51
|
Lalonde A, Bobić M, Sharp GC, Chamseddine I, Winey B, Paganetti H. Evaluating the effect of setup uncertainty reduction and adaptation to geometric changes on normal tissue complication probability using online adaptive head and neck intensity modulated proton therapy. Phys Med Biol 2023; 68:115018. [PMID: 37164020 PMCID: PMC10351361 DOI: 10.1088/1361-6560/acd433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Objective. To evaluate the impact of setup uncertainty reduction (SUR) and adaptation to geometrical changes (AGC) on normal tissue complication probability (NTCP) when using online adaptive head and neck intensity modulated proton therapy (IMPT).Approach.A cohort of ten retrospective head and neck cancer patients with daily scatter corrected cone-beam CT (CBCT) was studied. For each patient, two IMPT treatment plans were created: one with a 3 mm setup uncertainty robustness setting and one with no explicit setup robustness. Both plans were recalculated on the daily CBCT considering three scenarios: the robust plan without adaptation, the non-robust plan without adaptation and the non-robust plan with daily online adaptation. Online-adaptation was simulated using an in-house developed workflow based on GPU-accelerated Monte Carlo dose calculation and partial spot-intensity re-optimization. Dose distributions associated with each scenario were accumulated on the planning CT, where NTCP models for six toxicities were applied. NTCP values from each scenario were intercompared to quantify the reduction in toxicity risk induced by SUR alone, AGC alone and SUR and AGC combined. Finally, a decision tree was implemented to assess the clinical significance of the toxicity reduction associated with each mechanism.Main results. For most patients, clinically meaningful NTCP reductions were only achieved when SUR and AGC were performed together. In these conditions, total reductions in NTCP of up to 30.48 pp were obtained, with noticeable NTCP reductions for aspiration, dysphagia and xerostomia (mean reductions of 8.25, 5.42 and 5.12 pp respectively). While SUR had a generally larger impact than AGC on NTCP reductions, SUR alone did not induce clinically meaningful toxicity reductions in any patient, compared to only one for AGC alone.SignificanceOnline adaptive head and neck proton therapy can only yield clinically significant reductions in the risk of long-term side effects when combining the benefits of SUR and AGC.
Collapse
Affiliation(s)
- Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- ETH Zürich, Zürich, Switzerland
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
52
|
Zhang L, Holmes JM, Liu Z, Vora SA, Sio TT, Vargas CE, Yu NY, Keole SR, Schild SE, Bues M, Li S, Liu T, Shen J, Wong WW, Liu W. Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy. ARXIV 2023:arXiv:2305.18572v1. [PMID: 37396612 PMCID: PMC10312803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
PURPOSE To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. METHODS PBSPT plans of 103 prostate cancer patients and 83 lung cancer patients previously treated at our institution were included in the study, each with CTs, structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine. For the ablation study, we designed three experiments corresponding to the following three methods: 1) Experiment 1, the conventional region of interest (ROI) method. 2) Experiment 2, the beam mask (generated by raytracing of proton beams) method to improve proton dose prediction. 3) Experiment 3, the sliding window method for the model to focus on local details to further improve proton dose prediction. A fully connected 3D-Unet was adopted as the backbone. Dose volume histogram (DVH) indices, 3D Gamma passing rates, and dice coefficients for the structures enclosed by the iso-dose lines between the predicted and the ground truth doses were used as the evaluation metrics. The calculation time for each proton dose prediction was recorded to evaluate the method's efficiency. RESULTS Compared to the conventional ROI method, the beam mask method improved the agreement of DVH indices for both targets and OARs and the sliding window method further improved the agreement of the DVH indices. For the 3D Gamma passing rates in the target, OARs, and BODY (outside target and OARs), the beam mask method can improve the passing rates in these regions and the sliding window method further improved them. A similar trend was also observed for the dice coefficients. In fact, this trend was especially remarkable for relatively low prescription isodose lines. The dose predictions for all the testing cases were completed within 0.25s.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Jason M. Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Zhengliang Liu
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Sujay A. Vora
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Carlos E. Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Nathan Y. Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Sameer R. Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Sheng Li
- Department of Data Science, University of Virginia, Charlottesville, VA 22903, USA
| | - Tianming Liu
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
53
|
