51
|
Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjörner EK, Stevens MM, El-Andaloussi S. Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS NANO 2021; 15:13993-14021. [PMID: 34505766 PMCID: PMC8482762 DOI: 10.1021/acsnano.1c05099] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Oligonucleotides (ONs) comprise a rapidly growing class of therapeutics. In recent years, the list of FDA-approved ON therapies has rapidly expanded. ONs are small (15-30 bp) nucleotide-based therapeutics which are capable of targeting DNA and RNA as well as other biomolecules. ONs can be subdivided into several classes based on their chemical modifications and on the mechanisms of their target interactions. Historically, the largest hindrance to the widespread usage of ON therapeutics has been their inability to effectively internalize into cells and escape from endosomes to reach their molecular targets in the cytosol or nucleus. While cell uptake has been improved, "endosomal escape" remains a significant problem. There are a range of approaches to overcome this, and in this review, we focus on three: altering the chemical structure of the ONs, formulating synthetic, lipid-based nanoparticles to encapsulate the ONs, or biologically loading the ONs into extracellular vesicles. This review provides a background to the design and mode of action of existing FDA-approved ONs. It presents the most common ON classifications and chemical modifications from a fundamental scientific perspective and provides a roadmap of the cellular uptake pathways by which ONs are trafficked. Finally, this review delves into each of the above-mentioned approaches to ON delivery, highlighting the scientific principles behind each and covering recent advances.
Collapse
Affiliation(s)
- Jeremy P. Bost
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Hanna Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Audrey Gallud
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Marco Maugeri
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Dhanu Gupta
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Taavi Lehto
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hadi Valadi
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Elin K. Esbjörner
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Department
of Materials, Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2BU, United Kingdom
| | - Samir El-Andaloussi
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
52
|
AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers (Basel) 2021; 13:cancers13194864. [PMID: 34638349 PMCID: PMC8507788 DOI: 10.3390/cancers13194864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary AXL is a member of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases. In normal physiological conditions, AXL is involved in removing dead cells and their remains, and limiting the duration of immune responses. Both functions are utilized by cancers in the course of tumour progression. Cancer cells use the AXL pathway to detect toxic environments and to activate molecular mechanisms, thereby ensuring their survival or escape from the toxic zone. AXL is instrumental in controlling genetic programs of epithelial-mesenchymal and mesenchymal-epithelial transitions, enabling cancer cells to metastasize. Additionally, AXL signaling suppresses immune responses in tumour microenvironment and thereby helps cancer cells to evade immune surveillance. The broad role of AXL in tumour biology is the reason why its inhibition sensitizes tumours to a broad spectrum of anti-cancer drugs. In this review, we outline molecular mechanisms underlying AXL function in normal tissues, and discuss how these mechanisms are adopted by cancers to become metastatic and drug-resistant. Abstract The TAM proteins TYRO3, AXL, and MER are receptor tyrosine kinases implicated in the clearance of apoptotic debris and negative regulation of innate immune responses. AXL contributes to immunosuppression by terminating the Toll-like receptor signaling in dendritic cells, and suppressing natural killer cell activity. In recent years, AXL has been intensively studied in the context of cancer. Both molecules, the receptor, and its ligand GAS6, are commonly expressed in cancer cells, as well as stromal and infiltrating immune cells. In cancer cells, the activation of AXL signaling stimulates cell survival and increases migratory and invasive potential. In cells of the tumour microenvironment, AXL pathway potentiates immune evasion. AXL has been broadly implicated in the epithelial-mesenchymal plasticity of cancer cells, a key factor in drug resistance and metastasis. Several antibody-based and small molecule AXL inhibitors have been developed and used in preclinical studies. AXL inhibition in various mouse cancer models reduced metastatic spread and improved the survival of the animals. AXL inhibitors are currently being tested in several clinical trials as monotherapy or in combination with other drugs. Here, we give a brief overview of AXL structure and regulation and discuss the normal physiological functions of TAM receptors, focusing on AXL. We present a theory of how epithelial cancers exploit AXL signaling to resist cytotoxic insults, in order to disseminate and relapse.
Collapse
|
53
|
Zhao Z, Yang S, Zhou A, Li X, Fang R, Zhang S, Zhao G, Li P. Small Extracellular Vesicles in the Development, Diagnosis, and Possible Therapeutic Application of Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:732702. [PMID: 34527593 PMCID: PMC8435888 DOI: 10.3389/fonc.2021.732702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) persists among the most lethal and broad-spreading malignancies in China. The exosome is a kind of extracellular vesicle (EV) from about 30 to 200 nm in diameter, contributing to the transfer of specific functional molecules, such as metabolites, proteins, lipids, and nucleic acids. The paramount role of exosomes in the formation and development of ESCC, which relies on promoting intercellular communication in the tumor microenvironment (TME), is manifested with immense amounts. Tumor-derived exosomes (TDEs) participate in most hallmarks of ESCC, including tumorigenesis, invasion, angiogenesis, immunologic escape, metastasis, radioresistance, and chemoresistance. Published reports have delineated that exosome-encapsulated cargos like miRNAs may have utility in the diagnosis, as prognostic biomarkers, and in the treatment of ESCC. This review summarizes the function of exosomes in the neoplasia, progression, and metastasis of ESCC, which improves our understanding of the etiology and pathogenesis of ESCC, and presents a promising target for early diagnostics in ESCC. However, recent studies of exosomes in the treatment of ESCC are sparse. Thus, we introduce the advances in exosome-based methods and indicate the possible applications for ESCC therapy in the future.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Fang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
54
|
Silva AM, Lázaro‐Ibáñez E, Gunnarsson A, Dhande A, Daaboul G, Peacock B, Osteikoetxea X, Salmond N, Friis KP, Shatnyeva O, Dekker N. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. J Extracell Vesicles 2021; 10:e12130. [PMID: 34377376 PMCID: PMC8329990 DOI: 10.1002/jev2.12130] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRβ transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50-170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications.
