51
|
Jang SH, Kim SH, Kim OR, Byun WM, Kim MS, Seo JP, Chang MC. Cingulum injury in patients with diffuse axonal injury: a diffusion tensor imaging study. Neurosci Lett 2013; 543:47-51. [PMID: 23562507 DOI: 10.1016/j.neulet.2013.02.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/22/2022]
Abstract
Accurate assessment of the cingulum is difficult, because it is a long neural tract that extends from the orbitofrontal cortex to the medial temporal lobe. We divided the cingulum into five parts and investigated changes caused by injury in these regions in patients with diffuse axonal injury (DAI) using diffusion tensor tractography (DTT). Twenty-one patients with DAI and 21 control subjects were recruited. The cingulum was divided into; the anterior, superior (the anterior and posterior portions), posterior, and inferior regions. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), and tract number were measured in each region. FA values and tract numbers in the patient group were lower in the anterior superior cingulum than in controls (p<0.05); whereas the ADC values in the patient group were higher in the anterior and posterior superior cingulum than in controls (p<0.05). In the superior cingulum, increases in the ADC values of the anterior portion (Δ8.1%) were higher than those of the posterior portion (Δ5.5%). We found that the superior cingulum was injured in patients with DAI, and that the anterior portion of the superior cingulum was more injured than the posterior portion. Consequently, the superior cingulum appears to be a vulnerable area and the anterior superior cingulum appears more vulnerable than the posterior superior cingulum in DAI.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
52
|
Hylin MJ, Orsi SA, Zhao J, Bockhorst K, Perez A, Moore AN, Dash PK. Behavioral and histopathological alterations resulting from mild fluid percussion injury. J Neurotrauma 2013; 30:702-15. [PMID: 23301501 DOI: 10.1089/neu.2012.2630] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The majority of people who sustain a traumatic brain injury (TBI) have an injury that can be classified as mild (often referred to as concussion). Although head CT scans for most subjects who have sustained a mild TBI (mTBI) are negative, these persons may still suffer from neurocognitive and neurobehavioral deficits. In order to expedite pre-clinical research and develop therapies, there is a need for well-characterized animal models of mTBI that reflect the neurological, neurocognitive, and pathological changes seen in human patients. In the present study, we examined the motor, cognitive, and histopathological changes resulting from 1.0 and 1.5 atmosphere (atm) overpressure fluid percussion injury (FPI). Both 1.0 and 1.5 atm FPI injury caused transient suppression of acute neurological functions, but did not result in visible brain contusion. Animals injured with 1.0 atm FPI did not show significant motor, vestibulomotor, or learning and memory deficits. In contrast, 1.5 atm injury caused transient motor disturbances, and resulted in a significant impairment of spatial learning and short-term memory. In addition, 1.5 atm FPI caused a marked reduction in cerebral perfusion at the site of injury that lasted for several hours. Consistent with previous studies, 1.5 atm FPI did not cause visible neuronal loss in the hippocampus or in the neocortex. However, a robust inflammatory response (as indicated by enhanced GFAP and Iba1 immunoreactivity) in the corpus callosum and the thalamus was observed. Examination of fractional anisotropy color maps after diffusion tensor imaging (DTI) revealed a significant decrease of FA values in the cingulum, an area found to have increased silver impregnation, suggesting axonal injury. Increased silver impregnation was also observed in the corpus callosum, and internal and external capsules. These findings are consistent with the deficits and pathologies associated with mild TBI in humans, and support the use of mild FPI as a model to evaluate putative therapeutic options.
