51
|
Zhang X, Tiainen H, Haugen HJ. Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Med Biol Eng Comput 2018; 57:311-324. [DOI: 10.1007/s11517-018-1884-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/05/2018] [Indexed: 01/21/2023]
|
52
|
Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol 2018; 6:105. [PMID: 30109228 PMCID: PMC6079270 DOI: 10.3389/fbioe.2018.00105] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
Bone fractures and segmental bone defects are a significant source of patient morbidity and place a staggering economic burden on the healthcare system. The annual cost of treating bone defects in the US has been estimated to be $5 billion, while enormous costs are spent on bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. Autologous bone grafts represent the gold standard for the treatment of bone defects. However, they are associated with variable clinical outcomes, postsurgical morbidity, especially at the donor site, and increased surgical costs. In an effort to circumvent these limitations, tissue engineering and cell-based therapies have been proposed as alternatives to induce and promote bone repair. This review focuses on the recent advances in bone tissue engineering (BTE), specifically looking at its role in treating delayed fracture healing (non-unions) and the resulting segmental bone defects. Herein we discuss: (1) the processes of endochondral and intramembranous bone formation; (2) the role of stem cells, looking specifically at mesenchymal (MSC), embryonic (ESC), and induced pluripotent (iPSC) stem cells as viable building blocks to engineer bone implants; (3) the biomaterials used to direct tissue growth, with a focus on ceramic, biodegradable polymers, and composite materials; (4) the growth factors and molecular signals used to induce differentiation of stem cells into the osteoblastic lineage, which ultimately leads to active bone formation; and (5) the mechanical stimulation protocols used to maintain the integrity of the bone repair and their role in successful cell engraftment. Finally, a couple clinical scenarios are presented (non-unions and avascular necrosis—AVN), to illustrate how novel cell-based therapy approaches can be used. A thorough understanding of tissue engineering and cell-based therapies may allow for better incorporation of these potential therapeutic approaches in bone defects allowing for proper bone repair and regeneration.
Collapse
Affiliation(s)
- Jose R Perez
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Deborah J Li
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lee Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
53
|
Sawyer SW, Shridhar SV, Zhang K, Albrecht LD, Filip AB, Horton JA, Soman P. Perfusion directed 3D mineral formation within cell-laden hydrogels. Biofabrication 2018; 10:035013. [PMID: 29882516 DOI: 10.1088/1758-5090/aacb42] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via micro-CT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. Micro-CT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels.
Collapse
Affiliation(s)
- Stephen W Sawyer
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States of America
| | | | | | | | | | | | | |
Collapse
|
54
|
Li J, Chen D, Luan H, Zhang Y, Fan Y. Numerical Evaluation and Prediction of Porous Implant Design and Flow Performance. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1215021. [PMID: 30009164 PMCID: PMC6020664 DOI: 10.1155/2018/1215021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 11/18/2022]
Abstract
Porous structure has been widely acknowledged as important factor for mass transfer and tissue regeneration. This study investigates effect of aimed-control design on mass transfer and tissue regeneration of porous implant with regular unit cell. Two shapes of unit cells (Octet truss, and Rhombic dodecahedron) were selected, which have similar symmetrical structure and are commonly used in practice. Through parametric design, porous scaffolds with the strut sizes of φ 0.5, 0.7, 0.9, and 1.1mm were created, respectively. Then using fluid flow simulation method, flow velocity, permeability, and shear stress which could reflect the properties of mass transfer and tissue regeneration were compared and evaluated, and the relationships between porous structure's physical parameters and flow performance were studied. Results demonstrated that unit cell shape and strut size greatly determine and influence other physical parameters and flow performances of porous implant. With the increasing of strut size, pore size and porosity linearly decrease, but the volume, surface area, and specific surface area increased. Importantly, implant with smaller strut size resulted in smaller flow velocity directly but greater permeability and more appropriate shear stress, which should be beneficial to cell attachment and proliferation. This study confirmed that porous implant with different unit cell shows different performances of mass transfer and tissue regeneration, and unit cell shape and strut size play vital roles in the control design. These findings could facilitate the quantitative assessment and optimization of the porous implant.
