51
|
Zhang L, Suksanpaisan L, Jiang H, DeGrado TR, Russell SJ, Zhao M, Peng KW. Dual-Isotope SPECT Imaging with NIS Reporter Gene and Duramycin to Visualize Tumor Susceptibility to Oncolytic Virus Infection. Mol Ther Oncolytics 2019; 15:178-185. [PMID: 31890867 PMCID: PMC6931109 DOI: 10.1016/j.omto.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/05/2019] [Indexed: 11/21/2022] Open
Abstract
Noninvasive dual-imaging methods that provide an early readout on tumor permissiveness to virus infection and tumor cell death could be valuable in optimizing development of oncolytic virotherapies. Here, we have used the sodium iodide symporter (NIS) and 125I radiotracer to detect infection and replicative spread of an oncolytic vesicular stomatitis virus (VSV) in VSV-susceptible (MPC-11 tumor) versus VSV-resistant (CT26 tumor) tumors in BALB/c mice. In conjunction, tumor cell death was imaged simultaneously using technetium (99mTc)-duramycin that binds phosphatidylethanolamine in apoptotic and necrotic cells. Dual-isotope single-photon emission computed tomography/computed tomography (SPECT/CT) imaging showed areas of virus infection (NIS and 125I), which overlapped well with areas of tumor cell death (99mTc-duramycin imaging) in susceptible tumors. Multiple infectious foci arose early in MPC-11 tumors, which rapidly expanded throughout the tumor parenchyma over time. There was a dose-dependent increase in numbers of infectious centers and 99mTc-duramycin-positive areas with viral dose. In contrast, NIS or duramycin signals were minimal in VSV-resistant CT26 tumors. Combinatorial use of NIS and 99mTc-duramycin SPECT imaging for simultaneous monitoring of oncolytic virotherapy (OV) spread and the presence or absence of treatment-associated cell death could be useful to guide development of combination treatment strategies to enhance therapeutic outcome.
Collapse
Affiliation(s)
- Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Huailei Jiang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ming Zhao
- Northwestern University, Chicago, IL, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
52
|
Artificially cloaked viral nanovaccine for cancer immunotherapy. Nat Commun 2019; 10:5747. [PMID: 31848338 PMCID: PMC6917704 DOI: 10.1038/s41467-019-13744-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Virus-based cancer vaccines are nowadays considered an interesting approach in the field of cancer immunotherapy, despite the observation that the majority of the immune responses they elicit are against the virus and not against the tumor. In contrast, targeting tumor associated antigens is effective, however the identification of these antigens remains challenging. Here, we describe ExtraCRAd, a multi-vaccination strategy focused on an oncolytic virus artificially wrapped with tumor cancer membranes carrying tumor antigens. We demonstrate that ExtraCRAd displays increased infectivity and oncolytic effect in vitro and in vivo. We show that this nanoparticle platform controls the growth of aggressive melanoma and lung tumors in vivo both in preventive and therapeutic setting, creating a highly specific anti-cancer immune response. In conclusion, ExtraCRAd might serve as the next generation of personalized cancer vaccines with enhanced features over standard vaccination regimens, representing an alternative way to target cancer. Cancer therapy using oncolytic virus has shown pre-clinical and clinical efficacy. Here, the authors report ExtraCRAd, an oncolytic virus cloaked with tumour cell membrane and report its therapeutic effects in vitro and in vivo in multiple mouse tumour models.
Collapse
|
53
|
Marayati R, Quinn CH, Beierle EA. Immunotherapy in Pediatric Solid Tumors-A Systematic Review. Cancers (Basel) 2019; 11:E2022. [PMID: 31847387 PMCID: PMC6966467 DOI: 10.3390/cancers11122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Despite advances in the treatment of many pediatric solid tumors, children with aggressive and high-risk disease continue to have a dismal prognosis. For those presenting with metastatic or recurrent disease, multiple rounds of intensified chemotherapy and radiation are the typical course of action, but more often than not, this fails to control the progression of the disease. Thus, new therapeutics are desperately needed to improve the outcomes for these children. Recent advances in our understanding of both the immune system's biology and its interaction with tumors have led to the development of novel immunotherapeutics as alternative treatment options for these aggressive malignancies. Immunotherapeutic approaches have shown promising results for pediatric solid tumors in early clinical trials, but challenges remain concerning safety and anti-tumor efficacy. In this review, we aim to discuss and summarize the main classes of immunotherapeutics used to treat pediatric solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.); (C.H.Q.)
