51
|
Huang L, Tang H, Hu J. METTL3 Attenuates Inflammation in Fusarium solani-Induced Keratitis via the PI3K/AKT Signaling Pathway. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 36169946 PMCID: PMC9526359 DOI: 10.1167/iovs.63.10.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Our previous investigations revealed a significant role of methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine (m6A) modification in the development of corneal inflammation in Fusarium infection, but the exact mechanism is unknown. Therefore, this research aimed to explore how METTL3 affects the inflammatory process of fungal keratitis (FK) in mice. Methods We established in vitro and in vivo models by inoculating mice and primary corneal stromal cells with F. solani. METTL3 expression was confirmed by real-time quantitative polymerase chain reaction, immunofluorescence, and western blotting. After that, siRNAMETTL3 and AAV-sh-METTL3 were transfected into cells and mice to explore the role of METTL3 in the PI3K/AKT signaling pathway and inflammation. PI3K, p-PI3K, AKT, and p-AKT expression was analyzed by western blotting. Viability of corneal stromal cells was measured using a Cell Counting Kit-8 (CCK-8). Additionally, we detected interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α) levels in corneal tissues and analyzed the role of METTL3 in inflammation in FK using slit-lamp biomicroscopy and hematoxylin and eosin staining. Results Here, our results show that METTL3 increased in mouse FK, and the expression of p-PI3K and p-AKT decreased when METTL3 was downregulated. We also found that knockdown of METTL3 expression attenuated the inflammatory response and decreased TNF-α, IL-1β, and IL-6 expression in corneal-infected mice. Furthermore, inhibition of the PI3K/AKT pathway attenuated the inflammatory response of FK, decreased the expression of the above inflammatory factors, and enhanced the viability of corneal stromal cells. Conclusions Based on the study results, METTL3 downregulation attenuates Fusarium-induced corneal inflammation via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Liwei Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Hanfeng Tang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
52
|
Immunoenhancing Effects of Cyclina sinensis Pentadecapeptide through Modulation of Signaling Pathways in Mice with Cyclophosphamide-Induced Immunosuppression. Mar Drugs 2022; 20:md20090560. [PMID: 36135750 PMCID: PMC9505337 DOI: 10.3390/md20090560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Our study aimed to investigate the immune-enhancing mechanism of the pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) in a cyclophosphamide (CTX)-induced murine model of immunosuppression. Our results showed that SCSP treatment significantly increased mouse body weight, immune organ indices, and the production of serum IL-6, IL-1β, and tumor necrosis factor (TNF)-α in CTX-treated mice. In addition, SCSP treatment enhanced the proliferation of splenic lymphocytes and peritoneal macrophages, as well as phagocytosis of the latter in a dose-dependent manner. Moreover, SCSP elevated the phosphorylation levels of p38, ERK, JNK, PI3K and Akt, and up-regulated IKKα, IKKβ, p50 NF-κB and p65 NF-κB protein levels, while down-regulating IκBα protein levels. Our results indicate that SCSP has immune-enhancing activities, and that it can activate the MAPK/NF-κB and PI3K/Akt pathways to enhance immunity in CTX-induced immunosuppressed mice.