Qiu Z, Olberg S, den Hertog D, Ajdari A, Bortfeld T, Pursley J. Online adaptive planning methods for intensity-modulated radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/accdb2. [PMID: 37068488 PMCID: PMC10637515 DOI: 10.1088/1361-6560/accdb2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Online adaptive radiation therapy aims at adapting a patient's treatment plan to their current anatomy to account for inter-fraction variations before daily treatment delivery. As this process needs to be accomplished while the patient is immobilized on the treatment couch, it requires time-efficient adaptive planning methods to generate a quality daily treatment plan rapidly. The conventional planning methods do not meet the time requirement of online adaptive radiation therapy because they often involve excessive human intervention, significantly prolonging the planning phase. This article reviews the planning strategies employed by current commercial online adaptive radiation therapy systems, research on online adaptive planning, and artificial intelligence's potential application to online adaptive planning.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Business Analytics, University of Amsterdam, The Netherlands
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Sven Olberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Dick den Hertog
- Department of Business Analytics, University of Amsterdam, The Netherlands
| | - Ali Ajdari
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Thomas Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| |
Collapse
|
54
|
Yahya N, Manan HA. Quality of Life and Patient-Reported Outcomes Following Proton Therapy for Oropharyngeal Carcinoma: A Systematic Review. Cancers (Basel) 2023; 15:cancers15082252. [PMID: 37190180 DOI: 10.3390/cancers15082252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Complex anatomy surrounding the oropharynx makes proton therapy (PT), especially intensity-modulated PT (IMPT), a potentially attractive option due to its ability to reduce the volume of irradiated healthy tissues. Dosimetric improvement may not translate to clinically relevant benefits. As outcome data are emerging, we aimed to evaluate the evidence of the quality of life (QOL) and patient-reported outcomes (PROs) following PT for oropharyngeal carcinoma (OC). MATERIALS AND METHODS We searched PubMed and Scopus electronic databases (date: 15 February 2023) to identify original studies on QOL and PROs following PT for OC. We employed a fluid strategy in the search strategy by tracking citations of the initially selected studies. Reports were extracted for information on demographics, main results, and clinical and dose factor correlates. Quality assessment was performed using the NIH's Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. The PRISMA guidelines were followed in the preparation of this report. RESULTS Seven reports were selected, including one from a recently published paper captured from citation tracking. Five compared PT and photon-based therapy, although none were randomized controlled trials. Most endpoints with significant differences favored PT, including xerostomia, cough, need for nutritional supplements, dysgeusia, food taste, appetite, and general symptoms. However, some endpoints favored photon-based therapy (sexual symptoms) or showed no significant difference (e.g., fatigue, pain, sleep, mouth sores). The PROs and QOL improve following PT but do not appear to return to baseline. CONCLUSION Evidence suggests that PT causes less QOL and PRO deterioration than photon-based therapy. Biases due to the non-randomized study design remain obstacles to a firm conclusion. Whether or not PT is cost-effective should be the subject of further investigation.
Collapse
Affiliation(s)
- Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
55
|
Trnkova P, Zhang Y, Toshito T, Heijmen B, Richter C, Aznar MC, Albertini F, Bolsi A, Daartz J, Knopf AC, Bertholet J. A survey of practice patterns for adaptive particle therapy for interfractional changes. Phys Imaging Radiat Oncol 2023; 26:100442. [PMID: 37197154 PMCID: PMC10183663 DOI: 10.1016/j.phro.2023.100442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Background and purpose Anatomical changes may compromise the planned target coverage and organs-at-risk dose in particle therapy. This study reports on the practice patterns for adaptive particle therapy (APT) to evaluate current clinical practice and wishes and barriers to further implementation. Materials and methods An institutional questionnaire was distributed to PT centres worldwide (7/2020-6/2021) asking which type of APT was used, details of the workflow, and what the wishes and barriers to implementation were. Seventy centres from 17 countries participated. A three-round Delphi consensus analysis (10/2022) among the authors followed to define recommendations on required actions and future vision. Results Out of the 68 clinically operational centres, 84% were users of APT for at least one treatment site with head and neck being most common. APT was mostly performed offline with only two online APT users (plan-library). No centre used online daily re-planning. Daily 3D imaging was used for APT by 19% of users. Sixty-eight percent of users had plans to increase their use or change their technique for APT. The main barrier was "lack of integrated and efficient workflows". Automation and speed, reliable dose deformation for dose accumulation and higher quality of in-room volumetric imaging were identified as the most urgent task for clinical implementation of online daily APT. Conclusion Offline APT was implemented by the majority of PT centres. Joint efforts between industry research and clinics are needed to translate innovations into efficient and clinically feasible workflows for broad-scale implementation of online APT.
Collapse
Affiliation(s)
- Petra Trnkova
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Corresponding author.