Collapse
Affiliation(s)
- Michael J Hylin
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas 77225, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury. PLoS One 2013; 8:e55447. [PMID: 23405151 PMCID: PMC3566196 DOI: 10.1371/journal.pone.0055447] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 01/02/2013] [Indexed: 11/22/2022] Open
Abstract
Purpose To compare venous drainage patterns and associated intracranial hydrodynamics between subjects who experienced mild traumatic brain injury (mTBI) and age- and gender-matched controls. Methods Thirty adult subjects (15 with mTBI and 15 age- and gender-matched controls) were investigated using a 3T MR scanner. Time since trauma was 0.5 to 29 years (mean 11.4 years). A 2D-time-of-flight MR-venography of the upper neck was performed to visualize the cervical venous vasculature. Cerebral venous drainage through primary and secondary channels, and intracranial compliance index and pressure were derived using cine-phase contrast imaging of the cerebral arterial inflow, venous outflow, and the craniospinal CSF flow. The intracranial compliance index is the defined as the ratio of maximal intracranial volume and pressure changes during the cardiac cycle. MR estimated ICP was then obtained through the inverse relationship between compliance and ICP. Results Compared to the controls, subjects with mTBI demonstrated a significantly smaller percentage of venous outflow through internal jugular veins (60.9±21% vs. controls: 76.8±10%; p = 0.01) compensated by an increased drainage through secondary veins (12.3±10.9% vs. 5.5±3.3%; p<0.03). Mean intracranial compliance index was significantly lower in the mTBI cohort (5.8±1.4 vs. controls 8.4±1.9; p<0.0007). Consequently, MR estimate of intracranial pressure was significantly higher in the mTBI cohort (12.5±2.9 mmHg vs. 8.8±2.0 mmHg; p<0.0007). Conclusions mTBI is associated with increased venous drainage through secondary pathways. This reflects higher outflow impedance, which may explain the finding of reduced intracranial compliance. These results suggest that hemodynamic and hydrodynamic changes following mTBI persist even in the absence of clinical symptoms and abnormal findings in conventional MR imaging.
Collapse
|
54
|
Wilde EA, Ayoub KW, Bigler ED, Chu ZD, Hunter JV, Wu TC, McCauley SR, Levin HS. Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval. Brain Imaging Behav 2013; 6:404-16. [PMID: 22399284 DOI: 10.1007/s11682-012-9150-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in children, yet little is known regarding the pattern of TBI-related microstructural change and its impact on subsequent development. Diffusion tensor imaging (DTI) was used to examine between-group differences at two time points (planned intervals of 3 months and 18 months post-injury) and within-group longitudinal change in a group of children and adolescents aged 7-17 years with moderate-to-severe TBI (n = 20) and a comparison group of children with orthopedic injury (OI) (n = 21). In the 3- and 18-month cross-sectional analyses, tract-based spatial statistics (TBSS) generally revealed decreased fractional anisotropy (FA) and increased apparent diffusion coefficient (ADC) in the TBI group in regions of frontal, temporal, parietal, and occipital white matter as well as several deep subcortical structures, though areas of FA decrease were more prominent at the 3-month assessment, and areas of ADC increase were more prominent at the 18 month assessment, particularly in the frontal regions. In terms of the within-group changes over time, the OI group demonstrated primarily diffuse increases in FA over time, consistent with previous findings of DTI-measured white matter developmental change. The TBI group demonstrated primarily regions of FA decrease and ADC increase over time, consistent with presumed continued degenerative change, though regions of ADC decrease were also appreciated. These results suggest that TBI-related microstructural changes are dynamic in children and continue until at least 18 months post-injury. Understanding the course of these changes in DTI metrics may be important in TBI for facilitating advances in management and intervention.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Physical Medicine and Rehabilitation Alliance, Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Hulkower MB, Poliak DB, Rosenbaum SB, Zimmerman ME, Lipton ML. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am J Neuroradiol 2013; 34:2064-74. [PMID: 23306011 DOI: 10.3174/ajnr.a3395] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY The past decade has seen an increase in the number of articles reporting the use of DTI to detect brain abnormalities in patients with traumatic brain injury. DTI is well-suited to the interrogation of white matter microstructure, the most important location of pathology in TBI. Additionally, studies in animal models have demonstrated the correlation of DTI findings and TBI pathology. One hundred articles met the inclusion criteria for this quantitative literature review. Despite significant variability in sample characteristics, technical aspects of imaging, and analysis approaches, the consensus is that DTI effectively differentiates patients with TBI and controls, regardless of the severity and timeframe following injury. Furthermore, many have established a relationship between DTI measures and TBI outcomes. However, the heterogeneity of specific outcome measures used limits interpretation of the literature. Similarly, few longitudinal studies have been performed, limiting inferences regarding the long-term predictive utility of DTI. Larger longitudinal studies, using standardized imaging, analysis approaches, and outcome measures will help realize the promise of DTI as a prognostic tool in the care of patients with TBI.
Collapse
|
56
|
Wilde EA, McCauley SR, Barnes A, Wu TC, Chu Z, Hunter JV, Bigler ED. Serial measurement of memory and diffusion tensor imaging changes within the first week following uncomplicated mild traumatic brain injury. Brain Imaging Behav 2012; 6:319-28. [DOI: 10.1007/s11682-012-9174-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Hunter JV, Wilde EA, Tong KA, Holshouser BA. Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma 2012; 29:654-71. [PMID: 21787167 PMCID: PMC3289847 DOI: 10.1089/neu.2011.1906] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.