Collapse
|
53
|
Zhang W, Yin K, Shi J, Shi X, Qi X, Lin H. The decrease of selenoprotein K induced by selenium deficiency in diet improves apoptosis and cell progression block in chicken liver via the PTEN/PI3K/AKT pathway. Free Radic Biol Med 2022; 189:20-31. [PMID: 35841984 DOI: 10.1016/j.freeradbiomed.2022.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023]
Abstract
Selenoprotein K (SELK) is imperative for normal development of chicken. It does regulate to chicken's physiological function. However, the injury of SELK-deficiency done on chicken liver and its underlying mechanism involved has not yet been covered. Therefore, we built SELK- deficiency model by feeding diet which contained low concentration of selenium (Se) to discuss SELK's regulation mechanism. Through using TUNEL, TEM, western blot and qRT-PCR we found apoptosis occurred in chicken liver in the SELK-deficiency groups. In the meanwhile, our study showed there were differentially expressed of the PTEN/PI3K/AKT pathway, calcium homeostasis, endoplasmic reticulum healthy and cell cycle progression in SELK-deficiency chicken liver tissues. In order to claim the regulation mechanism of SELK, we set SELK-knock down model in the LMH. The results in vitro were coincided with those in vivo. In the SELK-deficiency groups, the PTEN/PI3K/AKT pathway was activated and then induced ERS which eventually resulted in apoptosis in chicken liver. As the same time, the PTEN/PI3K/AKT pathway also regulated the combined effective of MDM2-p53, which leaned liver cells to G1/S blocking. Our findings support the potential of SELK in maintain the health of chicken liver, and indicate that adding proper amount of Se on the daily dietary may alleviate the deficiency of selenium.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kai Yin
- College of Wildlife & Protected Area, Northeast Forestry University, Harbin, 150040, PR China
| | - Jiahui Shi
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
54
|
Liu C, Hua H, Zhu H, Xu W, Guo Y, Yao W, Qian H, Cheng Y. Study of the anti-fatigue properties of macamide, a key component in maca water extract, through foodomics and gut microbial genomics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
55
|
Farsi Y, Tahvildari A, Arbabi M, Vazife F, Sechi LA, Shahidi Bonjar AH, Jamshidi P, Nasiri MJ, Mirsaeidi M. Diagnostic, Prognostic, and Therapeutic Roles of Gut Microbiota in COVID-19: A Comprehensive Systematic Review. Front Cell Infect Microbiol 2022; 12:804644. [PMID: 35310853 PMCID: PMC8930898 DOI: 10.3389/fcimb.2022.804644] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction The Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) emerged in late December 2019. Considering the important role of gut microbiota in maturation, regulation, and induction of the immune system and subsequent inflammatory processes, it seems that evaluating the composition of gut microbiota in COVID-19 patients compared with healthy individuals may have potential value as a diagnostic and/or prognostic biomarker for the disease. Also, therapeutic interventions affecting gut microbial flora may open new horizons in the treatment of COVID-19 patients and accelerating their recovery. Methods A systematic search was conducted for relevant studies published from December 2019 to December 2021 using Pubmed/Medline, Embase, and Scopus. Articles containing the following keywords in titles or abstracts were selected: "SARS-CoV-2" or "COVID-19" or "Coronavirus Disease 19" and "gastrointestinal microbes" or "dysbiosis" or "gut microbiota" or "gut bacteria" or "gut microbes" or "gastrointestinal microbiota". Results Out of 1,668 studies, 22 articles fulfilled the inclusion criteria and a total of 1,255 confirmed COVID-19 patients were examined. All included studies showed a significant association between COVID-19 and gut microbiota dysbiosis. The most alteration in bacterial composition of COVID-19 patients was depletion in genera Ruminococcus, Alistipes, Eubacterium, Bifidobacterium, Faecalibacterium, Roseburia, Fusicathenibacter, and Blautia and enrichment of Eggerthella, Bacteroides, Actinomyces, Clostridium, Streptococcus, Rothia, and Collinsella. Also, some gut microbiome alterations were associated with COVID-19 severity and poor prognosis including the increment of Bacteroides, Parabacteroides, Clostridium, Bifidobacterium, Ruminococcus, Campylobacter, Rothia, Corynebacterium, Megasphaera, Enterococcus, and Aspergillus spp. and the decrement of Roseburia, Eubacterium, Lachnospira, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio. Conclusion Our study showed a significant change of gut microbiome composition in COVID-19 patients compared with healthy individuals. This great extent of impact has proposed the gut microbiota as a potential diagnostic, prognostic, and therapeutic strategy for COVID-19. There is much evidence about this issue, and it is expected to be increased in near future.
