51
|
Pérez Rubio A, Eiros JM. Cell culture-derived flu vaccine: Present and future. Hum Vaccin Immunother 2018; 14:1874-1882. [PMID: 29672213 PMCID: PMC6149758 DOI: 10.1080/21645515.2018.1460297] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022] Open
Abstract
The benefit of influenza vaccines is difficult to estimate due to the complexity of accurately assessing the burden of influenza. To improve the efficacy of influenza vaccines, vaccine manufacturers have developed quadrivalent influenza vaccine (QIV) formulations for seasonal vaccination by including both influenza B lineages. Three parallel approaches for producing influenza vaccines are attracting the interest of many vaccine manufacturing companies. The first and oldest is the conventional egg-derived influenza vaccine, which is used by the current licensed influenza vaccines. The second approach is a cell culture-derived influenza vaccine, and the third and most recent is synthetic vaccines. Here, we analyze the difficulties with vaccines production in eggs and compare this to cell culture-derived influenza vaccines and discuss the future of cell culture-derived QIVs.
Collapse
Affiliation(s)
| | - Jose María Eiros
- Servicio Microbiología, Hospital Universitario Rio Hortega, Valladolid, Spain
| |
Collapse
|
52
|
Efforts to Improve the Seasonal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020019. [PMID: 29601497 PMCID: PMC6027170 DOI: 10.3390/vaccines6020019] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza viruses infect approximately 20% of the global population annually, resulting in hundreds of thousands of deaths. While there are Food and Drug Administration (FDA) approved antiviral drugs for combating the disease, vaccination remains the best strategy for preventing infection. Due to the rapid mutation rate of influenza viruses, vaccine formulations need to be updated every year to provide adequate protection. In recent years, a great amount of effort has been focused on the development of a universal vaccine capable of eliciting broadly protective immunity. While universal influenza vaccines clearly have the best potential to provide long-lasting protection against influenza viruses, the timeline for their development, as well as the true universality of protection they afford, remains uncertain. In an attempt to reduce influenza disease burden while universal vaccines are developed and tested, many groups are working on a variety of strategies to improve the efficacy of the standard seasonal vaccine. This review will highlight the different techniques and technologies that have been, or are being, developed to improve the seasonal vaccination efforts against influenza viruses.
Collapse
|
53
|
Ward BJ, Pillet S, Charland N, Trepanier S, Couillard J, Landry N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum Vaccin Immunother 2018; 14:647-656. [PMID: 29252098 PMCID: PMC5861778 DOI: 10.1080/21645515.2017.1413518] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The search for a test that can predict vaccine efficacy is an important part of any vaccine development program. Although regulators hesitate to acknowledge any test as a true ‘correlate of protection’, there are many precedents for defining ‘surrogate’ assays. Surrogates can be powerful tools for vaccine optimization, licensure, comparisons between products and development of improved products. When such tests achieve ‘reference’ status however, they can inadvertently become barriers to new technologies that do not work the same way as existing vaccines. This is particularly true when these tests are based upon circularly-defined ‘reference’ or, even worse, proprietary reagents. The situation with inactivated influenza vaccines is a good example of this phenomenon. The most frequently used tests to define vaccine-induced immunity are all serologic assays: hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization (MN). The first two, and particularly the HI assay, have achieved reference status and criteria have been established in many jurisdictions for their use in licensing new vaccines and to compare the performance of different vaccines. However, all of these assays are based on biological reagents that are notoriously difficult to standardize and can vary substantially by geography, by chance (i.e. developing reagents in eggs that may not antigenitically match wild-type viruses) and by intention (ie: choosing reagents that yield the most favorable results). This review describes attempts to standardize these assays to improve their performance as surrogates, the dangers of over-reliance on ‘reference’ serologic assays, the ways that manufacturers can exploit the existing regulatory framework to make their products ‘look good’ and the implications of this long-established system for the introduction of novel influenza vaccines.