Collapse
Affiliation(s)
- Jill V Hunter
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
58
|
Iverson GL, Hakulinen U, Wäljas M, Dastidar P, Lange RT, Soimakallio S, Öhman J. To exclude or not to exclude: white matter hyperintensities in diffusion tensor imaging research. Brain Inj 2012; 25:1325-32. [PMID: 22077537 DOI: 10.3109/02699052.2011.608409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A practical methodological issue for diffusion tensor imaging (DTI) researchers is determining what to do about incidental findings, such as white matter hyperintensities (WMHI). The purpose of this study was to compare healthy control subjects with or without WMHIs on whole brain DTI. METHOD Participants were 30 subjects (age = 37.7, SD = 11.3, Range = 18-60; 70% female) who had no known developmental, general medical, neurological or psychiatric condition that could have had an adverse affect on brain morphology. RESULTS MRI (3 Tesla) revealed, at minimum, a WMHI in eight subjects (26.7%). Fractional anisotropy (FA) was calculated for 19 regions of interest (ROI). Frequency distributions of FA scores for the 19 ROIs were calculated. The 10th percentile for each ROI was selected as a cut-off score. Having four or more low FA scores occurred in 16.7%. More subjects with incidental findings met criterion for low FA scores (37.5%), compared to 9.1% of subjects with no findings. When subjects with minor WMHIs were retained and only those with multiple incidental findings were excluded, 8.3% of the retained subjects met criterion for low FA scores compared to 50.0% of the excluded subjects. CONCLUSIONS The decision to include or exclude subjects who have incidental findings can influence the results of a study.
Collapse
Affiliation(s)
- Grant L Iverson
- British Columbia Mental Health & Addiction Services, Vancouver, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|
59
|
Longitudinal changes in cortical thickness in children after traumatic brain injury and their relation to behavioral regulation and emotional control. Int J Dev Neurosci 2012; 30:267-76. [PMID: 22266409 DOI: 10.1016/j.ijdevneu.2012.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to assess patterns of cortical development over time in children who had sustained traumatic brain injury (TBI) as compared to children with orthopedic injury (OI), and to examine how these patterns related to emotional control and behavioral dysregulation, two common post-TBI symptoms. Cortical thickness was measured at approximately 3 and 18 months post-injury in 20 children aged 8.2-17.5 years who had sustained moderate-to-severe closed head injury and 21 children aged 7.4-16.7 years who had sustained OI. At approximately 3 months post-injury, the TBI group evidenced decreased cortical thickness bilaterally in aspects of the superior frontal, dorsolateral frontal, orbital frontal, and anterior cingulate regions compared to the control cohort, areas of anticipated vulnerability to TBI-induced change. At 18 months post-injury, some of the regions previously evident at 3 months post-injury remained significantly decreased in the TBI group, including bilateral frontal, fusiform, and lingual regions. Additional regions of significant cortical thinning emerged at this time interval (bilateral frontal regions and fusiform gyrus and left parietal regions). However, differences in other regions appeared attenuated (no longer areas of significant cortical thinning) by 18 months post-injury including large bilateral regions of the medial aspects of the frontal lobes and anterior cingulate. Cortical thinning within the OI group was evident over time in dorsolateral frontal and temporal regions bilaterally and aspects of the left medial frontal and precuneus, and right inferior parietal regions. Longitudinal analyses within the TBI group revealed decreases in cortical thickness over time in numerous aspects throughout the right and left cortical surface, but with notable "sparing" of the right and left frontal and temporal poles, the medial aspects of both the frontal lobes, the left fusiform gyrus, and the cingulate bilaterally. An analysis of longitudinal changes in cortical thickness over time (18 months-3 months) in the TBI versus OI group demonstrated regions of relative cortical thinning in the TBI group in bilateral superior parietal and right paracentral regions, but relative cortical thickness increases in aspects of the medial orbital frontal lobes and bilateral cingulate and in the right lateral orbital frontal lobe. Finally, findings from analyses correlating the longitudinal cortical thickness changes in TBI with symptom report on the Emotional Control subscale of the Behavior Rating Inventory of Executive Function (BRIEF) demonstrated a region of significant correlation in the right medial frontal and right anterior cingulate gyrus. A region of significant correlation between the longitudinal cortical thickness changes in the TBI group and symptom report on the Behavioral Regulation Index was also seen in the medial aspect of the left frontal lobe. Longitudinal analyses of cortical thickness highlight an important deviation from the expected pattern of developmental change in children and adolescents with TBI, particularly in the medial frontal lobes, where typical patterns of thinning fail to occur over time. Regions which fail to undergo expected cortical thinning in the medial aspects of the frontal lobes correlate with difficulties in emotional control and behavioral regulation, common problems for youth with TBI. Examination of post-TBI brain development in children may be critical to identification of children that may be at risk for persistent problems with executive functioning deficits and the development of interventions to address these issues.