Collapse
Affiliation(s)
- Yeganeh Farsi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azin Tahvildari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahta Arbabi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Vazife
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Struttura Complessa (SC), Microbiologia e Virologia, Azienda Ospedaliera Universitaria, Sassari, Italy
| | - Amir Hashem Shahidi Bonjar
- Clinician Scientist of Dental Materials and Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parnian Jamshidi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, United States
| |
Collapse
|
56
|
Kim YJ, Lee JY, Lee JJ, Jeon SM, Silwal P, Kim IS, Kim HJ, Park CR, Chung C, Han JE, Choi JW, Tak EJ, Yoo JH, Jeong SW, Kim DY, Ketphan W, Kim SY, Jhun BW, Whang J, Kim JM, Eoh H, Bae JW, Jo EK. Arginine-mediated gut microbiome remodeling promotes host pulmonary immune defense against nontuberculous mycobacterial infection. Gut Microbes 2022; 14:2073132. [PMID: 35579969 PMCID: PMC9116420 DOI: 10.1080/19490976.2022.2073132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nontuberculous mycobacterial pulmonary diseases (NTM-PDs) are emerging as global health threats with issues of antibiotic resistance. Accumulating evidence suggests that the gut-lung axis may provide novel candidates for host-directed therapeutics against various infectious diseases. However, little is known about the gut-lung axis in the context of host protective immunity to identify new therapeutics for NTM-PDs. This study was performed to identify gut microbes and metabolites capable of conferring pulmonary immunity to NTM-PDs. Using metabolomics analysis of sera from NTM-PD patients and mouse models, we showed that the levels of l-arginine were decreased in sera from NTM-PD patients and NTM-infected mice. Oral administration of l-arginine significantly enhanced pulmonary antimicrobial activities with the expansion of IFN-γ-producing effector T cells and a shift to microbicidal (M1) macrophages in the lungs of NTM-PD model mice. Mice that received fecal microbiota transplants from l-arginine-treated mice showed increased protective host defense in the lungs against NTM-PD, whereas l-arginine-induced pulmonary host defense was attenuated in mice treated with antibiotics. Using 16S rRNA sequencing, we further showed that l-arginine administration resulted in enrichment of the gut microbiota composition with Bifidobacterium species. Notably, oral treatment with either Bifidobacterium pseudolongum or inosine enhanced antimicrobial pulmonary immune defense against NTM infection, even with multidrug-resistant clinical NTM strains. Our findings indicate that l-arginine-induced gut microbiota remodeling with enrichment of B. pseudolongum boosts pulmonary immune defense against NTM infection by driving the protective gut-lung axis in vivo.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University School of MedicineDaejeon, Korea
- Infection Control Convergence Research Center, Chungnam National University School of MedicineDaejeon, Korea
- Department of Medical Science, Chungnam National University School of MedicineDaejeon, Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of MedicineDaejeon, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern CaliforniaCA, USA
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University School of MedicineDaejeon, Korea
- Infection Control Convergence Research Center, Chungnam National University School of MedicineDaejeon, Korea
- Department of Medical Science, Chungnam National University School of MedicineDaejeon, Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of MedicineDaejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of MedicineDaejeon, Korea
- Infection Control Convergence Research Center, Chungnam National University School of MedicineDaejeon, Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University School of MedicineDaejeon, Korea
- Infection Control Convergence Research Center, Chungnam National University School of MedicineDaejeon, Korea
- Department of Medical Science, Chungnam National University School of MedicineDaejeon, Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University School of MedicineDaejeon, Korea
- Infection Control Convergence Research Center, Chungnam National University School of MedicineDaejeon, Korea
- Department of Medical Science, Chungnam National University School of MedicineDaejeon, Korea
| | - Cho Rong Park
- Department of Microbiology, Chungnam National University School of MedicineDaejeon, Korea
- Infection Control Convergence Research Center, Chungnam National University School of MedicineDaejeon, Korea
- Department of Medical Science, Chungnam National University School of MedicineDaejeon, Korea
| | - Chaeuk Chung
- Infection Control Convergence Research Center, Chungnam National University School of MedicineDaejeon, Korea
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of MedicineDaejeon, Korea
| | - Jeong Eun Han
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jee-Won Choi
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Euon Jung Tak
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Ji-Ho Yoo
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Su-Won Jeong
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Do-Yeon Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Warisa Ketphan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern CaliforniaCA, USA
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC) & Basic Research Section, The Korean Institute of Tuberculosis (KIT), Cheongju, Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern CaliforniaCA, USA
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of MedicineDaejeon, Korea
- Infection Control Convergence Research Center, Chungnam National University School of MedicineDaejeon, Korea
- Department of Medical Science, Chungnam National University School of MedicineDaejeon, Korea
| |
Collapse
|
57
|
Hassan N, Mostafa I, Elhady MA, Ibrahim MA, Amer H. Effects of probiotic feed additives (biosol and Zemos) on growth and related genes in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.2016509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nessma Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ismail Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A. Elhady
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A. Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hassan Amer
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
58
|
Jastrząb R, Graczyk D, Siedlecki P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int J Mol Sci 2021; 22:ijms222413475. [PMID: 34948270 PMCID: PMC8707144 DOI: 10.3390/ijms222413475] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, commensal bacteria colonizing the human body have been recognized as important determinants of health and multiple pathologic conditions. Among the most extensively studied commensal bacteria are the gut microbiota, which perform a plethora of functions, including the synthesis of bioactive products, metabolism of dietary compounds, and immunomodulation, both through attenuation and immunostimulation. An imbalance in the microbiota population, i.e., dysbiosis, has been linked to many human pathologies, including various cancer types and neurodegenerative diseases. Targeting gut microbiota and microbiome-host interactions resulting from probiotics, prebiotics, and postbiotics is a growing opportunity for the effective treatment of various diseases. As more research is being conducted, the microbiome field is shifting from simple descriptive analysis of commensal compositions to more molecular, cellular, and functional studies. Insight into these mechanisms is of paramount importance for understanding and modulating the effects that microbiota, probiotics, and their derivatives exert on host health.
