51
|
Design and Implementation of NK Cell-Based Immunotherapy to Overcome the Solid Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12123871. [PMID: 33371456 PMCID: PMC7767468 DOI: 10.3390/cancers12123871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors capable of broad cytotoxicity via germline-encoded receptors and can have conferred cytotoxic potential via the addition of chimeric antigen receptors. Combined with their reduced risk of graft-versus-host disease (GvHD) and cytokine release syndrome (CRS), NK cells are an attractive therapeutic platform. While significant progress has been made in treating hematological malignancies, challenges remain in using NK cell-based therapy to combat solid tumors due to their immunosuppressive tumor microenvironments (TMEs). The development of novel strategies enabling NK cells to resist the deleterious effects of the TME is critical to their therapeutic success against solid tumors. In this review, we discuss strategies that apply various genetic and non-genetic engineering approaches to enhance receptor-mediated NK cell cytotoxicity, improve NK cell resistance to TME effects, and enhance persistence in the TME. The successful design and application of these strategies will ultimately lead to more efficacious NK cell therapies to treat patients with solid tumors. This review outlines the mechanisms by which TME components suppress the anti-tumor activity of endogenous and adoptively transferred NK cells while also describing various approaches whose implementation in NK cells may lead to a more robust therapeutic platform against solid tumors.
Collapse
|
52
|
Yin L, Wang XJ, Chen DX, Liu XN, Wang XJ. Humanized mouse model: a review on preclinical applications for cancer immunotherapy. Am J Cancer Res 2020; 10:4568-4584. [PMID: 33415020 PMCID: PMC7783739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023] Open
Abstract
Due to the refractory and partial sensitive treatments to malignant cancers, immunotherapy has increasingly become a hotspot in effective anti-tumor research. However, at present, existing animal models could not accurately describe the interaction between human tissue and tumor cells for preclinical trials. Furthermore, it is a tough obstacle to reconstitute the immune system and microenvironment in a mouse model identical to humans due to species differences. In the establishment of the humanized mouse model, the co-transplantation of human immunocytes with/without tissues and tumor cells is the key breakthrough to solve this problem. The compelling progress has been investigated in the preclinical drug test for diverse tumor types. This review mainly summarized the development of immunodeficient mice, and the construction and practicability of the humanized mouse model. Furthermore, the investigators also highlight the pros and cons, and recent progress in immunotherapy research for advanced utility of human cancer diseases.
Collapse
Affiliation(s)
- Ling Yin
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xue-Jing Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - De-Xi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xiao-Ni Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xiao-Jun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
53
|
Patient-derived tumour models for personalized therapeutics in urological cancers. Nat Rev Urol 2020; 18:33-45. [PMID: 33173206 DOI: 10.1038/s41585-020-00389-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Preclinical knowledge of dysregulated pathways and potential biomarkers for urological cancers has undergone limited translation into the clinic. Moreover, the low approval rate of new anticancer drugs and the heterogeneous drug responses in patients indicate that current preclinical models do not always reflect the complexity of malignant disease. Patient-derived tumour models used in preclinical uro-oncology research include 3D culture systems, organotypic tissue slices and patient-derived xenograft models. Technological innovations have enabled major improvements in the capacity of these tumour models to reproduce the clinical complexity of urological cancers. Each type of patient-derived model has inherent advantages and limitations that can be exploited, either alone or in combination, to gather specific knowledge on clinical challenges and address unmet clinical needs. Nevertheless, few opportunities exist for patients with urological cancers to benefit from personalized therapeutic approaches. Clinical validation of experimental data is needed to facilitate the translation and implementation of preclinical knowledge into treatment decision making.