Collapse
|
60
|
Gorman S, Barnes MA, Swank PR, Prasad M, Ewing-Cobbs L. The effects of pediatric traumatic brain injury on verbal and visual-spatial working memory. J Int Neuropsychol Soc 2012; 18:29-38. [PMID: 22014162 PMCID: PMC3707395 DOI: 10.1017/s1355617711001251] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to investigate the effects of pediatric traumatic brain injury (TBI) on verbal and visual-spatial working memory (WM). WM tasks examined memory span through recall of the last item of a series of stimuli. Additionally, both verbal and visual-spatial tests had a dual-task condition assessing the effect of increasing demands on the central executive (CE). Inhibitory control processes in verbal WM were examined through intrusion errors. The TBI group (n = 73) performed more poorly on verbal and visual-spatial WM tasks than orthopedic-injured children (n = 30) and non-injured children (n = 40). All groups performed more poorly on the dual-task conditions, reflecting an effect of increasing CE load. This effect was not greater for the TBI group. There were no group differences in intrusion errors on the verbal WM task, suggesting that problems in WM experienced by children with TBI were not primarily due to difficulties in inhibitory control. Finally, injury-related characteristics, namely days to follow commands, accounted for significant variance in WM performance, after controlling for relevant demographic variables. Findings suggest that WM impairments in TBI are general rather than modality-specific and that severity indices measured over time are better predictors of WM performance than those taken at a single time point.
Collapse
Affiliation(s)
| | - Marcia A. Barnes
- Department of Pediatrics and Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, Texas
| | - Paul R. Swank
- Department of Pediatrics and Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mary Prasad
- Department of Pediatrics and Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, Texas
| | - Linda Ewing-Cobbs
- Department of Pediatrics and Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
61
|
Porto L, Jurcoane A, Magerkurth J, Althaus J, Zanella F, Hattingen E, Kieslich M, Kieslich M. Morphometry and diffusion MR imaging years after childhood traumatic brain injury. Eur J Paediatr Neurol 2011; 15:493-501. [PMID: 21783392 DOI: 10.1016/j.ejpn.2011.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/14/2011] [Accepted: 06/19/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Our goal was to detect possible unrecognized injury in cerebral white matter (WM) in adult survivors of traumatic brain injury (TBI) during childhood, who showed no detectable axonal injury or chronic contusion on late conventional MRI. MATERIAL AND METHODS We used voxel-based morphometry (VBM) to detect subtle structural changes in brain morphology and diffusion-tensor imaging (DTI) to non-invasively probe WM integrity. By means of VBM and DTI we examined a group of 12 adult patients who suffered from childhood closed head injury without axonal injury on late conventional MRI. RESULTS Patients sustained complicated mild or moderate-to-severe TBI with a mean of 7 points based on the Glasgow Coma Scale. The mean time after trauma was 19 years (range 7-31 years). For VBM, group comparisons of segmented T1-weighted grey matter and WM images were performed, while for DTI we compared the fractional anisotropy and mean diffusivity (MD) between the groups. Patients presented with higher MD in the right cerebral white matter, bilaterally in the forceps major and in the body and splenium of the corpus callosum. These findings were supported by VBM, which showed reduced WM volume bilaterally, mainly along the callosal splenium. CONCLUSION Our results indicate that persistent focal long-term volume reduction and underlying WM structural changes may occur after TBI during childhood and that their effects extend into adulthood. Normal late conventional MR findings after childhood TBI do not rule out non-apparent axonal injury.