| |
Collapse
|
54
|
Yamada Y, Liao GR, Tseng CY, Tseng YY, Hsu WL. Establishment and characterization of transformed goat primary cells by expression of simian virus 40 large T antigen for orf virus propagations. PLoS One 2019; 14:e0226105. [PMID: 31805146 PMCID: PMC6894772 DOI: 10.1371/journal.pone.0226105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Due to the limited host range of orf virus (ORFV), primary cells derived from its natural hosts, such as goats and sheep, are recommended for isolation and propagation of wild type ORFV. This situation limits the option for the study of virus-host interaction during ORFV infection since primary cells only support a few numbers of passages. SV40 T antigen is a viral oncoprotein that can abrogate replicative senescence, leading to an extended life span of cells. In this study, the transformation of two goat primary cells, fibroblast (FB) and testis (GT) cells, were achieved by stably expressing SV40 T antigen using the lentiviral technique. The presence of the gene encoding SV40 T antigen was validated by polymerase chain reaction (PCR) and western blot analyses. As evidenced by immunofluorescent microscopy, the two types of cells expressing SV40 T antigen (namely, FBT and GTT) were purified to homogeneity. Moreover, faster growth kinetics and a lower serum dependency were noticed in FBT and GTT, as compared with their counterpart parental cells. FBT and GTT remain permissive and can form plaque of ORFV, despite with different profiles; generally speaking, with SV40 T expression, ORFV forms plaques with smaller size and distinct margin. Most importantly, the prolonged life span of goat FBT and GTT serves as an ideal cell culture resource for ORFV isolation from the field, studies of ORFV pathogenesis and efficient vaccine development.
Collapse
Affiliation(s)
- Yumiko Yamada
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Guan-Ru Liao
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Yeu-Yang Tseng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
55
|
Zheng M, Huang J, Tong A, Yang H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:234-247. [PMID: 31872046 PMCID: PMC6911943 DOI: 10.1016/j.omto.2019.10.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oncolytic viruses (OVs) are powerful new therapeutic agents in cancer therapy. With the first OV (talimogene laherparepvec [T-vec]) obtaining US Food and Drug Administration approval, interest in OVs has been boosted greatly. Nevertheless, despite extensive research, oncolytic virotherapy has shown limited efficacy against solid tumors. Recent advances in viral retargeting, genetic editing, viral delivery platforms, tracking strategies, OV-based gene therapy, and combination strategies have the potential to broaden the applications of oncolytic virotherapy in oncology. In this review, we present several insights into the limitations and challenges of oncolytic virotherapy, describe the strategies mentioned above, provide a summary of recent preclinical and clinical trials in the field of oncolytic virotherapy, and highlight the need to optimize current strategies to improve clinical outcomes.
Collapse
Affiliation(s)
- Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Jianhan Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
56
|
Oncolysis without viruses — inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol 2019; 17:49-64. [PMID: 31595049 DOI: 10.1038/s41571-019-0272-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
|
57
|
Lévesque S, Le Naour J, Pietrocola F, Paillet J, Kremer M, Castoldi F, Baracco EE, Wang Y, Vacchelli E, Stoll G, Jolly A, De La Grange P, Zitvogel L, Kroemer G, Pol JG. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology 2019; 8:e1657375. [PMID: 31646107 PMCID: PMC6791453 DOI: 10.1080/2162402x.2019.1657375] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/16/2023] Open
Abstract
We have recently shown that chemotherapy with immunogenic cell death (ICD)-inducing agents can be advantageously combined with fasting regimens or caloric restriction mimetics (CRMs) to achieve superior tumor growth control via a T cell-dependent mechanism. Here, we show that the blockade of the CD11b-dependent extravasation of myeloid cells blocks such a combination effect as well. Based on the characterization of the myeloid and lymphoid immune infiltrates, including the expression pattern of immune checkpoint proteins (and noting a chemotherapy-induced overexpression of programmed death-ligand 1, PD-L1, on both cancer cells and leukocytes, as well as a reduced frequency of exhausted CD8+ T cells positive for programmed cell death 1 protein, PD-1), we then evaluated the possibility to combine ICD inducers, CRMs and targeting of the PD-1/PD-L1 interaction. While fasting or CRMs failed to improve tumor growth control by PD-1 blockade, ICD inducers alone achieved a partial sensitization to treatment with a PD-1-specific antibody. However, definitive cure of most of the tumor-bearing mice was only achieved by a tritherapy combining (i) ICD inducers exemplified by mitoxantrone and oxaliplatin, (ii) CRMs exemplified by hydroxycitrate and spermidine and substitutable for by fasting, and (iii) immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 interaction. Altogether, these results point to the possibility of synergistic interactions among distinct classes of anticancer agents.