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Toshiyuki Toshito
- Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus University Medical Center (Erasmus MC), Rotterdam, the Netherlands
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Marianne C. Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Antje C. Knopf
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Medical Engineering and Medical Informatics, School of Life Science FHNW, Muttenz, Switzerland
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
56
|
Bobić M, Lalonde A, Nesteruk KP, Lee H, Nenoff L, Gorissen BL, Bertolet A, Busse PM, Chan AW, Winey BA, Sharp GC, Verburg JM, Lomax AJ, Paganetti H. Large anatomical changes in head-and-neck cancers – a dosimetric comparison of online and offline adaptive proton therapy. Clin Transl Radiat Oncol 2023; 40:100625. [PMID: 37090849 PMCID: PMC10120292 DOI: 10.1016/j.ctro.2023.100625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose This work evaluates an online adaptive (OA) workflow for head-and-neck (H&N) intensity-modulated proton therapy (IMPT) and compares it with full offline replanning (FOR) in patients with large anatomical changes. Methods IMPT treatment plans are created retrospectively for a cohort of eight H&N cancer patients that previously required replanning during the course of treatment due to large anatomical changes. Daily cone-beam CTs (CBCT) are acquired and corrected for scatter, resulting in 253 analyzed fractions. To simulate the FOR workflow, nominal plans are created on the planning-CT and delivered until a repeated-CT is acquired; at this point, a new plan is created on the repeated-CT. To simulate the OA workflow, nominal plans are created on the planning-CT and adapted at each fraction using a simple beamlet weight-tuning technique. Dose distributions are calculated on the CBCTs with Monte Carlo for both delivery methods. The total treatment dose is accumulated on the planning-CT. Results Daily OA improved target coverage compared to FOR despite using smaller target margins. In the high-risk CTV, the median D98 degradation was 1.1 % and 2.1 % for OA and FOR, respectively. In the low-risk CTV, the same metrics yield 1.3 % and 5.2 % for OA and FOR, respectively. Smaller setup margins of OA reduced the dose to all OARs, which was most relevant for the parotid glands. Conclusion Daily OA can maintain prescription doses and constraints over the course of fractionated treatment, even in cases of large anatomical changes, reducing the necessity for manual replanning in H&N IMPT.
Collapse
|
57
|
Huiskes M, Astreinidou E, Kong W, Breedveld S, Heijmen B, Rasch C. Dosimetric impact of adaptive proton therapy in head and neck cancer - A review. Clin Transl Radiat Oncol 2023; 39:100598. [PMID: 36860581 PMCID: PMC9969246 DOI: 10.1016/j.ctro.2023.100598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Background Intensity Modulated Proton Therapy (IMPT) in head and neck cancer (HNC) is susceptible to anatomical changes and patient set-up inaccuracies during the radiotherapy course, which can cause discrepancies between planned and delivered dose. The discrepancies can be counteracted by adaptive replanning strategies. This article reviews the observed dosimetric impact of adaptive proton therapy (APT) and the timing to perform a plan adaptation in IMPT in HNC. Methods A literature search of articles published in PubMed/MEDLINE, EMBASE and Web of Science from January 2010 to March 2022 was performed. Among a total of 59 records assessed for possible eligibility, ten articles were included in this review. Results Included studies reported on target coverage deterioration in IMPT plans during the RT course, which was recovered with the application of an APT approach. All APT plans showed an average improved target coverage for the high- and low-dose targets as compared to the accumulated dose on the planned plans. Dose improvements up to 2.5 Gy (3.5 %) and up to 4.0 Gy (7.1 %) in the D98 of the high- and low dose targets were observed with APT. Doses to the organs at risk (OARs) remained equal or decreased slightly after APT was applied. In the included studies, APT was largely performed once, which resulted in the largest target coverage improvement, but eventual additional APT improved the target coverage further. There is no data showing what is the most appropriate timing for APT. Conclusion APT during IMPT for HNC patients improves target coverage. The largest improvement in target coverage was found with a single adaptive intervention, and an eventual second or more frequent APT application improved the target coverage further. Doses to the OARs remained equal or decreased slightly after applying APT. The most optimal timing for APT is yet to be determined.