Collapse
|
54
|
Wang D, Cong J, Fu B, Zheng X, Sun R, Tian Z, Wei H. Immunogenic chemotherapy effectively inhibits KRAS-Driven lung cancer. Cancer Lett 2020; 492:31-43. [DOI: 10.1016/j.canlet.2020.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
|
55
|
Morton JJ, Alzofon N, Keysar SB, Chimed TS, Reisinger J, Perrenoud L, Le PN, Nieto C, Gomez K, Miller B, Yeager R, Gao D, Tan AC, Somerset H, Medina T, Wang XJ, Wang JH, Robinson W, Roop DR, Gonzalez R, Jimeno A. Studying Immunotherapy Resistance in a Melanoma Autologous Humanized Mouse Xenograft. Mol Cancer Res 2020; 19:346-357. [PMID: 33087417 DOI: 10.1158/1541-7786.mcr-20-0686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
Resistance to immunotherapy is a significant challenge, and the scarcity of human models hinders the identification of the underlying mechanisms. To address this limitation, we constructed an autologous humanized mouse (aHM) model with hematopoietic stem and progenitor cells (HSPC) and tumors from 2 melanoma patients progressing to immunotherapy. Unlike mismatched humanized mouse (mHM) models, generated from cord blood-derived HSPCs and tumors from different donors, the aHM recapitulates a patient-specific tumor microenvironment (TME). When patient tumors were implanted on aHM, mHM, and NOD/SCID/IL2rg-/- (NSG) cohorts, tumors appeared earlier and grew faster on NSG and mHM cohorts. We observed that immune cells differentiating in the aHM were relatively more capable of circulating peripherally, invading into tumors and interacting with the TME. A heterologous, human leukocyte antigen (HLA-A) matched cohort also yielded slower growing tumors than non-HLA-matched mHM, indicating that a less permissive immune environment inhibits tumor progression. When the aHM, mHM, and NSG cohorts were treated with immunotherapies mirroring what the originating patients received, tumor growth in the aHM accelerated, similar to the progression observed in the patients. This rapid growth was associated with decreased immune cell infiltration, reduced interferon gamma (IFNγ)-related gene expression, and a reduction in STAT3 phosphorylation, events that were replicated in vitro using tumor-derived cell lines. IMPLICATIONS: Engrafted adult HSPCs give rise to more tumor infiltrative immune cells, increased HLA matching leads to slower tumor initiation and growth, and continuing immunotherapy past progression can paradoxically lead to increased growth.
Collapse
Affiliation(s)
- J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Nathaniel Alzofon
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Julie Reisinger
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Loni Perrenoud
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Cera Nieto
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Karina Gomez
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Randi Yeager
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Dexiang Gao
- Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, Colorado
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Theresa Medina
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - William Robinson
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Dennis R Roop
- Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Rene Gonzalez
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado. .,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
56
|
Morillon YM, Sabzevari A, Schlom J, Greiner JW. The Development of Next-generation PBMC Humanized Mice for Preclinical Investigation of Cancer Immunotherapeutic Agents. Anticancer Res 2020; 40:5329-5341. [PMID: 32988851 DOI: 10.21873/anticanres.14540] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Investigation of the efficacy and mechanisms of human immuno-oncology agents has been hampered due to species-specific differences when utilizing preclinical mouse models. Peripheral blood mononuclear cell (PBMC) humanized mice provide a platform for investigating the modulation of the human immune-mediated antitumor response while circumventing the limitations of syngeneic model systems. Use of humanized mice has been stymied by model-specific limitations, some of which include the development of graft versus host disease, technical difficulty and cost associated with each humanized animal, and insufficient engraftment of some human immune subsets. Recent advances have addressed many of these limitations from which have emerged humanized models that are more clinically relevant. This review characterizes the expanded usage, advantages and limitations of humanized mice and provides insights into the development of the next generation of murine humanized models to further inform clinical applications of cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Y Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Ariana Sabzevari
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A.
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
57
|
Miao L, Wei XL, Zhao Q, Qi J, Ren C, Wu QN, Wei DL, Liu J, Wang FH, Xu RH. p.P476S mutation of RBPJL inhibits the efficacy of anti-PD-1 therapy in oesophageal squamous cell carcinoma by blunting T-cell responses. Clin Transl Immunology 2020; 9:e1172. [PMID: 32994998 PMCID: PMC7507108 DOI: 10.1002/cti2.1172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Anti-PD-1 immune checkpoint blockade represents the onset of a new era in cancer immunotherapy. However, robust predictors are necessary for screening patients with immune checkpoint-responsive oesophageal squamous cell carcinoma (ESCC). Methods We obtained biopsy samples from an ESCC patient with mixed responses. The expression of CD4, CD8, CD68, PD-L1, RBPJL and IL-16 was analysed by immunohistochemistry, and the correlation with prognostic value was obtained from the GEPIA portal. T-cell functions were examined by flow cytometry, MTS and transwell assays. The secreted cytokines were identified using an Inflammation Array Kit. The concentration of soluble IFN-γ was measured by enzyme-linked immunosorbent assay. The clinical benefit of RBPJL was examined in a PBMC xenograft mouse model. Results The patient had an exceptional clinical response with shrinkage of the primary oesophageal and lung metastatic lesions as well as enlargement of liver metastatic lesions after toripalimab monotherapy. Four liver-specific gene mutations were identified. RBPJL showed better response to toripalimab in the PBMC cell-derived xenograft (CDX) ESCC model. Conditional medium from RBPJL overexpression induced chemotaxis and proliferation of T lymphocytes, as well as Th2/Th1 differentiation through the RBPJL-NF-κB-IL-16 axis in vitro. These functions were all inhibited by the p.P476S mutation of RBPJL (RBPJL (p.P476S)). Conclusions We report for the first time that RBPJL (p.P476S) promotes tumor growth in ESCC and inhibits the efficacy of anti-PD-1 therapy through blunting T-cell responses. Our findings provide a potential new predictor for evaluating the efficacy of anti-PD-1 therapy in ESCC patients.