Collapse
Affiliation(s)
- Jian Li
- Robotic Institute, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Diansheng Chen
- Robotic Institute, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Huiqin Luan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Yubo Fan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
55
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
56
|
Beşkardeş IG, Aydın G, Bektaş Ş, Cengiz A, Gümüşderelioğlu M. A systematic study for optimal cell seeding and culture conditions in a perfusion mode bone-tissue bioreactor. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Paim A, Braghirolli DI, Cardozo NSM, Pranke P, Tessaro IC. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion. ACTA ACUST UNITED AC 2018; 51:e6754. [PMID: 29590258 PMCID: PMC5886556 DOI: 10.1590/1414-431x20186754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022]
Abstract
Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion.
Collapse
Affiliation(s)
- A Paim
- Laboratório de Separação por Membranas, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Simulação, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - D I Braghirolli
- Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - N S M Cardozo
- Laboratório de Simulação, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - P Pranke
- Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Instituto de Pesquisa com Células-Tronco, Porto Alegre, RS, Brasil
| | - I C Tessaro
- Laboratório de Separação por Membranas, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
58
|
Moonga SS, Qin YX. MC3T3 infiltration and proliferation in bovine trabecular scaffold regulated by dynamic flow bioreactor and augmented by low-intensity pulsed ultrasound. J Orthop Translat 2018; 14:16-22. [PMID: 30035029 PMCID: PMC6042526 DOI: 10.1016/j.jot.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) has been used in both basic research and clinical settings for its therapeutic potential in promoting tissue healing. Clinical data has shown that LIPUS can accelerate fresh fracture healing. However, the treatment for aging osteoporosis and non-union is still unclear. In addition, the mechanism of ultrasound promoted bone healing has remained unknown. Objective It is proposed that noninvasive ultrasound treatment can enhance local fluid flow within the tissue to initiate remodeling and regeneration. The goal of this study was to evaluate the effects of dynamic ultrasound in promoting cellular mechanotransduction within bioengineered organic scaffolds to trigger osteogenesis and mineralization. Methods The experiment was designed in two-fold: to evaluate the role of LIPUS on osteoblastic-like (MC3T3) cell proliferation and mineralization in response to acoustic waves, using biomechanical rate-dependent signals in a bioreactor; and, to evaluate the new scaffold experimentation techniques, in order to generate a potential implantable biomaterial for orthopedic tissue regeneration and repair. Results LIPUS treatment on MC3T3 cells yielded enhanced cellular mineralization (**p < 0.001) in 3-D scaffolding, but reduced the total cell numbers (*p < 0.05), using Alizarin Red staining and cell counting analyses, respectively, in comparison to the control. Conclusion This study suggests that LIPUS, if applied at proper frequency and duty cycle, can promote cell mineralization within the 3-D organic scaffold under in vitro setting. The translational component of this experiment seeks to draw a parallel to the potential pre-treatment of scaffolds for implantation before orthopedic surgery, which could prove to greatly benefit the patient in accelerating fracture healing and tissue regeneration. The Translational Potential of this Article LIPUS stimulation was critical in contributing to the mechanical signaling transductions that activated bone enhancement parameters in MC3T3 cells regulated by bioreactor, and thus has potential to change how we pretreat scaffolds for orthopedic surgery and noninvasively accelerate healing in the future, e.g., in an extreme condition such as long-term space mission.