Collapse
Affiliation(s)
- Merle Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eleftheria Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wens Kong
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Coen Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| |
Collapse
|
58
|
Chang S, Liu G, Zhao L, Zheng W, Yan D, Chen P, Li X, Deraniyagala R, Stevens C, Grills I, Chinnaiyan P, Li X, Ding X. Introduce a rotational robust optimization framework for spot-scanning proton arc (SPArc) therapy. Phys Med Biol 2022; 68. [PMID: 36546347 DOI: 10.1088/1361-6560/aca874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
Objective. Proton dosimetric uncertainties resulting from the patient's daily setup errors in rotational directions exist even with advanced image-guided radiotherapy techniques. Thus, we developed a new rotational robust optimization SPArc algorithm (SPArcrot) to mitigate the dosimetric impact of the rotational setup error in Raystation ver. 6.02 (RaySearch Laboratory AB, Stockholm, Sweden).Approach.The initial planning CT was rotated ±5° simulating the worst-case setup error in the roll direction. The SPArcrotuses a multi-CT robust optimization framework by taking into account of such rotational setup errors. Five cases representing different disease sites were evaluated. Both SPArcoriginaland SPArcrotplans were generated using the same translational robust optimized parameters. To quantitatively investigate the mitigation effect from the rotational setup errors, all plans were recalculated using a series of pseudo-CT with rotational setup error (±1°/±2°/±3°/±5°). Dosimetric metrics such as D98% of CTV, and 3D gamma analysis were used to assess the dose distribution changes in the target and OARs.Main results.The magnitudes of dosimetric changes in the targets due to rotational setup error were significantly reduced by the SPArcrotcompared to SPArc in all cases. The uncertainties of the max dose to the OARs, such as brainstem, spinal cord and esophagus were significantly reduced using SPArcrot. The uncertainties of the mean dose to the OARs such as liver and oral cavity, parotid were comparable between the two planning techniques. The gamma passing rate (3%/3 mm) was significantly improved for CTV of all tumor sites through SPArcrot.Significance.Rotational setup error is one of the major issues which could lead to significant dose perturbations. SPArcrotplanning approach can consider such rotational error from patient setup or gantry rotation error by effectively mitigating the dose uncertainties to the target and in the adjunct series OARs.
Collapse
Affiliation(s)
- Sheng Chang
- Department of Radiation Oncology, Wuhan University, Renmin Hospital, Wuhan, 430060 Hubei Province, People's Republic of China.,Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, People's Republic of China
| | - Lewei Zhao
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Weili Zheng
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Di Yan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Peter Chen
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xiangpan Li
- Department of Radiation Oncology, Wuhan University, Renmin Hospital, Wuhan, 430060 Hubei Province, People's Republic of China
| | - Rohan Deraniyagala
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Craig Stevens
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Inga Grills
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| |
Collapse
|
59
|
Yao W, Zhang B, Han D, Polf J, Vedam S, Lasio G, Yi B. Use of CBCT plus plan robustness for reducing QACT frequency in intensity-modulated proton therapy: Head-and-neck cases. Med Phys 2022; 49:6794-6801. [PMID: 35933322 DOI: 10.1002/mp.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Anatomic variation has a significant dosimetric impact in intensity-modulated proton therapy. Weekly or biweekly computed tomography (CT) scans, called quality assurance CTs (QACTs), are used to monitor anatomic and resultant dose changes to determine whether adaptive plans are needed. Frequent CT scans result in unwanted QACT dose and increased clinical workloads. This study proposed utilizing patient setup cone-beam CTs (CBCTs) and treatment plan robustness to reduce the frequency of QACTs. METHODS We retrospectively analyzed data from 27 patients with head-and-neck cancer, including 594 CBCTs, 136 QACTs, and 19 adaptive plans. For each CBCT, water-equivalent thickness (WET) along the pencil-beam path was calculated. For each treatment plan, the WET of the first-day CBCT was used as the reference, and the mean WET changes (ΔWET) in each following CBCT was used as the surrogate of proton range change. Using CBCTs acquired prior to a QACT, we predicted the ΔWET on the QACT day by a linear regression model. The impact of range change on target dose was calculated as the predicted ΔWET weighted by the monitor units of each field. In addition, plan robustness was estimated from the robust dose-volume histograms (DVHs) and combined with ΔWET to reduce QACT frequency. Robustness was estimated from the distance between the DVH curves of the nominal and worst scenarios. RESULTS When the estimated mean ΔWET was <6.5 mm (or <7.5 mm if the robustness was >95%), the QACT could be skipped without missing any adaptive planning; otherwise a QACT was required. Overall, 41% of QACTs could be eliminated when ΔWET was <6.5 mm and 56% when ΔWET was <7.5 mm, and robustness was >95%. At least one QACT could have been omitted in 25 of the 27 cases under skipping thresholds at ΔWETs <7.5 mm and R > 95%. CONCLUSION This study suggests that the number of QACTs can be greatly reduced by calculating range change in patient setup CBCTs and can be further reduced by combining this information with analyses of plan robustness.