Collapse
Affiliation(s)
- Lei Miao
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China.,Department of Pediatric Surgery Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Xiao-Li Wei
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China.,Department of Medical Oncology Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - JingJing Qi
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Chao Ren
- Department of Medical Oncology Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China.,Department of Pathology Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Da-Liang Wei
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Jia Liu
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Feng-Hua Wang
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China Sun Yat-sen University Cancer Center Collaborative Innovation Center for Cancer Medicine Guangzhou China.,Precision Diagnosis and Treatment for Gastrointestinal Cancer Chinese Academy of Medical Sciences Guangzhou China
| |
Collapse
|
58
|
Kotanides H, Li Y, Malabunga M, Carpenito C, Eastman SW, Shen Y, Wang G, Inigo I, Surguladze D, Pennello AL, Persaud K, Hindi S, Topper M, Chen X, Zhang Y, Bulaon DK, Bailey T, Lao Y, Han B, Torgerson S, Chin D, Sonyi A, Haidar JN, Novosiadly RD, Moxham CM, Plowman GD, Ludwig DL, Kalos M. Bispecific Targeting of PD-1 and PD-L1 Enhances T-cell Activation and Antitumor Immunity. Cancer Immunol Res 2020; 8:1300-1310. [PMID: 32873605 DOI: 10.1158/2326-6066.cir-20-0304] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
The programmed cell death protein 1 receptor (PD-1) and programmed death ligand 1 (PD-L1) coinhibitory pathway suppresses T-cell-mediated immunity. We hypothesized that cotargeting of PD-1 and PD-L1 with a bispecific antibody molecule could provide an alternative therapeutic approach, with enhanced antitumor activity, compared with monospecific PD-1 and PD-L1 antibodies. Here, we describe LY3434172, a bispecific IgG1 mAb with ablated Fc immune effector function that targets both human PD-1 and PD-L1. LY3434172 fully inhibited the major inhibitory receptor-ligand interactions in the PD-1 pathway. LY3434172 enhanced functional activation of T cells in vitro compared with the parent anti-PD-1 and anti-PD-L1 antibody combination or respective monotherapies. In mouse tumor models reconstituted with human immune cells, LY3434172 therapy induced dramatic and potent antitumor activity compared with each parent antibody or their combination. Collectively, these results demonstrated the enhanced immunomodulatory (immune blockade) properties of LY3434172, which improved antitumor immune response in preclinical studies, thus supporting its evaluation as a novel bispecific cancer immunotherapy.
Collapse
Affiliation(s)
- Helen Kotanides
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York.
| | - Yiwen Li
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Maria Malabunga
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Carmine Carpenito
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Scott W Eastman
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Yang Shen
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - George Wang
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Ivan Inigo
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - David Surguladze
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | | | | | - Sagit Hindi
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Michael Topper
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Xinlei Chen
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Yiwei Zhang
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Danielle K Bulaon
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Tim Bailey
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Yanbin Lao
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Bing Han
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Stacy Torgerson
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Darin Chin
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Andreas Sonyi
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Jaafar N Haidar
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | | | | | - Gregory D Plowman
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Dale L Ludwig
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York
| | - Michael Kalos
- Lilly Research Laboratories, Eli Lilly and Company, New York, New York.