Collapse
Affiliation(s)
- Andreia M. Silva
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Elisa Lázaro‐Ibáñez
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Anders Gunnarsson
- Structure and BiophysicsDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | | | | | | | - Xabier Osteikoetxea
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaAlderley ParkUK
| | - Nikki Salmond
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaAlderley ParkUK
| | - Kristina Pagh Friis
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Olga Shatnyeva
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Niek Dekker
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
55
|
Matsumoto A, Takahashi Y, Ogata K, Kitamura S, Nakagawa N, Yamamoto A, Ishihama Y, Takakura Y. Phosphatidylserine-deficient small extracellular vesicle is a major somatic cell-derived sEV subpopulation in blood. iScience 2021; 24:102839. [PMID: 34368655 PMCID: PMC8326202 DOI: 10.1016/j.isci.2021.102839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of intercellular communication with respect to diverse pathophysiological processes. Here, we determined novel phosphatidylserine (PS)-deficient sEV subpopulations as a major somatic cell-derived sEV subpopulation in blood because of long blood circulation half-life through escape from macrophage uptake. PS(-)-sEVs were identified in various cultured cells as a minor population. However, as a result of rapid uptake of PS(+)-sEVs by macrophages, circulating somatic cell-derived sEVs in the blood were found to be mainly PS(-)-sEVs. These results suggest that endogenous PS(-)-sEVs could indeed be the key player in sEV-mediated intercellular communication, a good target for sEV-based diagnosis, and a potent candidate for sEV-based drug delivery. Our findings bring a paradigm shift in the understanding of the biology and translational applications of sEVs.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kosuke Ogata
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shimpei Kitamura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoki Nakagawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Aki Yamamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
56
|
Singh K, Nalabotala R, Koo KM, Bose S, Nayak R, Shiddiky MJA. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst 2021; 146:3731-3749. [PMID: 33988193 DOI: 10.1039/d1an00024a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes are nano-sized extracellular vesicles that serve as a communications system between cells and have shown tremendous promise as liquid biopsy biomarkers in diagnostic, prognostic, and even therapeutic use in different human diseases. Due to the natural heterogeneity of exosomes, there is a need to separate exosomes into distinct biophysical and/or biochemical subpopulations to enable full interrogation of exosome biology and function prior to the possibility of clinical translation. Currently, there exists a multitude of different exosome isolation and characterization approaches which can, in limited capacity, separate exosomes based on biophysical and/or biochemical characteristics. While notable reviews in recent years have reviewed these approaches for bulk exosome sorting, we herein present a comprehensive overview of various conventional technologies and modern microfluidic and nanotechnological advancements towards isolation and characterization of exosome subpopulations. The benefits and limitations of these different technologies to improve their use for distinct exosome subpopulations in clinical practices are also discussed. Furthermore, an overview of the most commonly encountered technical and biological challenges for effective separation of exosome subpopulations is presented.
Collapse
Affiliation(s)
- Karishma Singh
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201301, UP, India.
| | - Ruchika Nalabotala
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201301, UP, India.
| | - Kevin M Koo
- The University of Queensland Centre for Clinical Research (UQCCR), Herston, QLD 4029, Australia.
| | - Sudeep Bose
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201301, UP, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201301, UP, India.
| | - Muhammad J A Shiddiky
- School of Environment and Natural Sciences and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
57
|
Su H, Rustam YH, Masters CL, Makalic E, McLean CA, Hill AF, Barnham KJ, Reid GE, Vella LJ. Characterization of brain-derived extracellular vesicle lipids in Alzheimer's disease. J Extracell Vesicles 2021; 10:e12089. [PMID: 34012516 PMCID: PMC8111496 DOI: 10.1002/jev2.12089] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid dyshomeostasis is associated with the most common form of dementia, Alzheimer's disease (AD). Substantial progress has been made in identifying positron emission tomography and cerebrospinal fluid biomarkers for AD, but they have limited use as front-line diagnostic tools. Extracellular vesicles (EVs) are released by all cells and contain a subset of their parental cell composition, including lipids. EVs are released from the brain into the periphery, providing a potential source of tissue and disease specific lipid biomarkers. However, the EV lipidome of the central nervous system is currently unknown and the potential of brain-derived EVs (BDEVs) to inform on lipid dyshomeostasis in AD remains unclear. The aim of this study was to reveal the lipid composition of BDEVs in human frontal cortex, and to determine whether BDEVs have an altered lipid profile in AD. Using semi-quantitative mass spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17 lipid classes and 692 lipid molecules. BDEVs were enriched in glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further report that BDEVs are enriched in ether-containing PS lipids, a finding that further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal cortex offered improved detection of dysregulated lipids in AD over global lipid profiling of this brain region. AD BDEVs had significantly altered glycerophospholipid and sphingolipid levels, specifically increased plasmalogen glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing lipids, and altered amide-linked acyl chain content in sphingomyelin and ceramide lipids relative to CTL. The most prominent alteration was a two-fold decrease in lipid species containing anti-inflammatory/pro-resolving docosahexaenoic acid. The in-depth lipidome analysis provided in this study highlights the advantage of EVs over more complex tissues for improved detection of dysregulated lipids that may serve as potential biomarkers in the periphery.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Yepy H. Rustam
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Catriona A. McLean
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVictoriaAustralia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Gavin E. Reid
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