Collapse
Affiliation(s)
- Weiguang Yao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Baoshe Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dong Han
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Giovanni Lasio
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Byongyong Yi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
60
|
A plan verification platform for online adaptive proton therapy using deep learning-based Monte–Carlo denoising. Phys Med 2022; 103:18-25. [DOI: 10.1016/j.ejmp.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
|
61
|
Nesteruk KP, Bobić M, Sharp GC, Lalonde A, Winey BA, Nenoff L, Lomax AJ, Paganetti H. Low-Dose Computed Tomography Scanning Protocols for Online Adaptive Proton Therapy of Head-and-Neck Cancers. Cancers (Basel) 2022; 14:cancers14205155. [PMID: 36291939 PMCID: PMC9600085 DOI: 10.3390/cancers14205155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To evaluate the suitability of low-dose CT protocols for online plan adaptation of head-and-neck patients. METHODS We acquired CT scans of a head phantom with protocols corresponding to CT dose index volume CTDIvol in the range of 4.2-165.9 mGy. The highest value corresponds to the standard protocol used for CT simulations of 10 head-and-neck patients included in the study. The minimum value corresponds to the lowest achievable tube current of the GE Discovery RT scanner used for the study. For each patient and each low-dose protocol, the noise relative to the standard protocol, derived from phantom images, was applied to a virtual CT (vCT). The vCT was obtained from a daily CBCT scan corresponding to the fraction with the largest anatomical changes. We ran an established adaptive workflow twice for each low-dose protocol using a high-quality daily vCT and the corresponding low-dose synthetic vCT. For a relative comparison of the adaptation efficacy, two adapted plans were recalculated in the high-quality vCT and evaluated with the contours obtained through deformable registration of the planning CT. We also evaluated the accuracy of dose calculation in low-dose CT volumes using the standard CT protocol as reference. RESULTS The maximum differences in D98 between low-dose protocols and the standard protocol for the high-risk and low-risk CTV were found to be 0.6% and 0.3%, respectively. The difference in OAR sparing was up to 3%. The Dice similarity coefficient between propagated contours obtained with low-dose and standard protocols was above 0.982. The mean 2%/2 mm gamma pass rate for the lowest-dose image, using the standard protocol as reference, was found to be 99.99%. CONCLUSION The differences between low-dose protocols and the standard scanning protocol were marginal. Thus, low-dose CT protocols are suitable for online adaptive proton therapy of head-and-neck cancers. As such, considering scanning protocols used in our clinic, the imaging dose associated with online adaption of head-and-neck cancers treated with protons can be reduced by a factor of 40.
Collapse
Affiliation(s)
- Konrad P. Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Correspondence:
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Gregory C. Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brian A. Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lena Nenoff
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Antony J. Lomax
- Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
62
|
Moglioni M, Kraan AC, Baroni G, Battistoni G, Belcari N, Berti A, Carra P, Cerello P, Ciocca M, De Gregorio A, De Simoni M, Del Sarto D, Donetti M, Dong Y, Embriaco A, Fantacci ME, Ferrero V, Fiorina E, Fischetti M, Franciosini G, Giraudo G, Laruina F, Maestri D, Magi M, Magro G, Malekzadeh E, Marafini M, Mattei I, Mazzoni E, Mereu P, Mirandola A, Morrocchi M, Muraro S, Orlandi E, Patera V, Pennazio F, Pullia M, Retico A, Rivetti A, Da Rocha Rolo MD, Rosso V, Sarti A, Schiavi A, Sciubba A, Sportelli G, Tampellini S, Toppi M, Traini G, Trigilio A, Valle SM, Valvo F, Vischioni B, Vitolo V, Wheadon R, Bisogni MG. In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO. Front Oncol 2022; 12:929949. [PMID: 36226070 PMCID: PMC9549776 DOI: 10.3389/fonc.2022.929949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam’s Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan.