| |
Collapse
|
59
|
Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Mouse Tumor Models for Advanced Cancer Immunotherapy. Int J Mol Sci 2020; 21:E4118. [PMID: 32526987 PMCID: PMC7312663 DOI: 10.3390/ijms21114118] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advances in the development of new methods of cancer immunotherapy require the production of complex cancer animal models that reliably reflect the complexity of the tumor and its microenvironment. Mice are good animals to create tumor models because they are low cost, have a short reproductive cycle, exhibit high tumor growth rates, and can be easily genetically modified. However, the obvious problem of these models is the high failure rate observed in human clinical trials after promising results obtained in mouse models. In order to increase the reliability of the results obtained in mice, the tumor model should reflect the heterogeneity of the tumor, contain components of the tumor microenvironment, in particular immune cells, to which the action of immunotherapeutic drugs are directed. This review discusses the current immunocompetent and immunocompromised mouse models of human tumors that are used to evaluate the effectiveness of immunotherapeutic agents, in particular chimeric antigen receptor (CAR) T-cells and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, University of Medicine, Nottingham NG7 2HA, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| |
Collapse
|
60
|
Bresnahan E, Lindblad KE, Ruiz de Galarreta M, Lujambio A. Mouse Models of Oncoimmunology in Hepatocellular Carcinoma. Clin Cancer Res 2020; 26:5276-5286. [PMID: 32327473 DOI: 10.1158/1078-0432.ccr-19-2923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Liver cancer is the fourth leading cause of cancer-related mortality worldwide and incidence is on the rise. Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with a complex etiology and limited treatment options. The standard-of-care treatment for patients with advanced HCC is sorafenib, a tyrosine kinase inhibitor that offers limited survival benefit. In the past years, therapeutic options for the treatment of advanced HCC have increased substantially, including additional multikinase inhibitors as well as immune checkpoint inhibitors. Nivolumab and pembrolizumab were approved in 2017 and 2018, respectively, as second-line treatment in advanced HCC. These drugs, both targeting the programmed death-1 pathway, demonstrate unprecedented results, with objective response rates of approximately 20%. However, the majority of patients do not respond, necessitating the identification of biomarkers of response and resistance to immunotherapy. With the recent success of immunotherapies in oncology, mouse models that better recapitulate the human disease and antitumor immune response are needed. This review lists ongoing clinical trials testing immunotherapy in HCC, briefly discusses the unique immunosuppressive environment of the liver, and then delves into the most applicable current murine model systems to study oncoimmunology within the context of HCC, including syngeneic, genetically engineered, and humanized models.
Collapse
Affiliation(s)
- Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marina Ruiz de Galarreta
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
61
|
Morton JJ, Alzofon N, Jimeno A. The humanized mouse: Emerging translational potential. Mol Carcinog 2020; 59:830-838. [PMID: 32275343 DOI: 10.1002/mc.23195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
The humanized mouse (HM) has emerged as a valuable animal model in cancer research. Engrafted with components of a human immune system and subsequently implanted with tumor tissue from cell lines or in the form of patient-derived xenografts, the HM provides a unique platform in which the tumor microenvironment (TME) can be evaluated in vivo. This model may also be beneficial in the assessment of potential cancer treatments including immune checkpoint inhibitors. However, to maximize its utility, researchers need to understand the critical factors necessary to ensure that the tumor immune interactions in the HM are representative of those within cancer patients. In most current HM models, the human T cells residing in the HM are educated in a murine thymus, allogeneic to implanted tumor tissue, and/or alloreactive to mouse tissues, making their interaction and reactivity with tumor cells suspect. There are several strategies underway to harmonize the immune-tumor environment in the HM. Once the essential components of the HM-tumor TME interface have been identified and understood, the HM model will permit not only the discovery of effective immunotherapy treatments, but it can be used to predict patient responses to great clinical benefit.