- School of Chemistry, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
58
|
Zhang C, Yang Z, Zhou P, Yu M, Li B, Liu Y, Jin J, Liu W, Jing H, Du J, Tian J, Zhao Z, wang J, Chu Y, Zhang C, Novakovic VA, Shi J, Wu C. Phosphatidylserine-exposing tumor-derived microparticles exacerbate coagulation and cancer cell transendothelial migration in triple-negative breast cancer. Theranostics 2021; 11:6445-6460. [PMID: 33995667 PMCID: PMC8120203 DOI: 10.7150/thno.53637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Neoadjuvant chemotherapy is relevant to the formation of thromboembolism and secondary neoplasms in triple-negative breast cancer (TNBC). Chemotherapy-induced breast cancer cell-derived microparticles (BCMPs) may have important thrombogenic and pro-metastatic effects on platelets and endothelium, which may be related to the expression and distribution of phosphatidylserine (PS). However, investigating these interactions is challenging due to technical limitations. Methods: A study was conducted in 20 healthy individuals and 18 patients who had been recently diagnosed with TNBC and were undergoing neoadjuvant chemotherapy with doxorubicin and cyclophosphamide. BCMPs were isolated from patient blood samples and doxorubicin-treated breast cancer cell lines. Their structure and morphology were studied by electron microscopy and antigen levels were measured by fluorescence-activated cell sorting. In an inhibition assay, isolated BCMPs were pretreated with lactadherin or tissue factor antibodies. Platelets isolated from healthy subjects were treated with BCMPs and coagulation time, fibrin formation, and expression of intrinsic/extrinsic factor Xase (FXa) and thrombin were evaluated. The effects of BCMPs on endothelial thrombogenicity and integrity were assessed by confocal microscopy, electron microscopy, measurement of intrinsic/extrinsic FXa, prothrombinase assay, and transwell permeability assay. Results: Neoadjuvant chemotherapy significantly increased the expression of PS+ BCMPs in patient plasma. Its expression was associated with a rapid increase in procoagulant activity. Treatment with lactadherin, a PS-binding scavenging molecule, markedly reduced the adhesion of BCMPs and abolished their procoagulant activity, but this was not observed with tissue factor antibody treatment. Intravenous injection of BCMPs in mice induced a significant hypercoagulable state, reducing the extent of plasma fibrinogen and promoting the appearance of new thrombus. Cancer cells incubated with doxorubicin released large numbers of PS+ BCMPs, which stimulated and transformed endothelial cells into a procoagulant phenotype and increased the aggregation and activation of platelets. Moreover, cancer cells exploited this BCMP-induced endothelial leakiness and showed promoted metastasis. Pretreatment with lactadherin increased uptake of both PS+ BCMPs and cancer cells by endothelial cells and limited the transendothelial migration of cancer cells. Conclusion: Lactadherin, a biosensor that we developed, was used to study the extracellular vesicle distribution of PS, which revealed a novel PS+ BCMPs administrative axis that initiated a local coagulation cascade and facilitated metastatic colonization of circulating cancer cells.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - Zhuowen Yang
- Department of Gerontology, The First Hospital, Harbin Medical University, Harbin, China
| | - Peng Zhou
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Muxin Yu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Baorong Li
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Yingmiao Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Wenhui Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Jingwen Du
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Jie Tian
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - Zhiyu Zhao
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - Jianxin wang
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - Yinzhu Chu
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - ChunMei Zhang
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | | | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Changjun Wu
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
59
|
Yamamoto S, Okamura K, Fujii R, Kawano T, Ueda K, Yajima Y, Shiba K. Specimen-specific drift of densities defines distinct subclasses of extracellular vesicles from human whole saliva. PLoS One 2021; 16:e0249526. [PMID: 33831057 PMCID: PMC8032098 DOI: 10.1371/journal.pone.0249526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/21/2021] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles (EVs) in body fluids constitute heterogenous populations, which mirror their diverse parental cells as well as distinct EV-generation pathways. Various methodologies have been proposed to differentiate EVs in order to deepen the current understanding of EV biology. Equilibrium density-gradient centrifugation has often been used to separate EVs based on their buoyant densities; however, the standard conditions used for the method do not necessarily allow all EVs to move to their equilibrium density positions, which complicates the categorization of EVs. Here, by prolonging ultracentrifugation time to 96 h and fractionating EVs both by floating up or spinning down directions, we allowed 111 EV-associated protein markers from the whole saliva of three healthy volunteers to attain equilibrium. Interestingly, the determined buoyant densities of the markers drifted in a specimen-specific manner, and drift patterns differentiated EVs into at least two subclasses. One class carried classical exosomal markers, such as CD63 and CD81, and the other was characterized by the molecules involved in membrane remodeling or vesicle trafficking. Distinct patterns of density drift may represent the differences in generation pathways of EVs.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development, Tokyo, Japan
| | - Risa Fujii
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takamasa Kawano
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- * E-mail:
| |
Collapse
|
60
|
Beltraminelli T, Perez CR, De Palma M. Disentangling the complexity of tumor-derived extracellular vesicles. Cell Rep 2021; 35:108960. [PMID: 33826890 DOI: 10.1016/j.celrep.2021.108960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment encompasses an intertwined ensemble of both transformed cancer cells and non-transformed host cells, which together establish a signaling network that regulates tumor progression. By conveying both homo- and heterotypic cell-to-cell communication cues, tumor-derived extracellular vesicles (tEVs) modulate several cancer-associated processes, such as immunosuppression, angiogenesis, invasion, and metastasis. Herein we discuss how recent methodological advances in the isolation and characterization of tEVs may help to broaden our understanding of their functions in tumor biology and, potentially, establish their utility as cancer biomarkers.
