
Beck KR, Odermatt A. Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess. Mol Cell Endocrinol 2021; 524:111168. [PMID: 33484741 DOI: 10.1016/j.mce.2021.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The syndromes of mineralocorticoid excess describe a heterogeneous group of clinical manifestations leading to endocrine hypertension, typically either through direct activation of mineralocorticoid receptors or indirectly by impaired pre-receptor enzymatic regulation or through disturbed renal sodium homeostasis. The phenotypes of these disorders can be caused by inherited gene variants and somatic mutations or may be acquired upon exposures to exogenous substances. Regarding the latter, the symptoms of an acquired mineralocorticoid excess have been reported during treatment with azole antifungal drugs. The current review describes the occurrence of mineralocorticoid excess particularly during the therapy with posaconazole and itraconazole, addresses the underlying mechanisms as well as inter- and intra-individual differences, and proposes a therapeutic drug monitoring strategy for these two azole antifungals. Moreover, other therapeutically used azole antifungals and ongoing efforts to avoid adverse mineralocorticoid effects of azole compounds are shortly discussed.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
57
|
Downes KJ, Goldman JL. Too Much of a Good Thing: Defining Antimicrobial Therapeutic Targets to Minimize Toxicity. Clin Pharmacol Ther 2021; 109:905-917. [PMID: 33539569 DOI: 10.1002/cpt.2190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
Antimicrobials are a common cause of drug toxicity. Understanding the relationship between systemic antimicrobial exposure and toxicity is necessary to enable providers to take a proactive approach to prevent undesired drug effects. When an exposure threshold has been defined that predicts drug toxicity, therapeutic drug monitoring (TDM) can be performed to assure drug exposure does not exceed the defined threshold. Although some antimicrobials have well-defined dose-dependent toxicities, many other exposure-toxicity relationships have either not been well-defined or, in some cases, not been evaluated at all. In this review, we examine the relationship between exposures and toxicities for antibiotic, antifungal, and antiviral agents. Furthermore, we classify these relationships into four categories: known association between drug exposure and toxicity such that clinical implementation of a specific exposure threshold associated with toxicity for TDM is supported (category 1), known association between drug exposure and toxicity but the specific exposure threshold associated with toxicity is undefined (category 2), association between drug exposure and toxicity has been suggested but relationship is poorly defined (category 3), and no known association between drug exposure and toxicity (category 4). Further work to define exposure-toxicity thresholds and integrate effective TDM strategies has the potential to minimize many of the observed antimicrobial toxicities.
Collapse
Affiliation(s)
- Kevin J Downes
- The Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Goldman
- Divisions of Clinical Pharmacology, Toxicology and Therapeutic Innovation and Infectious Diseases, Children's Mercy Kansas City, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
58
|
Wang T, Yan M, Tang D, Dong Y, Zhu L, Du Q, Sun D, Xing J, Dong Y. Using Child-Pugh Class to Optimize Voriconazole Dosage Regimens and Improve Safety in Patients with Liver Cirrhosis: Insights from a Population Pharmacokinetic Model-based Analysis. Pharmacotherapy 2021; 41:172-183. [PMID: 33064889 DOI: 10.1002/phar.2474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cirrhotic patients are at a high risk of fungal infections. Voriconazole is widely used as prophylaxis and in the treatment of invasive fungal disease. However, the safety, pharmacokinetics, and optimal regimens of voriconazole are currently not well defined in cirrhotic patients. DESIGN Retrospective pharmacokinetics study. SETTING Two large, academic, tertiary-care medical center. PATIENTS Two hundred nineteen plasma