Collapse
Affiliation(s)
- J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Nathaniel Alzofon
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
62
|
Sui JSY, Martin P, Gray SG. Pre-clinical models of small cell lung cancer and the validation of therapeutic targets. Expert Opin Ther Targets 2020; 24:187-204. [PMID: 32068452 DOI: 10.1080/14728222.2020.1732353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Small-cell lung cancer (SCLC) is an aggressive form of lung cancer that has a dismal prognosis. One of the factors hindering therapeutic developments for SCLC is that most SCLC is not surgically resected resulting in a paucity of material for analysis. To address this, significant efforts have been made by investigators to develop pre-clinical models of SCLC allowing for downstream target identification in this difficult to treat cancer.Areas covered: In this review, we describe the current pre-clinical models that have been developed to interrogate SCLC, and outline the benefits and limitations associated with each. Using examples we show how each has been used to (i) improve our knowledge of this intractable cancer, and (ii) identify and validate potential therapeutic targets that (iii) are currently under development and testing within the clinic.Expert opinion: The large numbers of preclinical models that have been developed have dramatically improved the ways in which we can examine SCLC and test therapeutic targets/interventions. The newer models are rapidly providing novel avenues for the design and testing of new therapeutics. Despite this many of these models have inherent flaws that limit the possibility of their use for individualized therapy decision-making for SCLC.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Labmed Directorate, St. James's Hospital, Dublin, Ireland.,School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
63
|
Curran M, Mairesse M, Matas-Céspedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K. Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology. Toxicol Pathol 2019; 48:302-316. [PMID: 31847725 DOI: 10.1177/0192623319886304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Collapse
Affiliation(s)
- Michelle Curran
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maelle Mairesse
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bethany Bareham
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ardi Liaunardy
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Edward Powell
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emanuela Cuomo
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J Betts
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
64
|
Yu J, Yan J, Guo Q, Chi Z, Tang B, Zheng B, Yu J, Yin T, Cheng Z, Wu X, Yu H, Dai J, Sheng X, Si L, Cui C, Bai X, Mao L, Lian B, Wang X, Yan X, Li S, Zhou L, Flaherty KT, Guo J, Kong Y. Genetic Aberrations in the CDK4 Pathway Are Associated with Innate Resistance to PD-1 Blockade in Chinese Patients with Non-Cutaneous Melanoma. Clin Cancer Res 2019; 25:6511-6523. [PMID: 31375512 DOI: 10.1158/1078-0432.ccr-19-0475] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/18/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE PD-1 checkpoint blockade immunotherapy induces long and durable response in patients with advanced melanoma. However, only a subset of patients with melanoma benefit from this approach. The mechanism triggering the innate resistance of anti-PD-1 therapy remains unclear.Experimental Design: Whole-exome sequencing (WES) and RNA sequencing (RNA-Seq) analyses were performed in a training cohort (n = 31) using baseline tumor biopsies of patients with advanced melanoma treated with the anti-PD-1 antibody. Copy-number variations (CNVs) for the genes CDK4, CCND1, and CDKN2A were assayed using a TaqMan copy-number assay in a validation cohort (n = 85). The effect of CDK4/6 inhibitors combined with anti-PD-1 antibody monotherapy was evaluated in PD-1-humanized mouse (C57BL/6-hPD-1) and humanized immune system (HIS) patient-derived xenograft (PDX) models. RESULTS WES revealed several significant gene copy-number gains in the patients of no clinical benefit cohort, such as 12q14.1 loci, which harbor CDK4. The association between CDK4 gain and innate resistance to anti-PD-1 therapy was validated in 85 patients with melanoma (P < 0.05). RNA-Seq analysis of CDK4-normal cell lines and CDK4-normal tumors showed altered transcriptional output in TNFα signaling via NF-κB, inflammatory response, and IFNγ response gene set. In addition, CDK4/6 inhibitor (palbociclib) treatment increased PD-L1 protein levels and enhanced efficacy (P < 0.05) in the C57BL/6-hPD-1 melanoma cell and the HIS PDX model. CONCLUSIONS In summary, we discovered that genetic aberrations in the CDK4 pathway are associated with innate resistance to anti-PD-1 therapy in patients with advanced melanoma. Moreover, our study provides a strong rationale for combining CDK4/6 inhibitors with anti-PD-1 antibody for the treatment of advanced melanomas.
Collapse
Affiliation(s)
- Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junya Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qian Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jinyu Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Yin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyuan Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xieqia Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
65
|
Chen Q, Wang J, Liu WN, Zhao Y. Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms. Transl Oncol 2019; 12:987-995. [PMID: 31121491 PMCID: PMC6529825 DOI: 10.1016/j.tranon.2019.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that restores and stimulates human immune system to inhibit cancer growth or eradicate cancer. It serves as one of the latest systemic therapies, which has been approved to treat different types of cancer in patients. Nevertheless, the clinical response rate is unsatisfactory and the response observed is mostly a partial response in patients. Despite the continuous improvement and identification of novel cancer immunotherapy, there is a pressing need to establish a robust platform to evaluate the efficacy and safety of pre-clinical drugs, simulate the interaction between patients’ tumor and immune system, and predict patients’ responses to the treatment. In this review, we summarize the pros and cons of existing immuno-oncology assay platforms, especially the humanized mouse models for the screening of cancer immunotherapy drugs. In addition, various emerging trends and progress of utilizing humanized mouse models as the screening tool are discussed. Of note, humanized mouse models can also be used for further development of personalized precision medicines to treat cancer. Collectively, these highlight the significance of humanized mouse models as the important platform for the screening of next generation cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Qingfeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|