Collapse
Affiliation(s)
- Tim Beltraminelli
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Caleb R Perez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
61
|
Ito M, Kudo K, Higuchi H, Otsuka H, Tanaka M, Fukunishi N, Araki T, Takamatsu M, Ino Y, Kimura Y, Kotani A. Proteomic and phospholipidomic characterization of extracellular vesicles inducing tumor microenvironment in Epstein-Barr virus-associated lymphomas. FASEB J 2021; 35:e21505. [PMID: 33723887 DOI: 10.1096/fj.202002730r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) causes malignant carcinomas including B cell lymphomas accompanied by the systemic inflammation. Previously, we observed that phosphatidylserine (PS)-exposing subset of extracellular vesicles (EVs) secreted from an EBV strain Akata-transformed lymphoma (Akata EVs) convert surrounding phagocytes into tumor-associated macrophages (TAMs) via induction of inflammatory response, which is in part mediated by EBV-derived micro RNAs. However, it is still unclear about EV-carried other potential inflammatory factors associated with TAM formation in EBV lymphomas. To this end, we sought to explore proteomic and phospholipidomic profiles of PS-exposing EVs derived from EBV-transformed lymphomas. Mass spectrometric analysis revealed that several immunomodulatory proteins including integrin αLβ2 and fibroblast growth factor 2 (FGF2) were highly expressed in PS-exposing Akata EVs compared with another EBV strain B95-8-transformed lymphoma-derived counterparts which significantly lack TAM-inducing ability. Pharmacological inhibition of either integrin αLβ2 or FGF2 hampered cytokine induction in monocytic cultured cells elicited by PS-exposing Akata EVs, suggesting the involvement of these proteins in EV-mediated TAM induction in EBV lymphomas. In addition, phospholipids containing precursors of immunomodulatory lipid mediators were also enriched in PS-exposing Akata EVs compared with B95-8 counterparts. Phospholipidomic analysis of fractionated Akata EVs by density gradient centrifugation further demonstrated that PS-exposing Akata EVs might be identical to certain Akata EVs in low density fractions containing exosomes. Therefore, we concluded that a variety of immunomodulatory cargo molecules in a certain EV subtype are presumably conducive to the development of EBV lymphomas.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Kai Kudo
- Department of Hematological Malignancy, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Institute of Medical Science, Tokai University, Isehara, Japan
| | - Hiroshi Higuchi
- Department of Hematological Malignancy, Tokai University, Isehara, Japan
| | - Hiroko Otsuka
- Department of Hematological Malignancy, Tokai University, Isehara, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Nahoko Fukunishi
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Takuma Araki
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Masako Takamatsu
- Department of Hematological Malignancy, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Institute of Medical Science, Tokai University, Isehara, Japan
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Ai Kotani
- Department of Hematological Malignancy, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Institute of Medical Science, Tokai University, Isehara, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
62
|
Characterization of Nanoparticle Adsorption on Polydimethylsiloxane-Based Microchannels. SENSORS 2021; 21:s21061978. [PMID: 33799754 PMCID: PMC7998103 DOI: 10.3390/s21061978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022]
Abstract
Nanoparticles (NPs) are used in various medicinal applications. Exosomes, bio-derived NPs, are promising biomarkers obtained through separation and concentration from body fluids. Polydimethylsiloxane (PDMS)-based microchannels are well-suited for precise handling of NPs, offering benefits such as high gas permeability and low cytotoxicity. However, the large specific surface area of NPs may result in nonspecific adsorption on the device substrate and thus cause sample loss. Therefore, an understanding of NP adsorption on microchannels is important for the operation of microfluidic devices used for NP handling. Herein, we characterized NP adsorption on PDMS-based substrates and microchannels by atomic force microscopy to correlate NP adsorptivity with the electrostatic interactions associated with NP and dispersion medium properties. When polystyrene NP dispersions were introduced into PDMS-based microchannels at a constant flow rate, the number of adsorbed NPs decreased with decreasing NP and microchannel zeta potentials (i.e., with increasing pH), which suggested that the electrostatic interaction between the microchannel and NPs enhanced their repulsion. When exosome dispersions were introduced into PDMS-based microchannels with different wettabilities at constant flow rates, exosome adsorption was dominated by electrostatic interactions. The findings obtained should facilitate the preconcentration, separation, and sensing of NPs by PDMS-based microfluidic devices.
Collapse
|
63
|
Jayasinghe MK, Tan M, Peng B, Yang Y, Sethi G, Pirisinu M, Le MTN. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. Semin Cancer Biol 2021; 74:62-78. [PMID: 33609665 DOI: 10.1016/j.semcancer.2021.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a disease that evolves continuously with unpredictable outcomes. Although conventional chemotherapy can display significant antitumor effects, the lack of specificity and poor bioavailability remain major concerns in cancer therapy. Moreover, with the advent of novel anti-cancer gene therapies, there is an urgent need for drug delivery vectors capable of bypassing cellular barriers and efficiently transferring therapeutic cargo to recipient cells. A number of drug delivery systems have been proposed to overcome these limitations, but their successful clinical translation has been hampered by the onset of unexpected side effects and associated toxicities. The application of extracellular vesicles (EVs), a class of naturally released, cell-derived particles, as drug delivery vectors presents a breakthrough in nanomedicine, taking into account their biocompatibility and natural role in intercellular communication. Combining the advantageous intrinsic properties of EVs with surface functionalization and the encapsulation of drugs allows for a new class of engineered EVs that serve as effective therapeutic carriers. Here, we describe the various successful approaches involving the application of engineered EVs as bio-derived drug delivery vectors in cancer therapy. The latest and most effective strategies of engineering EVs to improve drug loading, stealth properties and tumour targeting capabilities of EVs are debated. Finally, current obstacles and future perspectives of smart engineered EVs are discussed.