Collapse
Affiliation(s)
- Surinder S Moonga
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
59
|
Bernhard JC, Hulphers E, Rieder B, Ferguson J, Rünzler D, Nau T, Redl H, Vunjak-Novakovic G. Perfusion Enhances Hypertrophic Chondrocyte Matrix Deposition, But Not the Bone Formation. Tissue Eng Part A 2018; 24:1022-1033. [PMID: 29373945 DOI: 10.1089/ten.tea.2017.0356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Perfusion bioreactors have been an effective tool in bone tissue engineering. Improved nutrient delivery and the application of shear forces have stimulated osteoblast differentiation and matrix production, allowing for generation of large, clinically sized constructs. Differentiation of hypertrophic chondrocytes has been considered an alternative strategy for bone tissue engineering. We studied the effects of perfusion on hypertrophic chondrocyte differentiation, matrix production, and subsequent bone formation. Hypertrophic constructs were created by differentiation in chondrogenic medium (2 weeks) and maturation in hypertrophic medium (3 weeks). Bioreactors were customized to study a range of flow rates (0-1200 μm/s). During chondrogenic differentiation, increased flow rates correlated with cartilage matrix deposition and the presence of collagen type X. During induced hypertrophic maturation, increased flow rates correlated with bone template deposition and the increased secretion of chondroprotective cytokines. Following an 8-week implantation into the critical-size femoral defect in nude rats, nonperfused constructs displayed larger bone volume, more compact mineralized matrix, and better integration with the adjacent native bone. Therefore, although medium perfusion stimulated the formation of bone template in vitro, it failed to enhance bone regeneration in vivo. However, the promising results of the less developed template in the critical-sized defect warrant further investigation, beyond interstitial flow, into the specific environment needed to optimize hypertrophic chondrocyte-based constructs for bone repair.
Collapse
Affiliation(s)
- Jonathan C Bernhard
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Elizabeth Hulphers
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Bernhard Rieder
- 2 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Austrian Cluster for Tissue Regeneration Vienna, Vienna, Austria
| | - James Ferguson
- 3 Ludwig Boltzmann Institute of Experimental and Clinical Traumatology , University of Vienna, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dominik Rünzler
- 2 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Austrian Cluster for Tissue Regeneration Vienna, Vienna, Austria
| | - Thomas Nau
- 3 Ludwig Boltzmann Institute of Experimental and Clinical Traumatology , University of Vienna, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- 3 Ludwig Boltzmann Institute of Experimental and Clinical Traumatology , University of Vienna, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
- 4 Department of Medicine, Columbia University , New York, New York
| |
Collapse
|
60
|
Suarez Muñoz M, Confalonieri D, Walles H, van Dongen EMWM, Dandekar G. Recombinant Collagen I Peptide Microcarriers for Cell Expansion and Their Potential Use As Cell Delivery System in a Bioreactor Model. J Vis Exp 2018:57363. [PMID: 29443081 PMCID: PMC5912385 DOI: 10.3791/57363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tissue engineering is a promising field, focused on developing solutions for the increasing demand on tissues and organs regarding transplantation purposes. The process to generate such tissues is complex, and includes an appropriate combination of specific cell types, scaffolds, and physical or biochemical stimuli to guide cell growth and differentiation. Microcarriers represent an appealing tool to expand cells in a three-dimensional (3D) microenvironment, since they provide higher surface-to volume ratios and mimic more closely the in vivo situation compared to traditional two-dimensional methods. The vascular system, supplying oxygen and nutrients to the cells and ensuring waste removal, constitutes an important building block when generating engineered tissues. In fact, most constructs fail after being implanted due to lacking vascular support. In this study, we present a protocol for endothelial cell expansion on recombinant collagen-based microcarriers under dynamic conditions in spinner flask and bioreactors, and we explain how to determine in this setting cell viability and functionality. In addition, we propose a method for cell delivery for vascularization purposes without additional detachment steps necessary. Furthermore, we provide a strategy to evaluate the cell vascularization potential in a perfusion bioreactor on a decellularized biological matrix. We believe that the use of the presented methods could lead to the development of new cell-based therapies for a large range of tissue engineering applications in the clinical practice.