Collapse
Affiliation(s)
- Martina Moglioni
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | - Aafke Christine Kraan
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- *Correspondence: Aafke Christine Kraan,
| | - Guido Baroni
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
- Politecnico di Milano, Milano, Italy
| | | | - Nicola Belcari
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | - Andrea Berti
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
- Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Pietro Carra
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | | | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Angelica De Gregorio
- Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
| | - Micol De Simoni
- Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
| | - Damiano Del Sarto
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | - Marco Donetti
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Yunsheng Dong
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy
- Dipartimento di Fisica, Università di Milano, Milano, Italy
| | - Alessia Embriaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Maria Evelina Fantacci
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | - Veronica Ferrero
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Elisa Fiorina
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Marta Fischetti
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit `a di Roma, Roma, Italy
| | - Gaia Franciosini
- Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
| | - Giuseppe Giraudo
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Francesco Laruina
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | - Davide Maestri
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Marco Magi
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit `a di Roma, Roma, Italy
| | - Giuseppe Magro
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Etesam Malekzadeh
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
- Department of Medical Physics, Tarbiat Modares University, Teheran, Iran
| | - Michela Marafini
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma, Italy
| | - Ilaria Mattei
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy
| | - Enrico Mazzoni
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
| | - Paolo Mereu
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | | | - Matteo Morrocchi
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | - Silvia Muraro
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy
| | - Ester Orlandi
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Vincenzo Patera
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit `a di Roma, Roma, Italy
| | | | - Marco Pullia
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | | | - Angelo Rivetti
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | | | - Valeria Rosso
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | - Alessio Sarti
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit `a di Roma, Roma, Italy
| | - Angelo Schiavi
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit `a di Roma, Roma, Italy
| | - Adalberto Sciubba
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit `a di Roma, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione dei Laboratori di Frascati, Frascati, Italy
| | - Giancarlo Sportelli
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| | | | - Marco Toppi
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit `a di Roma, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione dei Laboratori di Frascati, Frascati, Italy
| | - Giacomo Traini
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma, Italy
| | - Antonio Trigilio
- Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
| | | | | | | | - Viviana Vitolo
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Richard Wheadon
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Maria Giuseppina Bisogni
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
| |
Collapse
|
63
|
Lin B, Huang D, Gao F, Yang Y, Wu D, Zhang Y, Feng G, Dai T, Du X. Mechanisms of FLASH effect. Front Oncol 2022; 12:995612. [PMID: 36212435 PMCID: PMC9537695 DOI: 10.3389/fonc.2022.995612] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a novel radiotherapy technology defined as ultra-high dose rate (≥ 40 Gy/s) radiotherapy. The biological effects of FLASH-RT include two aspects: first, compared with conventional dose rate radiotherapy, FLASH-RT can reduce radiation-induced damage in healthy tissue, and second, FLASH-RT can retain antitumor effectiveness. Current research shows that mechanisms of the biological effects of FLASH-RT are related to oxygen. However, due to the short time of FLASH-RT, evidences related to the mechanisms are indirect, and the exact mechanisms of the biological effects of FLASH-RT are not completely clear and some are even contradictory. This review focuses on the mechanisms of the biological effects of FLASH-RT and proposes future research directions.
Collapse
Affiliation(s)
- Binwei Lin
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan Huang
- Department of Radiology Mianyang Central Hospital, Mianyang, China
| | - Feng Gao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Yiwei Yang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Gang Feng
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Tangzhi Dai
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Xiaobo Du
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
64
|
Volz L, Sheng Y, Durante M, Graeff C. Considerations for Upright Particle Therapy Patient Positioning and Associated Image Guidance. Front Oncol 2022; 12:930850. [PMID: 35965576 PMCID: PMC9372451 DOI: 10.3389/fonc.2022.930850] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Particle therapy is a rapidly growing field in cancer therapy. Worldwide, over 100 centers are in operation, and more are currently in construction phase. The interest in particle therapy is founded in the superior target dose conformity and healthy tissue sparing achievable through the particles’ inverse depth dose profile. This physical advantage is, however, opposed by increased complexity and cost of particle therapy facilities. Particle therapy, especially with heavier ions, requires large and costly equipment to accelerate the particles to the desired treatment energy and steer the beam to the patient. A significant portion of the cost for a treatment facility is attributed to the gantry, used to enable different beam angles around the patient for optimal healthy tissue sparing. Instead of a gantry, a rotating chair positioning system paired with a fixed horizontal beam line presents a suitable cost-efficient alternative. Chair systems have been used already at the advent of particle therapy, but were soon dismissed due to increased setup uncertainty associated with the upright position stemming from the lack of dedicated image guidance systems. Recently, treatment chairs gained renewed interest due to the improvement in beam delivery, commercial availability of vertical patient CT imaging and improved image guidance systems to mitigate the problem of anatomical motion in seated treatments. In this review, economical and clinical reasons for an upright patient positioning system are discussed. Existing designs targeted for particle therapy are reviewed, and conclusions are drawn on the design and construction of chair systems and associated image guidance. Finally, the different aspects from literature are channeled into recommendations for potential upright treatment layouts, both for retrofitting and new facilities.