Collapse
|
59
|
Mezhenskaya D, Isakova-Sivak I, Gupalova T, Bormotova E, Kuleshevich E, Kramskaya T, Leontieva G, Rudenko L, Suvorov A. A Live Probiotic Vaccine Prototype Based on Conserved Influenza a Virus Antigens Protect Mice against Lethal Influenza Virus Infection. Biomedicines 2021; 9:biomedicines9111515. [PMID: 34829744 PMCID: PMC8615285 DOI: 10.3390/biomedicines9111515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Due to the highly variable nature of the antigenic properties of the influenza virus, many efforts have been made to develop broadly reactive influenza vaccines. Various vaccine platforms have been explored to deliver conserved viral antigens to the target cells to induce cross-reactive immune responses. Here, we assessed the feasibility of using Enterococcus faecium L3 as a bacterial vector for oral immunization against influenza virus. Methods: we generated two vaccine prototypes by inserting full-length HA2 (L3-HA2) protein or its long alpha helix (LAH) domain in combination with four M2e tandem repeats (L3-LAH+M2e) into genome of E.faecium L3 probiotic strain. The immunogenicity and protective potential of these oral vaccines were assessed in a lethal challenge model in BALB/c mice. Results: as expected, both vaccine prototypes induced HA stem-targeting antibodies, whereas only L3-LAH+4M2e vaccine induced M2e-specific antibody. The L3-HA2 vaccine partially protected mice against lethal challenge with two H1N1 heterologous viruses, while 100% of animals in the L3-LAH+4M2e vaccine group survived in both challenge experiments, and there was significant protection against weight loss in this group, compared to the L3 vector-immunized control mice. Conclusions: the recombinant enterococcal strain L3-LAH+4M2e can be considered as a promising live probiotic vaccine candidate for influenza prevention and warrants further evaluation in relevant pre-clinical models.
Collapse
|
60
|
Probiotic-Based Vaccines May Provide Effective Protection against COVID-19 Acute Respiratory Disease. Vaccines (Basel) 2021; 9:vaccines9050466. [PMID: 34066443 PMCID: PMC8148110 DOI: 10.3390/vaccines9050466] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/24/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, the causative agent of COVID-19, now represents the sixth Public Health Emergency of International Concern (PHEIC)—as declared by the World Health Organization (WHO) since 2009. Considering that SARS-CoV-2 is mainly transmitted via the mucosal route, a therapy administered by this same route may represent a desirable approach to fight SARS-CoV-2 infection. It is now widely accepted that genetically modified microorganisms, including probiotics, represent attractive vehicles for oral or nasal mucosal delivery of therapeutic molecules. Previous studies have shown that the mucosal administration of therapeutic molecules is able to induce an immune response mediated by specific serum IgG and mucosal IgA antibodies along with mucosal cell-mediated immune responses, which effectively concur to neutralize and eradicate infections. Therefore, advances in the modulation of mucosal immune responses, and in particular the use of probiotics as live delivery vectors, may encourage prospective studies to assess the effectiveness of genetically modified probiotics for SARS-CoV-2 infection. Emerging trends in the ever-progressing field of vaccine development re-emphasize the contribution of adjuvants, along with optimization of codon usage (when designing a synthetic gene), expression level, and inoculation dose to elicit specific and potent protective immune responses. In this review, we will highlight the existing pre-clinical and clinical information on the use of genetically modified microorganisms in control strategies against respiratory and non-respiratory viruses. In addition, we will discuss some controversial aspects of the use of genetically modified probiotics in modulating the cross-talk between mucosal delivery of therapeutics and immune system modulation.
Collapse
|