Collapse
Affiliation(s)
- Migara Kavishka Jayasinghe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Melissa Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Yuqi Yang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marco Pirisinu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong.
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
64
|
Hiraga C, Yamamoto S, Hashimoto S, Kasahara M, Minamisawa T, Matsumura S, Katakura A, Yajima Y, Nomura T, Shiba K. Pentapartite fractionation of particles in oral fluids by differential centrifugation. Sci Rep 2021; 11:3326. [PMID: 33558596 PMCID: PMC7870959 DOI: 10.1038/s41598-021-82451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Oral fluids (OFs) contain small extracellular vesicles (sEVs or exosomes) that carry disease-associated diagnostic molecules. However, cells generate extracellular vesicles (EVs) other than sEVs, so the EV population is quite heterogeneous. Furthermore, molecules not packaged in EVs can also serve as diagnostic markers. For these reasons, developing a complete picture of particulate matter in the oral cavity is important before focusing on specific subtypes of EVs. Here, we used differential centrifugation to fractionate human OFs from healthy volunteers and patients with oral squamous cell carcinoma into 5 fractions, and we characterized the particles, nucleic acids, and proteins in each fraction. Canonical exosome markers, including CD63, CD9, CD133, and HSP70, were found in all fractions, whereas CD81 and AQP5 were enriched in the 160K fraction, with non-negligible amounts in the 2K fraction. The 2K fraction also contained its characteristic markers that included short derivatives of EGFR and E-cadherin, as well as an autophagosome marker, LC3, and large multi-layered vesicles were observed by electronic microscopy. Most of the DNA and RNA was recovered from the 0.3K and 2K fractions, with some in the 160K fraction. These results can provide guideline information for development of purpose-designed OF-based diagnostic systems.
Collapse
Affiliation(s)
- Chiho Hiraga
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Satoshi Yamamoto
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Sadamitsu Hashimoto
- Laboratory of Biology, Tokyo Dental College, 2-9-7 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
| | - Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yasutomo Yajima
- Department of Oral Implantology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
65
|
Evtushenko EG, Bagrov DV, Lazarev VN, Livshits MA, Khomyakova E. Adsorption of extracellular vesicles onto the tube walls during storage in solution. PLoS One 2020; 15:e0243738. [PMID: 33370319 PMCID: PMC7769454 DOI: 10.1371/journal.pone.0243738] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Short term storage of extracellular vesicle (EV) solutions at +4°C is a common practice, but the stability of EVs during this procedure has not been fully understood yet. Using nanoparticle tracking analysis, we have shown that EVs isolated from the conditioned medium of HT-29 cells exhibit a pronounced concentration decrease when stored in PBS in ordinary polypropylene tubes within the range of (0.5–2.1) × 1010 particles/ml. EV losses reach 51±3% for 0.5 ml of EVs in Eppendorf 2 ml tube at 48 hours of storage at +4°C. Around 2/3 of the observed losses have been attributed to the adsorption of vesicles onto tube walls. This result shows that the lower part (up to at least 2 × 1010 particles/ml) of the practically relevant concentration range for purified EVs is prone to adsorption losses at +4°C. Total particle losses could be reduced to 18–21% at 48 hours by using either Eppendorf Protein LoBind tubes or ordinary tubes with the surface blocked with bovine serum albumin or EVs. Reduction of losses to 15% has been shown for isolated EVs dissolved in the supernatant after 100 000 g centrifugation as a model of conditioned medium. Also, a previously unknown feature of diffusion-controlled adsorption was revealed for EVs. In addition to the decrease in particle count, this process causes the predominant losses of smaller particles.
Collapse
Affiliation(s)
- Evgeniy G. Evtushenko
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
- * E-mail:
| | - Dmitry V. Bagrov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vassili N. Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russian Federation
| | - Mikhail A. Livshits
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russian Federation
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena Khomyakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
| |
Collapse
|
66
|
Chen QG, Chen L, Zhong QH, Zhang L, Jiang YH, Li SQ, Qin TY, Sun F, You XH, Yang WM, Huang B, Wang XZ. Optimization of urinary small extracellular vesicle isolation protocols: implications in early diagnosis, stratification, treatment and prognosis of diseases in the era of personalized medicine. Am J Transl Res 2020; 12:6302-6313. [PMID: 33194031 PMCID: PMC7653599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Extracellular vesicles isolation from urine was severely interfered by polymeric Tamm-Harsefall protein due to its ability to entrap exosome. Studies had been reported to optimize the extraction of urine extracellular vesicles by using reducing agents, surfactants, salt precipitation or ultrafiltration, but rarely based on highly specific purification methods. We optimized the density gradient centrifugation method for the isolation of urinary small extracellular vesicles (sEV) and compared seven differential centrifugation protocols to obtain the high-yield and high-purity sEV isolation procedures. Our study showed Tris sucrose gradient centrifugation at 25°C had more concentrated distribution of exosomal marker in the gradient compared to Tris sucrose gradient centrifugation at 4°C and PBS sucrose gradient centrifugation. Dissolving the 16000 g pellet using Tris, Nonidet™ P 40 or Dithiothreitol then pooling the supernatants did not increase the exosomal markers and number of nanoparticles in sEV preparation compared to the control and PBS groups. Differential centrifugation at room temperature without ultrafiltration recovered more exosome-like vesicles, exosomal markers and nanoparticles than that at 4°C or combining ultrafiltration. Differential centrifugation at RT without ultrafiltration and salt precipitation recovered the highest number of nanoparticles than other protocols. However, differential centrifugation at RT combining 100 kd ultrafiltration obtained the highest purity of sEV calculated by Nanoparticle number/Total protein. In conclusion, we had established two urinary sEV isolation procedures that can recovered higher yield of sEV and more pure preparation of sEV. It is not recommended to treating 16000 g pellet with reducing agents or surfactants to increase the yield of sEV.