Collapse
Affiliation(s)
- Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yinxiangzi Sheng
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Marco Durante
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Institute of Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Christian Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Institute of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
65
|
Nenoff L, Buti G, Bobić M, Lalonde A, Nesteruk KP, Winey B, Sharp GC, Sudhyadhom A, Paganetti H. Integrating Structure Propagation Uncertainties in the Optimization of Online Adaptive Proton Therapy Plans. Cancers (Basel) 2022; 14:cancers14163926. [PMID: 36010919 PMCID: PMC9406068 DOI: 10.3390/cancers14163926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/11/2023] Open
Abstract
Currently, adaptive strategies require time- and resource-intensive manual structure corrections. This study compares different strategies: optimization without manual structure correction, adaptation with physician-drawn structures, and no adaptation. Strategies were compared for 16 patients with pancreas, liver, and head and neck (HN) cancer with 1-5 repeated images during treatment: 'reference adaptation', with structures drawn by a physician; 'single-DIR adaptation', using a single set of deformably propagated structures; 'multi-DIR adaptation', using robust planning with multiple deformed structure sets; 'conservative adaptation', using the intersection and union of all deformed structures; 'probabilistic adaptation', using the probability of a voxel belonging to the structure in the optimization weight; and 'no adaptation'. Plans were evaluated using reference structures and compared using a scoring system. The reference adaptation with physician-drawn structures performed best, and no adaptation performed the worst. For pancreas and liver patients, adaptation with a single DIR improved the plan quality over no adaptation. For HN patients, integrating structure uncertainties brought an additional benefit. If resources for manual structure corrections would prevent online adaptation, manual correction could be replaced by a fast 'plausibility check', and plans could be adapted with correction-free adaptation strategies. Including structure uncertainties in the optimization has the potential to make online adaptation more automatable.
Collapse
Affiliation(s)
- Lena Nenoff
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| | - Gregory Buti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Mislav Bobić
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Physics, ETH Zurich, 8092 Zurich, Switzerland
| | - Arthur Lalonde
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Konrad P. Nesteruk
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian Winey
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gregory Charles Sharp
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Atchar Sudhyadhom
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Harald Paganetti
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
66
|
Cao W, Rocha H, Mohan R, Lim G, Goudarzi HM, Ferreira BC, Dias JM. Reflections on beam configuration optimization for intensity-modulated proton therapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac6fac. [PMID: 35561700 PMCID: PMC11827663 DOI: 10.1088/1361-6560/ac6fac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Presumably, intensity-modulated proton radiotherapy (IMPT) is the most powerful form of proton radiotherapy. In the current state of the art, IMPT beam configurations (i.e. the number of beams and their directions) are, in general, chosen subjectively based on prior experience and practicality. Beam configuration optimization (BCO) for IMPT could, in theory, significantly enhance IMPT's therapeutic potential. However, BCO is complex and highly computer resource-intensive. Some algorithms for BCO have been developed for intensity-modulated photon therapy (IMRT). They are rarely used clinically mainly because the large number of beams typically employed in IMRT renders BCO essentially unnecessary. Moreover, in the newer form of IMRT, volumetric modulated arc therapy, there are no individual static beams. BCO is of greater importance for IMPT because it typically employs a very small number of beams (2-4) and, when the number of beams is small, BCO is critical for improving plan quality. However, the unique properties and requirements of protons, particularly in IMPT, make BCO challenging. Protons are more sensitive than photons to anatomic changes, exhibit variable relative biological effectiveness along their paths, and, as recently discovered, may spare the immune system. Such factors must be considered in IMPT BCO, though doing so would make BCO more resource intensive and make it more challenging to extend BCO algorithms developed for IMRT to IMPT. A limited amount of research in IMPT BCO has been conducted; however, considerable additional work is needed for its further development to make it truly effective and computationally practical. This article aims to provide a review of existing BCO algorithms, most of which were developed for IMRT, and addresses important requirements specific to BCO for IMPT optimization that necessitate the modification of existing approaches or the development of new effective and efficient ones.