trough concentrations (Cmin ) from 120 cirrhotic patients and 83 plasma concentrations from 11 non-cirrhotic patients were included. METHODS Data pertaining to voriconazole were collected retrospectively. A population pharmacokinetics analysis was performed and model-based simulation was used to optimize voriconazole dosage regimens. RESULTS Voriconazole-related adverse events (AEs) developed in 29 cirrhotic patients, and the threshold Cmin for AE was 5.12 mg/L. A two-compartment model with first-order elimination adequately described the data. The Child-Pugh class and body weight were the significant covariates in the final model. Voriconazole clearance in non-cirrhotic, Child-Pugh class A and B cirrhotic (CP-A/B) and Child-Pugh class C cirrhotic (CP-C) patients was 7.59, 1.86, and 0.93 L/hour, respectively. The central distribution volume and peripheral distribution volume was 100.8 and 55.2 L, respectively. The oral bioavailability was 91.6%. Model-based simulations showed that a loading dose regimen of 200 mg/12 hours intravenously or orally led to 65.0-75.7% of voriconazole Cmin in therapeutic range on day 1, and the appropriate maintenance dosage regimens were 75 mg/12 hours and 150 mg/24 hours intravenously or orally for CP-A/B patients, and 50 mg/12 hours and 100 mg/24 hours intravenously or orally for CP-C patients. The predicted probability of achieving the therapeutic target concentration for optimized regimens at steady-state was 66.8-72.3% for CP-A/B patients and 70.3-74.0% for CP-C patients. CONCLUSIONS These results recommended that the halved loading dose regimens should be used, and voriconazole maintenance doses in cirrhotic patients should be reduced to one-fourth for CP-C patients and to one-third for CP-A/B patients compared to that for patients with normal liver function.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dan Tang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuzhu Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Pharmacy, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Li Zhu
- Department of Infectious Disease, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianfeng Xing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
59
|
Rapid and Simple Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) Method for Simultaneous Quantifications of Triazole Antifungals in Human Serum. Mycopathologia 2021; 186:27-39. [PMID: 33389486 DOI: 10.1007/s11046-020-00514-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/25/2020] [Indexed: 10/20/2022]
Abstract
PURPOSE To develop and validate a one-step, rapid and simple reversed-phase high-performance liquid chromatography (HPLC)-based protocol for the simultaneous measurement of voriconazole (VCZ), posaconazole (POSA), itraconazole (ITC) in serum/plasma. METHODS Calibration standards (CS) and quality control samples were prepared in drug-free serum by spiking with the triazoles at different concentrations. HPLC was performed with C18 column, isocratic mobile phase after extraction with cold acetonitrile. The standardized method was tested in 2693 patients' serum/plasma samples. RESULTS Linearity of CS for ITC, VCZ and POSA was proportional to the nominal concentration (correlation coefficient > 0.999). Limit of detection (mg/L) for ITC, VCZ and POSA was 0.25, 0.25 and 0.125, respectively. The lower limit of quantification (mg/L) for ITC, VCZ and POSA was 0.5, 0.5 and 0.25, respectively. Precision and accuracy were in acceptable range with 100% average percentage recovery. No interferences from endogenous substances and other antimicrobial compounds were noted. In clinical samples, the therapeutic range achieved for VCZ was 39.9%. Whereas, 61.1% and 44% of samples with ITC and POSA, respectively, were in the sub-therapeutic range. CONCLUSION We developed a rapid and simple HPLC method to quantify common triazoles in a single chromatographic run allowing simultaneous measurement of different antifungals in a small volume of serum/plasma. Thus, therapeutic drug monitoring requests can be processed in one run without changing the protocol parameters, column or column conditioning thereby improving turnaround time.