Collapse
Affiliation(s)
- Qing-Gen Chen
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lian Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Qiong-Hui Zhong
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lei Zhang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yu-Huan Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shu-Qi Li
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Ting-Yu Qin
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Fan Sun
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xia-Hong You
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wei-Ming Yang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Bo Huang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
67
|
Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells 2020; 9:cells9102191. [PMID: 33003285 PMCID: PMC7600121 DOI: 10.3390/cells9102191] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in drug development, the majority of novel therapeutics have not been successfully translated into clinical applications. One of the major factors hindering their clinical translation is the lack of a safe, non-immunogenic delivery system with high target specificity upon systemic administration. In this respect, extracellular vesicles (EVs), as natural carriers of bioactive cargo, have emerged as a promising solution and can be further modified to improve their therapeutic efficacy. In this review, we provide an overview of the biogenesis pathways, biochemical features, and isolation methods of EVs with an emphasis on their many intrinsic properties that make them desirable as drug carriers. We then describe in detail the current advances in EV therapeutics, focusing on how EVs can be engineered to achieve improved target specificity, better circulation kinetics, and efficient encapsulation of therapeutic payloads. We also identify the challenges and obstacles ahead for clinical translation and provide an outlook on the future perspective of EV-based therapeutics.
Collapse
|
68
|
Galbraith DW. Shapiro's Laws Revisited: Conventional and Unconventional Cytometry at CYTO2020. Cytometry A 2020; 99:129-132. [PMID: 32949446 DOI: 10.1002/cyto.a.24228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 11/07/2022]
Abstract
Extracting relevant information from a very large excess of irrelevant debris. Judicious gating of PI-stained Arabidopsis leaf homogenates defines the position of a very minor proportion of nuclei within a two-dimensional frequency distribution, whose properties can then be finely dissected. From: Galbraith (2009). Cytometry Part A. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- David W Galbraith
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, 85721, USA.,Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jin Ming Avenue, Kaifeng, 475004, China
| |
Collapse
|
69
|
Muraoka S, Jedrychowski MP, Yanamandra K, Ikezu S, Gygi SP, Ikezu T. Proteomic Profiling of Extracellular Vesicles Derived from Cerebrospinal Fluid of Alzheimer's Disease Patients: A Pilot Study. Cells 2020; 9:E1959. [PMID: 32854315 PMCID: PMC7565882 DOI: 10.3390/cells9091959] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pathological hallmarks of Alzheimer's disease (AD) are deposits of amyloid beta (Aβ) and hyper-phosphorylated tau aggregates in brain plaques. Recent studies have highlighted the importance of Aβ and tau-containing extracellular vesicles (EVs) in AD. We therefore examined EVs separated from cerebrospinal fluid (CSF) of AD, mild cognitive impairment (MCI), and control (CTRL) patient samples to profile the protein composition of CSF EV. EV fractions were separated from AD (n = 13), MCI (n = 10), and CTRL (n = 10) CSF samples using MagCapture Exosome Isolation kit. The CSF-derived EV proteins were identified and quantified by label-free and tandem mass tag (TMT)-labeled mass spectrometry. Label-free proteomics analysis identified 2546 proteins that were significantly enriched for extracellular exosome ontology by Gene Ontology analysis. Canonical Pathway Analysis revealed glia-related signaling. Quantitative proteomics analysis, moreover, showed that EVs expressed 1284 unique proteins in AD, MCI and CTRL groups. Statistical analysis identified three proteins-HSPA1A, NPEPPS, and PTGFRN-involved in AD progression. In addition, the PTGFRN showed a moderate correlation with amyloid plaque (rho = 0.404, p = 0.027) and tangle scores (rho = 0.500, p = 0.005) in AD, MCI and CTRL. Based on the CSF EV proteomics, these data indicate that three proteins, HSPA1A, NPEPPS and PTGFRN, may be used to monitor the progression of MCI to AD.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (S.M.); (S.I.)
| | - Mark P. Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; (M.P.J.); (S.P.G.)
| | - Kiran Yanamandra
- Abbvie Inc. Foundational Neuroscience Center, Cambridge, MA 02139, USA;
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (S.M.); (S.I.)
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; (M.P.J.); (S.P.G.)
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (S.M.); (S.I.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
70
|
Arteaga-Blanco LA, Mojoli A, Monteiro RQ, Sandim V, Menna-Barreto RFS, Pereira-Dutra FS, Bozza PT, Resende RDO, Bou-Habib DC. Characterization and internalization of small extracellular vesicles released by human primary macrophages derived from circulating monocytes. PLoS One 2020; 15:e0237795. [PMID: 32833989 PMCID: PMC7444811 DOI: 10.1371/journal.pone.0237795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-limited structures derived from outward budding of the plasma membrane or endosomal system that participate in cellular communication processes through the transport of bioactive molecules to recipient cells. To date, there are no published methodological works showing step-by-step the isolation, characterization and internalization of small EVs secreted by human primary macrophages derived from circulating monocytes (MDM-derived sEVs). Thus, here we aimed to provide an alternative protocol based on differential ultracentrifugation (dUC) to describe small EVs (sEVs) from these cells. Monocyte-derived macrophages were cultured in EV-free medium during 24, 48 or 72 h and, then, EVs were isolated from culture supernatants by (dUC). Macrophages secreted a large amount of sEVs in the first 24 h, with size ranging from 40-150 nm, peaking at 105 nm, as evaluated by nanoparticle tracking analysis and scanning electron microscopy. The markers Alix, CD63 and CD81 were detected by immunoblotting in EV samples, and the co-localization of CD63 and CD81 after sucrose density gradient ultracentrifugation (S-DGUC) indicated the presence of sEVs from late endosomal origin. Confocal fluorescence revealed that the sEVs were internalized by primary macrophages after three hours of co-culture. The methodology here applied aims to contribute for enhancing reproducibility between the limited number of available protocols for the isolation and characterization of MDM-derived sEVs, thus providing basic knowledge in the area of EV methods that can be useful for those investigators working with sEVs released by human primary macrophages derived from circulating monocytes.