Collapse
Affiliation(s)
- Brian J Ward
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | - Stephane Pillet
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | | | | | | | | |
Collapse
|
54
|
Wasik MA, Eichwald L, Genzel Y, Reichl U. Cell culture-based production of defective interfering particles for influenza antiviral therapy. Appl Microbiol Biotechnol 2017; 102:1167-1177. [PMID: 29204901 PMCID: PMC5778153 DOI: 10.1007/s00253-017-8660-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
Abstract
Defective interfering particles (DIPs) lack an essential portion of the virus genome, but retain signals for replication and packaging, and therefore, interfere with standard virus (STV) replication. Due to this property, DIPs can be potential antivirals. The influenza A virus DIP DI244, generated during propagation in chicken eggs, has been previously described as a potential candidate for influenza antiviral therapy. As a cell culture-based manufacturing process would be more suitable to fulfill large-scale production needs of an antiviral and enables full process control in closed systems, we investigated options to produce DI244 in the avian cell line AGE1.CR.pIX in chemically defined suspension culture. With a DI244 fraction of 55.8% compared to STV, the highest DI244 yield obtained from 50 million cells was 4.6 × 109 vRNA copies/mL at 12 h post infection. However, other defective genomes were also detected. Since these additionally produced defective particles are non-infectious, they might be still useful in antiviral therapies. In case they would interfere with quality of the final product, we examined the impact of virus seeds and selected process parameters on DI244 yield and contamination level with other defective particles. With a DI244 fraction of 5.5%, the yield obtained was 1.7 × 108 vRNA copies/mL but now without additional defective genomes. Although the DI244 yield might be decreased in this case, such controlled manufacturing conditions are not available in chicken eggs. Overall, the application of these findings can support design and optimization of a cell culture-based production process for DIPs to be used as antivirals.
Collapse
Affiliation(s)
- Milena A Wasik
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany.
| | - Luca Eichwald
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
55
|
Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: A review. Vaccine 2017; 36:5350-5357. [PMID: 28774561 PMCID: PMC5792371 DOI: 10.1016/j.vaccine.2017.07.062] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
At the current time, the field of vaccinology remains empirical in many respects. Vaccine development, vaccine immunogenicity, and vaccine efficacy have, for the most part, historically been driven by an empiric “isolate-inactivate-inject” paradigm. In turn, a population-level public health paradigm of “the same dose for everyone for every disease” model has been the normative thinking in regard to prevention of vaccine-preventable infectious diseases. In addition, up until recently, no vaccines had been designed specifically to overcome the immunosenescence of aging, consistent with a post-WWII mentality of developing vaccines and vaccine programs for children. It is now recognized that the current lack of knowledge concerning how immune responses to vaccines are generated is a critical barrier to understanding poor vaccine responses in the elderly and in immunoimmaturity, discovery of new correlates of vaccine immunogenicity (vaccine response biomarkers), and a directed approach to new vaccine development. The new fields of vaccinomics and adversomics provide models that permit global profiling of the innate, humoral, and cellular immune responses integrated at a systems biology level. This has advanced the science beyond that of reductionist scientific approaches by revealing novel interactions between and within the immune system and other biological systems (beyond transcriptional level), which are critical to developing “downstream” adaptive humoral and cellular responses to infectious pathogens and vaccines. Others have applied systems level approaches to the study of antibody responses (a.k.a. “systems serology”), [1] high-dimensional cell subset immunophenotyping through CyTOF, [2,3] and vaccine induced metabolic changes [4]. In turn, this knowledge is being utilized to better understand the following: identifying who is at risk for which infections; the level of risk that exists regarding poor immunogenicity and/or serious adverse events; and the type or dose of vaccine needed to fully protect an individual. In toto, such approaches allow for a personalized approach to the practice of vaccinology, analogous to the substantial inroads that individualized medicine is playing in other fields of human health and medicine. Herein we briefly review the field of vaccinomics, adversomics, and personalized vaccinology.
Collapse
Affiliation(s)
- G A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - I G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - R B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
56
|
Yi E, Oh J, Giao NQ, Oh S, Park SH. Enhanced production of enveloped viruses in BST-2-deficient cell lines. Biotechnol Bioeng 2017; 114:2289-2297. [PMID: 28498621 DOI: 10.1002/bit.26338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 05/07/2017] [Indexed: 11/09/2022]
Abstract