Collapse
|
60
|
Bretón-Martínez JR, Alcolea A, Quintero-García D, Méndez-Echevarria A, Ramos E, Bueno F, Colomina J, Marí-López J, Crehuá-Gaudiza E, García-Rodriguez J, Martínez-Costa C. Non-wild-type cryptococcosis in a child with multivisceral organ transplant who owned bird pets. Transpl Infect Dis 2021; 23:e13558. [PMID: 33386674 DOI: 10.1111/tid.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- José R Bretón-Martínez
- Department of Pediatrics, Hospital Clínico Universitario de Valencia, Valencia, Spain.,University of Valencia, Valencia, Spain
| | - Alida Alcolea
- Pediatric Gastroenterology Department, Hospital Universitario La Paz, Madrid, Spain
| | | | - Ana Méndez-Echevarria
- Pediatric Infectious Diseases Department, Hospital Universitario La Paz, Madrid, Spain.,Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Esther Ramos
- Pediatric Gastroenterology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Felipe Bueno
- Department of Microbiology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Javier Colomina
- Department of Microbiology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Jorge Marí-López
- Department of Pediatrics, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Elena Crehuá-Gaudiza
- Department of Pediatrics, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Cecilia Martínez-Costa
- Department of Pediatrics, Hospital Clínico Universitario de Valencia, Valencia, Spain.,University of Valencia, Valencia, Spain
| |
Collapse
|
61
|
Is caspofungin efficient to treat invasive candidiasis requiring continuous veno-venous hemofiltration? A case report. Therapie 2020; 76:512-515. [DOI: 10.1016/j.therap.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 01/12/2023]
|
62
|
Baud FJ, Jullien V, Abarou T, Pilmis B, Raphalen JH, Houzé P, Carli P, Lamhaut L. Elimination of fluconazole during continuous renal replacement therapy. An in vitro assessment. Int J Artif Organs 2020; 44:453-464. [DOI: 10.1177/0391398820976144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Continuous renal replacement therapy (CRRT) efficiently eliminates fluconazole. However, the routes of elimination were not clarified. Adsorption of fluconazole by filters is a pending question. We studied the elimination of fluconazole in a model mimicking a session of CRRT in humans using the NeckEpur® model. Two filters were studied. Methods: The AV1000®-polysulfone filter with the Multifiltrate Pro. Fresenius and the ST150®-polyacrylonitrile filter with the Prismaflex. Baxter-Gambro were studied. Continuous filtration used a flowrate of 2.5 L/h in post-dilution only. Session were made in duplicate. Routes of elimination were assessed using the NeckEpur® model. Results: The mean measured initial fluconazole concentration (mean ± SD) for the four sessions in the central compartment (CC) was 14.9 ± 0.2 mg/L. The amount eliminated from the CC at the end of 6 h-session at a 2.5 L/h filtration flowrate for the AV1000®-polysulfone and the ST150®-polyacrylonitrile filters were 90%–93% and 96%–94%, respectively; the clearances from the central compartment (CC) were 2.5–2.6 and 2.4–2.3 L/h, respectively. The means of the instantaneous sieving coefficient were 0.94%–0.91% and 0.99%–0.91%, respectively. The percentages of the amount eliminated from the CC by filtration/adsorption were 100/0%–95/5% and 100/0%–100/0%, respectively. Conclusion: Neither the ST150®-polyacrylonitrile nor the AV1000®-polysulfone filters result in any significant adsorption of fluconazole.
Collapse
Affiliation(s)
- Frédéric J Baud
- Department of Anesthesiology and Intensive Care Medicine, Adult Intensive Care Unit, Necker Hospital, Paris, France
- EA7323 Evaluation of Therapeutics and Pharmacology in Perinatality and Pediatrics, Hôpitaux Universitaires Cochin—Broca—Hôtel Dieu, Site Tarnier, Université Paris Descartes, Paris, France
- University Paris Diderot, Paris, France
| | - Vincent Jullien
- Assistance Publique—Hôpitaux de Paris, Groupe Hospitalier Paris Seine-Saint-Denis, Bobigny, France
- Molecular Mycology Unit-CNRS UMR 2000, Pasteur Institute, Paris, France
| | - Tarik Abarou
- Laboratoire de Chimie Analytique, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Benoît Pilmis
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Paris, France
- Institut Micalis, UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, Chatenay-Malabry, France
| | - Jean-Herlé Raphalen
- Department of Anesthesiology and Intensive Care Medicine, SAMU de Paris, Adult Intensive Care Unit, Necker Hospital, Paris, France
| | - Pascal Houzé
- Laboratoire de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique—Hôpitaux de Paris, Paris, France
- Unité de Technologies Chimiques et Biologiques Pour la Santé, CNRS UMR8258 – U1022, Faculté de Pharmacie Paris Descartes, Paris, France
- Université Paris Descartes, Paris, France
| | - Pierre Carli
- Department of Anesthesiology and Intensive Care Medicine, SAMU de Paris, Adult Intensive Care Unit, Necker Hospital, Paris, France
- Université Paris Descartes, Paris, France
| | - Lionel Lamhaut