Collapse
Affiliation(s)
| | - Andrés Mojoli
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Sandim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | | | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
71
|
Shu S, Matsuzaki J, Want MY, Conway A, Benjamin-Davalos S, Allen CL, Koroleva M, Battaglia S, Odunsi A, Minderman H, Ernstoff MS. An Immunosuppressive Effect of Melanoma-derived Exosomes on NY-ESO-1 Antigen-specific Human CD8 + T Cells is Dependent on IL-10 and Independent of BRAF V600E Mutation in Melanoma Cell Lines. Immunol Invest 2020; 49:744-757. [PMID: 32799717 DOI: 10.1080/08820139.2020.1803353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exosomes, including human melanoma-derived exosomes (HMEX), are known to suppress the function of immune effector cells, which for HMEX has been associated with the surface presence of the immune checkpoint ligand PD-L1. This study investigated the relationship between the BRAF mutational status of melanoma cells and the inhibition of secreted HMEX exosomes on antigen-specific human T cells. Exosomes were isolated from two melanoma cell lines, 2183-Her4 and 888-mel, which are genetically wild-type BRAFWT and BRAFV600E, respectively. HMEX were isolated using a modified, size-exclusion chromatography (SEC) method shown to reduce co-isolation of non-exosome-associated cytokines compared to ultracentrifugation isolation. The immunoinhibitory effect of the exosomes was tested in vitro on patient-derived NY-ESO-1-specific CD8+ T cells challenged with NY-ESO-1 antigen. HMEX from both cell lines inhibited the immune response of antigen-specific T cells comparably, as evidenced by the reduction of IFN-γ and TNF-α in NY-ESO-1 tetramer-positive cells. This inhibition could be partially reversed by the presence of anti-PD-L1 and anti-IL-10 antibodies. IL-10 has been demonstrated to be a critical pathway for sustaining enhanced tumorigenesis in BRAFV600E mutant cells compared to BRAFWT melanoma cells. Thus, we demonstrate that HMEX inhibit antigen-specific T cell responses independent of the BRAF mutational status of the parent cells. In addition, PD-L1 and IL-10 contribute to the HMEX-mediated immunosuppression of antigen-specific human T cells. The inhibitory capacity of exosomes should be taken into consideration when developing therapies that are reliant upon the potency of customized, antigen-specific effector T cells.
Collapse
Affiliation(s)
- ShinLa Shu
- Department of Medicine, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | - Muzamil Y Want
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | - Alexis Conway
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | | | - Cheryl L Allen
- Department of Medicine, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | - Marina Koroleva
- Department of Medicine, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | - Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | - Adekunle Odunsi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | - Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| | - Marc S Ernstoff
- Department of Medicine, Roswell Park Comprehensive Cancer Center , Buffalo, NY, USA
| |
Collapse
|
72
|
Tripisciano C, Weiss R, Karuthedom George S, Fischer MB, Weber V. Extracellular Vesicles Derived From Platelets, Red Blood Cells, and Monocyte-Like Cells Differ Regarding Their Ability to Induce Factor XII-Dependent Thrombin Generation. Front Cell Dev Biol 2020; 8:298. [PMID: 32478066 PMCID: PMC7232549 DOI: 10.3389/fcell.2020.00298] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
As transmitters of biological information, extracellular vesicles (EVs) are crucial for the maintenance of physiological homeostasis, but also contribute to pathological conditions, such as thrombotic disorders. The ability of EVs to support thrombin generation has been linked to their exposure of phosphatidylserine, an anionic phospholipid that is normally restricted to the inner leaflet of the plasma membrane but exposed on the outer leaflet during EV biogenesis. Here, we investigated whether EVs of different cellular origin and from different settings, namely platelets and red blood cells from blood bank units and a monocyte-like cell line (THP-1), differ regarding their potential to support factor XII-dependent thrombin generation. EVs were isolated from blood products or THP-1 cell culture supernatants using differential centrifugation and characterized by a combination of flow cytometry, nanoparticle tracking analysis, and Western blotting. Soluble factors co-enriched during the isolation of EVs were depleted from blood-cell derived EV fractions using size exclusion chromatography, while proteins bound to the surface of EVs were degraded by mild protease treatment. We found that platelet-derived and red blood cell-derived EVs supported factor XII-dependent thrombin generation to comparable extents, while monocytic EVs failed to support thrombin generation when added to EV-depleted human plasma. We excluded a major contribution of co-enriched soluble proteins or of proteins bound to the EV surface to the thrombogenicity of blood cell-derived EVs. Our data suggest that the enhanced potential of blood cell-derived EVs to support thrombin generation is rather due to enhanced exposure of phosphatidylserine on the surface of blood cell-derived EVs. Extending these investigations to EVs from other cell types, such as mesenchymal stromal cells, will be crucial for their future therapeutic applications.