Collapse
Affiliation(s)
- Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Humberto Rocha
- University of Coimbra, CeBER, Faculty of Economics, Coimbra, Portugal
- University of Coimbra, INESC Coimbra, Coimbra, Portugal
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Gino Lim
- Department of Industrial Engineering, University of Houston, Houston, United States of America
| | - Hadis M Goudarzi
- Department of Industrial Engineering, University of Houston, Houston, United States of America
| | - Brígida C Ferreira
- University of Coimbra, INESC Coimbra, Coimbra, Portugal
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Joana M Dias
- University of Coimbra, CeBER, Faculty of Economics, Coimbra, Portugal
- University of Coimbra, INESC Coimbra, Coimbra, Portugal
| |
Collapse
|
67
|
Bäumer C, Frakulli R, Kohl J, Nagaraja S, Steinmeier T, Worawongsakul R, Timmermann B. Adaptive Proton Therapy of Pediatric Head and Neck Cases Using MRI-Based Synthetic CTs: Initial Experience of the Prospective KiAPT Study. Cancers (Basel) 2022; 14:cancers14112616. [PMID: 35681594 PMCID: PMC9179385 DOI: 10.3390/cancers14112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND AND PURPOSE Interfractional anatomical changes might affect the outcome of proton therapy (PT). We aimed to prospectively evaluate the role of Magnetic Resonance Imaging (MRI) based adaptive PT for children with tumors of the head and neck and base of skull. METHODS MRI verification images were acquired at half of the treatment course. A synthetic computed tomography (CT) image was created using this MRI and a deformable image registration (DIR) to the reference MRI. The methodology was verified with in-silico phantoms and validated using a clinical case with a shrinking cystic hygroma on the basis of dosimetric quantities of contoured structures. The dose distributions on the verification X-ray CT and on the synthetic CT were compared with a gamma-index test using global 2 mm/2% criteria. RESULTS Regarding the clinical validation case, the gamma-index pass rate was 98.3%. Eleven patients were included in the clinical study. The most common diagnosis was rhabdomyosarcoma (73%). Craniofacial tumor site was predominant in 64% of patients, followed by base of skull (18%). For one individual case the synthetic CT showed an increase in the median D2 and Dmax dose on the spinal cord from 20.5 GyRBE to 24.8 GyRBE and 14.7 GyRBE to 25.1 GyRBE, respectively. Otherwise, doses received by OARs remained relatively stable. Similarly, the target volume coverage seen by D95% and V95% remained unchanged. CONCLUSIONS The method of transferring anatomical changes from MRIs to a synthetic CTs was successfully implemented and validated with simple, commonly available tools. In the frame of our early results on a small cohort, no clinical relevant deterioration for neither PTV coverage nor an increased dose burden to OARs occurred. However, the study will be continued to identify a pediatric patient cohort, which benefits from adaptive treatment planning.
Collapse
Affiliation(s)
- Christian Bäumer
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
- Correspondence:
| | - Rezarta Frakulli
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Jessica Kohl
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
| | - Sindhu Nagaraja
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Theresa Steinmeier
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Rasin Worawongsakul
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Nakhon 73170, Thailand
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| |
Collapse
|
68
|
Li H, Hrinivich WT, Chen H, Sheikh K, Ho MW, Ger R, Liu D, Hales RK, Voong KR, Halthore A, Deville C. Evaluating Proton Dose and Associated Range Uncertainty Using Daily Cone-Beam CT. Front Oncol 2022; 12:830981. [PMID: 35449577 PMCID: PMC9016186 DOI: 10.3389/fonc.2022.830981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aimed to quantitatively evaluate the range uncertainties that arise from daily cone-beam CT (CBCT) images for proton dose calculation compared to CT using a measurement-based technique. Methods For head and thorax phantoms, wedge-shaped intensity-modulated proton therapy (IMPT) treatment plans were created such that the gradient of the wedge intersected and was measured with a 2D ion chamber array. The measured 2D dose distributions were compared with 2D dose planes extracted from the dose distributions using the IMPT plan calculated on CT and CBCT. Treatment plans of a thymoma cancer patient treated with breath-hold (BH) IMPT were recalculated on 28 CBCTs and 9 CTs, and the resulting dose distributions were compared. Results The range uncertainties for the head phantom were determined to be 1.2% with CBCT, compared to 0.5% for CT, whereas the range uncertainties for the thorax phantom were 2.1% with CBCT, compared to 0.8% for CT. The doses calculated on CBCT and CT were similar with similar anatomy changes. For the thymoma patient, the primary source of anatomy change was the BH uncertainty, which could be up to 8 mm in the superior-inferior (SI) direction. Conclusion We developed a measurement-based range uncertainty evaluation method with high sensitivity and used it to validate the accuracy of CBCT-based range and dose calculation. Our study demonstrated that the CBCT-based dose calculation could be used for daily dose validation in selected proton patients.
Collapse
Affiliation(s)
- Heng Li
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William T Hrinivich
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hao Chen
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Khadija Sheikh
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meng Wei Ho
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel Ger
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dezhi Liu
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Russell Kenneth Hales
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Khinh Ranh Voong
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aditya Halthore
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Curtiland Deville
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
69
|
Post-Mastectomy Radiation Therapy: Applications and Advancements. CURRENT BREAST CANCER REPORTS 2022. [DOI: 10.1007/s12609-022-00449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
70
|
Pakela JM, Knopf A, Dong L, Rucinski A, Zou W. Management of Motion and Anatomical Variations in Charged Particle Therapy: Past, Present, and Into the Future. Front Oncol 2022; 12:806153. [PMID: 35356213 PMCID: PMC8959592 DOI: 10.3389/fonc.2022.806153] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy.
Collapse
Affiliation(s)
- Julia M. Pakela
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department I of Internal Medicine, Center for Integrated Oncology Cologne, University Hospital of Cologne, Cologne, Germany
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antoni Rucinski
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|