- Department of Anesthesiology and Intensive Care Medicine, SAMU de Paris, Adult Intensive Care Unit, Necker Hospital, Paris, France
- Université Paris Descartes, Paris, France
| |
Collapse
|
63
|
Baud FJ, Houzé P, Carli P, Lamhaut L. Alteration of the pharmacokinetics of aminoglycosides by adsorption in a filter during continuous renal replacement therapy. An in vitro assessment. Therapie 2020; 76:415-424. [DOI: 10.1016/j.therap.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
|
64
|
|
65
|
Parker SL, Abdul-Aziz MH, Roberts JA. The role of antibiotic pharmacokinetic studies performed post-licensing. Int J Antimicrob Agents 2020; 56:106165. [PMID: 32941948 DOI: 10.1016/j.ijantimicag.2020.106165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Post-licensing pharmacometric studies can provide a better understanding of the pharmacokinetic (PK) alterations in special patient populations and may lead to better clinical outcomes. Some patient populations exhibit markedly different pathophysiology to general ward patients or healthy individuals. This may be developmental (paediatric patients), a manifestation of an underlying disease pathology (patients with obesity or haematological malignancies) or due to medical interventions (critically ill patients receiving extracorporeal therapies). This paper outlines the factors that affect the PK of special patient populations and describes some novel methods of antimicrobial administration that may increase antimicrobial concentrations at the site of infection and improve treatment of severe infection.
Collapse
Affiliation(s)
- Suzanne L Parker
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.
| | | | - Jason A Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia; Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Department of Pharmacy, Royal Brisbane & Women's Hospital, Brisbane, Australia
| |
Collapse
|
66
|
De Rose DU, Cairoli S, Dionisi M, Santisi A, Massenzi L, Goffredo BM, Dionisi-Vici C, Dotta A, Auriti C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. Int J Mol Sci 2020; 21:E5898. [PMID: 32824472 PMCID: PMC7460644 DOI: 10.3390/ijms21165898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Therapeutic drug monitoring (TDM) should be adopted in all neonatal intensive care units (NICUs), where the most preterm and fragile babies are hospitalized and treated with many drugs, considering that organs and metabolic pathways undergo deep and progressive maturation processes after birth. Different developmental changes are involved in interindividual variability in response to drugs. A crucial point of TDM is the choice of the bioanalytical method and of the sample to use. TDM in neonates is primarily used for antibiotics, antifungals, and antiepileptic drugs in clinical practice. TDM appears to be particularly promising in specific populations: neonates who undergo therapeutic hypothermia or extracorporeal life support, preterm infants, infants who need a tailored dose of anticancer drugs. This review provides an overview of the latest advances in this field, showing options for a personalized therapy in newborns and infants.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Marco Dionisi
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Luca Massenzi
- Neonatal Intensive Care Unit and Neonatal Pathology, Fatebenefratelli Hospital, 00186 Rome, Italy;
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Carlo Dionisi-Vici
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| |
Collapse
|
67
|
Kim HY, Märtson AG, Dreesen E, Spriet I, Wicha SG, McLachlan AJ, Alffenaar JW. Saliva for Precision Dosing of Antifungal Drugs: Saliva Population PK Model for Voriconazole Based on a Systematic Review. Front Pharmacol 2020; 11:894. [PMID: 32595511 PMCID: PMC7304296 DOI: 10.3389/fphar.2020.00894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Precision dosing for many antifungal drugs is now recommended. Saliva sampling is considered as a non-invasive alternative to plasma sampling for therapeutic drug monitoring (TDM). However, there are currently no clinically validated saliva models available. The aim of this study is firstly, to conduct a systematic review to evaluate the evidence supporting saliva-based TDM for azoles, echinocandins, amphotericin B, and flucytosine. The second aim is to develop a saliva population pharmacokinetic (PK) model for eligible drugs, based on the evidence. Databases were searched up to July 2019 on PubMed® and Embase®, and 14 studies were included in the systematic review for fluconazole, voriconazole, itraconazole, and ketoconazole. No studies were identified for isavuconazole, posaconazole, flucytosine, amphotericin B, caspofungin, micafungin, or anidulafungin. Fluconazole and voriconazole demonstrated a good saliva penetration with an average S/P ratio of 1.21 (± 0.31) for fluconazole and 0.56 (± 0.18) for voriconazole, both with strong correlation (r = 0.89-0.98). Based on the evidence for TDM and available data, population PK analysis was performed on voriconazole using Nonlinear Mixed Effects Modeling (NONMEM 7.4). 