Despite all the advantages that cell-cultured influenza vaccines have over egg-based influenza vaccines, the inferior productivity of cell-culture systems is a major drawback that must be addressed. BST-2 (tetherin) is a host restriction factor which inhibits budding-out of various enveloped viruses from infected host cells. We developed BST-2-deficient MDCK and Vero cell lines to increase influenza virus release in cell culture. BST-2 gene knock-out resulted in increased release of viral particles into the culture medium, by at least 2-fold and up to 50-fold compared to release from wild-type counterpart cells depending on cell line and virus type. The effect was not influenza virus/MDCK/Vero-specific, but was also present in a broad range of host cells and virus families; we observed similar results in murine, human, canine, and monkey cell lines with viruses including MHV-68 (Herpesviridae), influenza A virus (Orthomyxoviridae), porcine epidemic diarrhea virus (Coronaviridae), and vaccinia virus (Poxviridae). Our results suggest that the elimination of BST-2 expression in virus-producing cell lines can enhance the production of viral vaccines. Biotechnol. Bioeng.2017;114: 2289-2297. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eunbi Yi
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,ImmunoMax Co., Ltd, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Jinsoo Oh
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ngoc Q Giao
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soohwan Oh
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Se-Ho Park
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
57
|
Kang K, Han S, Hong T, Jeon S, Paek J, Kang JH, Yim DS. Immunogenicity and Safety of Trivalent Split Influenza Vaccine in Healthy Korean Adults with Low Pre-Existing Antibody Levels: An Open Phase I Trial. Yonsei Med J 2016; 57:1354-60. [PMID: 27593862 PMCID: PMC5011266 DOI: 10.3349/ymj.2016.57.6.1354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/02/2022] Open
Abstract
PURPOSE A phase I clinical trial was conducted to evaluate the immunogenicity and safety of newly developed egg-cultivated trivalent inactivated split influenza vaccine (TIV) in Korea. MATERIALS AND METHODS The TIV was administered to 43 healthy male adults. Subjects with high pre-existing titers were excluded in a screening step. Immune response was measured by a hemagglutination inhibition (HI) assay. RESULTS The seroprotection rates against A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2) and B/Brisbane/60/2009 were 74.42% [95% confidence interval (CI): 61.38-87.46], 72.09% (95% CI: 58.69-85.50), and 86.05% (95% CI: 75.69-96.40), respectively. Calculated seroconversion rates were 74.42% (95% CI: 61.38-87.46), 74.42% (95% CI: 61.38-87.46), and 79.07% (95% CI: 66.91-91.23), respectively. There were 25 episodes of solicited local adverse events in 21 subjects (47.73%), 21 episodes of solicited general adverse events in 16 subjects (36.36%) and 5 episodes of unsolicited adverse events in 5 subjects (11.36%). All adverse events were grade 1 or 2 and disappeared within three days. CONCLUSION The immunogenicity and safety of TIV established in this phase I trial are sufficient to plan a larger scale clinical trial.
Collapse
Affiliation(s)
- Kyuri Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seunghoon Han
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Taegon Hong
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sangil Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeongki Paek
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Han Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Seok Yim
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
58
|
Diez-Domingo J, de Martino M, Lopez JGS, Zuccotti GV, Icardi G, Villani A, Moreno-Perez D, Hernández MM, Aldeán JÁ, Mateen AA, Enweonye I, de Rooij R, Chandra R. Safety and tolerability of cell culture-derived and egg-derived trivalent influenza vaccines in 3 to <18-year-old children and adolescents at risk of influenza-related complications. Int J Infect Dis 2016; 49:171-8. [PMID: 27343983 DOI: 10.1016/j.ijid.2016.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This descriptive, non-comparative, phase III study evaluated the safety and tolerability of cell culture-derived (TIVc) and egg-derived (TIV) seasonal influenza vaccines in children at risk of influenza-related complications. METHODS Four hundred and thirty subjects were randomized 2:1 to TIVc or TIV. Subjects aged 3 to <9 years received one dose (if previously vaccinated, n=89) or two doses (if not previously vaccinated, n=124) of the study vaccines; the 9 to <18-year-olds (n=213) received one dose. Reactogenicity was assessed for 7 days after vaccination; safety was monitored for 6 months. RESULTS After any vaccination, the most frequently reported solicited local adverse event (AE) was tenderness/pain (TIVc 44%, 66%, 53% and TIV 56%, 51%, 65% in the age groups 3 to <6 years, 6 to <9 years, and 9 to <18 years, respectively) and the systemic AE was irritability (22% TIVc, 24% TIV) in 3 to <6-year-olds and headache in 6 to <9-year-olds (20% TIVc, 13% TIV) and 9 to <18-year-olds (21% TIVc, 26% TIV). There were no cases of severe fever (≥40°C). No vaccine-related serious AEs were noted. New onset of chronic disease was reported in ≤1% of subjects. CONCLUSION TIVc and TIV had acceptable tolerability and similar safety profiles in at-risk children (NCT01998477).
Collapse
Affiliation(s)
| | | | | | - Gian Vincenzo Zuccotti
- Department of Paediatrics, Children Hospital V. Buzzi, University of Milan, Milan, Italy
| | - Giancarlo Icardi
- Department of Health Sciences, University of Genoa and I.R.C.C.S. University Hospital, San Martino-IST National Institute for Cancer Research, Genoa, Italy
| | - Alberto Villani
- Department of General Paediatrics and Infectious Diseases, Bambino Gesù Children Hospital, Rome, Italy
| | | | | | | | - Ahmed Abdul Mateen
- Novartis Pharmaceuticals Canada Inc., 385, Bouchard Blvd, Dorval, Quebec H9S 1A9, Canada.
| | | | | | - Richa Chandra
- Novartis Vaccines and Diagnostics Inc., Cambridge, Massachusetts, USA
| |
Collapse
|