Collapse
Affiliation(s)
- Luciana Porto
- Neuroradiology, Klinikum Johann Wolfgang Goethe Universität, Schleusenweg 2-16, D-60528 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Henry LC, Tremblay J, Tremblay S, Lee A, Brun C, Lepore N, Theoret H, Ellemberg D, Lassonde M. Acute and Chronic Changes in Diffusivity Measures after Sports Concussion. J Neurotrauma 2011; 28:2049-59. [DOI: 10.1089/neu.2011.1836] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Luke C. Henry
- Département de Psychology, Université de Montréal, Montréal, Québec, Canada
| | | | - Sebastien Tremblay
- Département de Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Agatha Lee
- Laboratory of Neuroimaging, University of California–Los Angeles, Los Angeles, California
| | - Caroline Brun
- Radiology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natasha Lepore
- Department of Neurology, University of Southern California, Los Angeles, California
| | - Hugo Theoret
- Département de Psychology, Université de Montréal, Montréal, Québec, Canada
- Hôpital Ste. Justine, Montréal, Québec, Canada
| | - Dave Ellemberg
- Département de Psychology, Université de Montréal, Montréal, Québec, Canada
- Département de Kinisiologie, Université de Montréal, Montréal, Québec, Canada
| | - Maryse Lassonde
- Département de Psychology, Université de Montréal, Montréal, Québec, Canada
- Hôpital Ste. Justine, Montréal, Québec, Canada
| |
Collapse
|
63
|
Scheibel RS, Newsome MR, Wilde EA, McClelland MM, Hanten G, Krawczyk DC, Cook LG, Chu ZD, Vásquez AC, Yallampalli R, Lin X, Hunter JV, Levin HS. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury. Soc Neurosci 2011; 6:582-98. [PMID: 21777109 DOI: 10.1080/17470919.2011.588844] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions.
Collapse
|
64
|
Predicting behavioral deficits in pediatric traumatic brain injury through uncinate fasciculus integrity. J Int Neuropsychol Soc 2011; 17:663-73. [PMID: 21492497 PMCID: PMC3707392 DOI: 10.1017/s1355617711000464] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Behavioral dysregulation is a common and detrimental consequence of traumatic brain injury (TBI) in children that contributes to poor academic achievement and deficits in social development. Unfortunately, behavioral dysregulation is difficult to predict from either injury severity or early neuropsychological evaluation. The uncinate fasciculus (UF) connects orbitofrontal and anterior temporal lobes, which are commonly implicated in emotional and behavioral regulation. Using probabilistic diffusion tensor tractography (DTT), we examined the relationship between the integrity of the UF 3 months post-injury and ratings of executive functions 12 months post-injury in children with moderate to severe TBI and a comparison group with orthopedic injuries. As expected, fractional anisotropy of the UF was lower in the TBI group relative to the orthopedic injury group. DTT metrics from the UF served as a biomarker and predicted ratings of emotional and behavior regulation, but not metacognition. In contrast, the Glasgow Coma Scale score was not related to either UF integrity or to executive function outcomes. Neuroanatomical biomarkers like the uncinate fasciculus may allow for early identification of behavioral problems and allow for investigation into the relationship of frontotemporal networks to brain-behavior relationships.
Collapse
|
65
|
Bibliography. Obstetric and gynaecological anesthesia. Current world literature. Curr Opin Anaesthesiol 2011; 24:354-6. [PMID: 21637164 DOI: 10.1097/aco.0b013e328347b491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Mac Donald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ, Shimony JS, Snyder AZ, Raichle ME, Witherow JR, Fang R, Flaherty SF, Brody DL. Detection of blast-related traumatic brain injury in U.S. military personnel. N Engl J Med 2011; 364:2091-100. [PMID: 21631321 PMCID: PMC3146351 DOI: 10.1056/nejmoa1008069] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectable intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P=0.002), and in the right orbitofrontal white matter (P=0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.).