137 voriconazole plasma and saliva concentrations from 11 patients (10 adults, 1 child) were obtained from the authors of the included study. Voriconazole pharmacokinetics was best described by one-compartment PK model with first-order absorption, parameterized by clearance of 4.56 L/h (36.9% CV), volume of distribution of 60.7 L, absorption rate constant of 0.858 (fixed), and bioavailability of 0.849. Kinetics of the voriconazole distribution from plasma to saliva was identical to the plasma kinetics, but the extent of distribution was lower, modeled by a scale factor of 0.5 (4% CV). A proportional error model best accounted for the residual variability. The visual and simulation-based model diagnostics confirmed a good predictive performance of the saliva model. The developed saliva model provides a promising framework to facilitate saliva-based precision dosing of voriconazole.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, Netherlands
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Andrew J. McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
68
|
Castagnola E, Mesini A, Saffioti C, Barco S, Bandettini R, Dallorso S, Carrega G, Miano M, Palmisani E, Dufour C. Intravenous isavuconazole can be administered 5 days-a-week. A possibility suggested by a real-life observation. J Chemother 2020; 32:217-218. [PMID: 32364049 DOI: 10.1080/1120009x.2020.1755591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this report it is shown that intravenous formulation of isavuconazole could be administered 5/7 days a week in patients who can not swallow capsules, once the steady state has been stably reached and maintained, thanks to its very long half-life. In this case TDM should be highly recommended.
Collapse
Affiliation(s)
- Elio Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessio Mesini
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Carolina Saffioti
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sebastiano Barco
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberto Bandettini
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sandro Dallorso
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giuliana Carrega
- Infectious Diseases Unit, Ospedale Santa Maria di Misericordia, Albenga, Italy
| | - Maurizio Miano
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elena Palmisani
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Carlo Dufour
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
69
|
Papachristou SG, Iosifidis E, Sipsas NV, Gamaletsou MN, Walsh TJ, Roilides E. Management of osteoarticular fungal infections in the setting of immunodeficiency. Expert Rev Anti Infect Ther 2020; 18:461-474. [PMID: 32213145 DOI: 10.1080/14787210.2020.1748499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Osteoarticular fungal infections (OAFIs) complicate the clinical course of high-risk patients, including immunosuppressed individuals. Their management, however, despite being intricate, is governed by evidence arising from sub-optimal quality research, such as case series. Guidelines are scarce and when present result in recommendations based on low quality evidence. Furthermore, the differences between the management of immunocompromised and immunocompetent patients are not distinct. This is a narrative review after a literature search in PubMed, up to November 2019.Areas covered: The major fungal groups causing osteomyelitis and/or arthritis are Candida spp., Aspergillus spp., non-Aspergillus filamentous fungi, non-Candida yeasts and endemic dimorphic fungi. Their epidemiology is briefly analyzed with emphasis on immunodeficiency and other risk factors. Management of OAFIs includes appropriate antifungal drug therapy (liposomal amphotericin B, triazoles or echinocandins), local surgery and immunotherapy for primary immunodeficiencies. Cessation of immunosuppressive drugs is also mandated.Expert opinion: Management of OAFIs includes affordable and available options and approaches. However, research on therapeutic practices is urgently required to be further improved, due to the rarity of affected patients. Evolution is expected to translate into novel antifungal drugs, less invasive and precise surgical approaches and targeted enhancement of immunoregulatory pathways in defense of challenging fungal pathogens.
Collapse
Affiliation(s)
- Savvas G Papachristou
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences and Hippokration General Hospital, Thessaloniki, Greece
| | - Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences and Hippokration General Hospital, Thessaloniki, Greece
| | - Nikolaos V Sipsas
- Infectious Diseases Unit, Pathophysiology Department, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria N Gamaletsou
- Infectious Diseases Unit, Pathophysiology Department, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University and New York Presbyterian Hospital, New York, NY, USA
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences and Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|