Collapse
Affiliation(s)
- Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Julie Le Naour
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Federico Pietrocola
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Juliette Paillet
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Margerie Kremer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Francesca Castoldi
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Elisa E. Baracco
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Yan Wang
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Erika Vacchelli
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Gautier Stoll
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | | | | | - Laurence Zitvogel
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
58
|
Schirrmacher V, van Gool S, Stuecker W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines 2019; 7:E66. [PMID: 31480379 PMCID: PMC6783952 DOI: 10.3390/biomedicines7030066] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to therapy is a major obstacle to cancer treatment. It may exist from the beginning, or it may develop during therapy. The review focusses on oncolytic Newcastle disease virus (NDV) as a biological agent with potential to break therapy resistance. This avian virus combines, upon inoculation into non-permissive hosts such as human, 12 described anti-neoplastic effects with 11 described immune stimulatory properties. Fifty years of clinical application of NDV give witness to the high safety profile of this biological agent. In 2015, an important milestone was achieved, namely the successful production of NDV according to Good Manufacturing Practice (GMP). Based on this, IOZK in Cologne, Germany, obtained a GMP certificate for the production of a dendritic cell vaccine loaded with tumor antigens from a lysate of patient-derived tumor cells together with immunological danger signals from NDV for intracutaneous application. This update includes single case reports and retrospective analyses from patients treated at IOZK. The review also presents future perspectives, including the concept of in situ vaccination and the combination of NDV or other oncolytic viruses with checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Stefaan van Gool
- Immune-Oncological Center Cologne (IOZK), D-50674 Cologne, Germany
| | | |
Collapse
|
59
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
60
|
Davola ME, Vito A, Wei J, El-Sayes N, Workenhe S, Mossman KL. Genetic modification of oncolytic viruses to enhance antitumor immunity. Methods Enzymol 2019; 635:231-250. [PMID: 32122548 DOI: 10.1016/bs.mie.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among the many immunotherapies being developed and tested both preclinically and clinically, oncolytic viruses (OVs) are gaining traction as a forerunner in the search for potent new therapeutic agents, with a genetically engineered herpes simplex virus type 1 (HSV-1) recently approved by the FDA for the treatment of melanoma. The great potential of OVs to fight cancer is driving different approaches to improve OV-based therapy, with genetic modification of OVs to enhance host antitumor immunity being one of the most promising approaches. In this chapter we describe possible modifications in the OV genome that could increase its antitumor activity and immunostimulatory capacity, together with different methods to achieve these goals. Finally, we present different analyses to verify the desired genetic modification and evaluate its impact on host antitumor immunity in preliminary stages.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alyssa Vito
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jiarun Wei
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Samuel Workenhe
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
61
|
Prospect of Plasmacytoid Dendritic Cells in Enhancing Anti-Tumor Immunity of Oncolytic Herpes Viruses. Cancers (Basel) 2019; 11:cancers11050651. [PMID: 31083559 PMCID: PMC6562787 DOI: 10.3390/cancers11050651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
The major type I interferon-producing plasmacytoid dendritic cells (pDC) surround and infiltrate certain tumors like malignant melanoma, head and neck cancer, and ovarian and breast cancer. The presence of pDC in these tumors is associated with an unfavorable prognosis for the patients as long as these cells are unstimulated. Upon activation by synthetic Toll-like receptor agonists or viruses, however, pDC develop cytotoxic activities. Viruses have the additional advantage to augment cytotoxic activities of pDC via lytic replication in malignant lesions. These effects turn cold tumors into hotspots, recruiting further immune cells to the site of inflammation. Activated pDC contribute to cross-presentation of tumor-associated antigens by classical dendritic cells, which induce cytotoxic T-cells in particular in the presence of checkpoint inhibitors. The modification of oncolytic herpes viruses via genetic engineering favorably affects this process through the enhanced production of pro-inflammatory cytokines, curbing of tumor blood supply, and removal of extracellular barriers for efficient viral spread. Importantly, viral vectors may contribute to stimulation of memory-type adaptive immune responses through presentation of tumor-related neo- and/or self-antigens. Eventually, both replication-competent and replication-deficient herpes simplex virus 1 (HSV-1) may serve as vaccine vectors, which contribute to tumor regression by the stimulation of pDC and other dendritic cells in adjuvant and neo-adjuvant situations.
Collapse
|
62
|
Davola ME, Mossman KL. Oncolytic viruses: how "lytic" must they be for therapeutic efficacy? Oncoimmunology 2019; 8:e1581528. [PMID: 31069150 PMCID: PMC6492965 DOI: 10.1080/2162402x.2019.1596006] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses (OVs) preferentially target and kill cancer cells without affecting healthy cells through a multi-modal mechanism of action. While historically the direct killing activity of OVs was considered the primary mode of action, initiation or augmentation of a host antitumor immune response is now considered an essential aspect of oncolytic virotherapy. To improve oncolytic virotherapy, many studies focus on increasing virus replication and spread. In this article, we open for discussion the traditional dogma that correlates replication with the efficacy of OVs, pointing out several examples that oppose this principle.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
63
|
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|