Collapse
|
67
|
Wilde EA, Newsome MR, Bigler ED, Pertab J, Merkley TL, Hanten G, Scheibel RS, Li X, Chu Z, Yallampalli R, Hunter JV, Levin HS. Brain imaging correlates of verbal working memory in children following traumatic brain injury. Int J Psychophysiol 2011; 82:86-96. [PMID: 21565227 DOI: 10.1016/j.ijpsycho.2011.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/13/2011] [Accepted: 04/19/2011] [Indexed: 11/19/2022]
Abstract
Neural correlates of working memory (WM) based on the Sternberg Item Recognition Task (SIRT) were assessed in 40 children with moderate-to-severe traumatic brain injury (TBI) compared to 41 demographically-comparable children with orthopedic injury (OI). Multiple magnetic resonance imaging (MRI) methods assessed structural and functional brain correlates of WM, including volumetric and cortical thickness measures on all children; functional MRI (fMRI) and diffusion tensor imaging (DTI) were performed on a subset of children. Confirming previous findings, children with TBI had decreased cortical thickness and volume as compared to the OI group. Although the findings did not confirm the predicted relation of decreased frontal lobe cortical thickness and volume to SIRT performance, left parietal volume was negatively related to reaction time (RT). In contrast, cortical thickness was positively related to SIRT accuracy and RT in the OI group, particularly in aspects of the frontal and parietal lobes, but these relationships were less robust in the TBI group. We attribute these findings to disrupted fronto-parietal functioning in attention and WM. fMRI results from a subsample demonstrated fronto-temporal activation in the OI group, and parietal activation in the TBI group, and DTI findings reflected multiple differences in white matter tracts that engage fronto-parietal networks. Diminished white matter integrity of the frontal lobes and cingulum bundle as measured by DTI was associated with longer RT on the SIRT. Across modalities, the cingulate emerged as a common structure related to performance after TBI. These results are discussed in terms of how different imaging modalities tap different types of pathologic correlates of brain injury and their relationship with WM.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Christidi F, Bigler ED, McCauley SR, Schnelle KP, Merkley TL, Mors MB, Li X, Macleod M, Chu Z, Hunter JV, Levin HS, Clifton GL, Wilde EA. Diffusion tensor imaging of the perforant pathway zone and its relation to memory function in patients with severe traumatic brain injury. J Neurotrauma 2011; 28:711-25. [PMID: 21381986 DOI: 10.1089/neu.2010.1644] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on the importance of the perforant pathway (PP) for normal hippocampal function, the vulnerability of temporal structures, and significant memory impairment in patients with traumatic brain injury (TBI), we investigated in vivo changes in the PP zone, hippocampus, and temporal lobe white and gray matter using diffusion tensor imaging (DTI) and volumetric analysis, and any specific relations with memory performance (Verbal Selective Reminding Test, Rey-Osterrieth Complex Figure Test), in 14 patients with severe TBI. Compared to a demographically-similar control group, our patients had significantly decreased fractional anisotropy (FA) and higher apparent diffusion coefficient (ADC) for the PP zone bilaterally, and higher ADC bilaterally in the hippocampus. Volumetric analysis revealed significantly decreased volumes in both hippocampi and temporal gray matter bilaterally. Consistent long-term retrieval (CLTR) and delayed recall were significantly related to (1) right and left PP zone ADC, (2) left hippocampus ADC, and (3) left hippocampal volume. Nonverbal memory (immediate and delayed recall) was significantly associated with (1) right and left PP zone ADC, (2) left hippocampal volume, and (3) gray (immediate recall) and white (immediate recall, bilaterally; delayed recall, left) matter temporal volumes. Advanced neuroimaging analysis can detect in vivo changes in the PP zone and temporal structures in patients with severe TBI, with these changes being highly associated with memory impairment.
Collapse
Affiliation(s)
- Foteini Christidi
- Postgraduate Program of Clinical Neuropsychology, Medical School of National and Kapodistrian University, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
McCauley SR, Wilde EA, Bigler ED, Chu Z, Yallampalli R, Oni MB, Wu TC, Ramos MA, Pedroza C, Vásquez AC, Hunter JV, Levin HS. Diffusion tensor imaging of incentive effects in prospective memory after pediatric traumatic brain injury. J Neurotrauma 2011; 28:503-16. [PMID: 21250917 DOI: 10.1089/neu.2010.1555] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Few studies exist investigating the brain-behavior relations of event-based prospective memory (EB-PM) impairments following traumatic brain injury (TBI). To address this, children with moderate-to-severe TBI performed an EB-PM test with two motivational enhancement conditions and underwent concurrent diffusion tensor imaging (DTI) at 3 months post-injury. Children with orthopedic injuries (OI; n=37) or moderate-to-severe TBI (n=40) were contrasted. Significant group differences were found for fractional anisotropy (FA) and apparent diffusion coefficient for orbitofrontal white matter (WM), cingulum bundles, and uncinate fasciculi. The FA of these WM structures in children with TBI significantly correlated with EB-PM performance in the high, but not the low motivation condition. Regression analyses within the TBI group indicated that the FA of the left cingulum bundle (p=0.003), left orbitofrontal WM (p<0.02), and left (p<0.02) and right (p<0.008) uncinate fasciculi significantly predicted EB-PM performance in the high motivation condition. We infer that the cingulum bundles, orbitofrontal WM, and uncinate fasciculi are important WM structures mediating motivation-based EB-PM responses following moderate-to-severe TBI in children.
Collapse
Affiliation(s)
- Stephen R McCauley
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and University of Texas-Houston Medical School, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
|