Collapse
Affiliation(s)
- Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Sobha Karuthedom George
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Michael B Fischer
- Center for Experimental Medicine, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria.,Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Krems, Austria.,Center for Experimental Medicine, Department for Biomedical Research, Danube University Krems, Krems, Austria
| |
Collapse
|
73
|
Eguchi T, Sogawa C, Ono K, Matsumoto M, Tran MT, Okusha Y, Lang BJ, Okamoto K, Calderwood SK. Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells. Cells 2020; 9:cells9030755. [PMID: 32204513 PMCID: PMC7140686 DOI: 10.3390/cells9030755] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor cells exhibit therapeutic stress resistance-associated secretory phenotype involving extracellular vesicles (EVs) such as oncosomes and heat shock proteins (HSPs). Such a secretory phenotype occurs in response to cell stress and cancer therapeutics. HSPs are stress-responsive molecular chaperones promoting proper protein folding, while also being released from cells with EVs as well as a soluble form known as alarmins. We have here investigated the secretory phenotype of castration-resistant prostate cancer (CRPC) cells using proteome analysis. We have also examined the roles of the key co-chaperone CDC37 in the release of EV proteins including CD9 and epithelial-to-mesenchymal transition (EMT), a key event in tumor progression. EVs derived from CRPC cells promoted EMT in normal prostate epithelial cells. Some HSP family members and their potential receptor CD91/LRP1 were enriched at high levels in CRPC cell-derived EVs among over 700 other protein types found by mass spectrometry. The small EVs (30-200 nm in size) were released even in a non-heated condition from the prostate cancer cells, whereas the EMT-coupled release of EVs (200-500 nm) and damaged membrane vesicles with associated HSP90α was increased after heat shock stress (HSS). GAPDH and lactate dehydrogenase, a marker of membrane leakage/damage, were also found in conditioned media upon HSS. During this stress response, the intracellular chaperone CDC37 was transcriptionally induced by heat shock factor 1 (HSF1), which activated the CDC37 core promoter, containing an interspecies conserved heat shock element. In contrast, knockdown of CDC37 decreased EMT-coupled release of CD9-containing vesicles. Triple siRNA targeting CDC37, HSP90α, and HSP90β was required for efficient reduction of this chaperone trio and to reduce tumorigenicity of the CRPC cells in vivo. Taken together, we define "stressome" as cellular stress-induced all secretion products, including EVs (200-500 nm), membrane-damaged vesicles and remnants, and extracellular HSP90 and GAPDH. Our data also indicated that CDC37 is crucial for the release of vesicular proteins and tumor progression in prostate cancer.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6662 (T.E.); +1-617-735-2947 (S.K.C.)
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama 700-0914, Japan;
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Benjamin J. Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6662 (T.E.); +1-617-735-2947 (S.K.C.)
| |
Collapse
|
74
|
Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 2020; 159:308-321. [PMID: 32151658 DOI: 10.1016/j.addr.2020.03.002] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/02/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles contain a lipid bilayer membrane that protects the encapsulated material, such as proteins, nucleic acids, lipids and metabolites, from the extracellular environment. These vesicles are released from cells via different mechanisms. During recent years extracellular vesicles have been studied as possible biomarkers for different diseases, as biological nanoparticles for drug delivery, and in basic studies as a tool to understand the structure of biological membranes and the mechanisms involved in vesicular trafficking. Lipids are essential molecular components of extracellular vesicles, but at the moment our knowledge about the lipid composition and the function of lipids in these vesicles is limited. However, the interest of the research community in these molecules is increasing as their role in extracellular vesicles is starting to be acknowledged. In this review, we will present the status of the field and describe what is needed to bring it forward.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
| |
Collapse
|
75
|
Vasconcelos MH, Caires HR, Ābols A, Xavier CPR, Linē A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat 2019; 47:100647. [PMID: 31704541 DOI: 10.1016/j.drup.2019.100647] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022]
Abstract
Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-resistant phenotypes to other cancer cells, modulating the anti-tumor immune response, as well as contributing to remodeling the tumor microenvironment and formation of pre-metastatic niches. These findings have raised the idea that cancer-derived EVs may serve as analytes in liquid biopsies for real-time monitoring of tumor burden and drug resistance. In this review, we have summarized recent longitudinal clinical studies describing promising EV-associated biomarkers for cancer progression and tracking cancer evolution as well as pre-clinical and clinical evidence on the relevance of EVs for monitoring the emergence or progression of drug resistance. Furthermore, we outlined the state-of-the-art in the development and commercialization of EV-based biomarkers and discussed the scientific and technological challenges that need to be met in order to translate EV research into clinically applicable tools for precision medicine.
Collapse
Affiliation(s)
- M Helena Vasconcelos
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Hugo R Caires
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Artūrs Ābols
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Cristina P R Xavier
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia; Faculty of Biology, University of Latvia, Riga, Latvia.
| |
Collapse
|
76
|
Majarikar V, Takehara H, Ichiki T. Adsorption Phenomena of Anionic and Cationic Nanoliposomes on the Surface of Poly(dimethylsiloxane) Microchannel. J PHOTOPOLYM SCI TEC 2019. [DOI: 10.2494/photopolymer.32.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Virendra Majarikar
- Department of Materials Engineering, School of Engineering, The University of Tokyo
| | - Hiroaki Takehara
- Department of Materials Engineering, School of Engineering, The University of Tokyo
- Innovation Center of NanoMedicine, Institute of Industry Promotion-Kawasaki
| | - Takanori Ichiki
- Department of Materials Engineering, School of Engineering, The University of Tokyo
- Innovation Center of NanoMedicine, Institute of Industry Promotion-Kawasaki
| |
Collapse
|