Collapse
Affiliation(s)
- Melva Suarez Muñoz
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg;
| | - Davide Confalonieri
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg
| | - Heike Walles
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC
| | | | - Gudrun Dandekar
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC
| |
Collapse
|
61
|
Liu B, Han S, Hedrick BP, Modarres‐Sadeghi Y, Lynch ME. Perfusion applied to a 3D model of bone metastasis results in uniformly dispersed mechanical stimuli. Biotechnol Bioeng 2018; 115:1076-1085. [DOI: 10.1002/bit.26524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Boyuan Liu
- Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherstMassachusetts
| | - Suyue Han
- Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherstMassachusetts
| | | | - Yahya Modarres‐Sadeghi
- Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherstMassachusetts
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstMassachusetts
| | - Maureen E. Lynch
- Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherstMassachusetts
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstMassachusetts
| |
Collapse
|
62
|
Canadas RF, Marques AP, Reis RL, Oliveira JM. Bioreactors and Microfluidics for Osteochondral Interface Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:395-420. [PMID: 29736584 DOI: 10.1007/978-3-319-76735-2_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell culture techniques are in the base of any biology-based science. The standard techniques are commonly static platforms as Petri dishes, tissue culture well plates, T-flasks, or well plates designed for spheroids formation. These systems faced a paradigm change from 2D to 3D over the current decade driven by the tissue engineering (TE) field. However, 3D static culture approaches usually suffer from several issues as poor homogenization of the formed tissues and development of a necrotic center which limits the size of in vitro tissues to hundreds of micrometers. Furthermore, for complex tissues as osteochondral (OC), more than recovering a 3D environment, an interface needs to be replicated. Although 3D cell culture is already the reality adopted by a newborn market, a technological revolution on cell culture devices needs a further step from static to dynamic already considering 3D interfaces with dramatic importance for broad fields such as biomedical, TE, and drug development. In this book chapter, we revised the existing approaches for dynamic 3D cell culture, focusing on bioreactors and microfluidic systems, and the future directions and challenges to be faced were discussed. Basic principles, advantages, and challenges of each technology were described. The reported systems for OC 3D TE were focused herein.
Collapse
Affiliation(s)
- Raphaël F Canadas
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
63
|
Vetsch JR, Müller R, Hofmann S. The influence of curvature on three-dimensional mineralized matrix formation under static and perfused conditions: an in vitro bioreactor model. J R Soc Interface 2017; 13:rsif.2016.0425. [PMID: 27733699 DOI: 10.1098/rsif.2016.0425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 11/12/2022] Open
Abstract
Bone remodelling is the continuous turnover of bone by resorption and formation. It is controlled by interstitial fluid flow sensed by osteocytes. The refilling of bone resorption sites has been shown to be curvature driven. In vitro, curvature influences tissue growth and cytoskeletal arrangements under static and perfused conditions. Nevertheless, this has only been demonstrated for non-mineralized tissue in limited three-dimensional volumes. This study aims at investigating the influence of three different channel curvatures (S, -2.00 mm-1; M, -1.33 mm-1; L, -0.67 mm-1) on mineralized tissue formation in three dimensions under static and perfused conditions. The ingrowth of mineralized tissue into the channels was dependent on curvature and was higher under perfusion (M and S channels). L channels were not closed in any group compared with partially (static) or fully (perfused) closed M and S channels. Mineralized tissue morphology was cortical-like in static samples and trabecular-like in perfused samples. Our results suggest that the three-dimensional in vitro model presented is not only able to reveal effects of curvature on mineralized tissue formation, but may be used as an in vitro model for critical size defects in trabecular or cortical bone.
Collapse
Affiliation(s)
- Jolanda R Vetsch
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
64
|
Tang X, Teng S, Liu C, Jagodzinski M. Influence of hydrodynamic pressure on the proliferation and osteogenic differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. J Biomed Mater Res A 2017; 105:3445-3455. [DOI: 10.1002/jbm.a.36197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Xiangyu Tang
- Department of Radiology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan P. R. China
| | - Songsong Teng
- Department of Orthopedic Trauma; Hanover Medical School (MHH); Hanover Germany
| | - Chaoxu Liu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan P. R. China
| | - Michael Jagodzinski
- Department of Orthopedic Trauma; Hanover Medical School (MHH); Hanover Germany
| |
Collapse
|
65
|
Gargotti M, Lopez-Gonzalez U, Byrne HJ, Casey A. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices. Cytotechnology 2017; 70:261-273. [PMID: 28924965 DOI: 10.1007/s10616-017-0139-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/02/2017] [Indexed: 11/26/2022] Open
Abstract
In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.
Collapse
Affiliation(s)
- M Gargotti
- School of Physics, Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| | - U Lopez-Gonzalez
- School of Physics, Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - H J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - A Casey
- School of Physics, Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
66
|
Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach. PLoS One 2017; 12:e0180781. [PMID: 28686698 PMCID: PMC5501602 DOI: 10.1371/journal.pone.0180781] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 12/24/2022] Open
Abstract
Mechanical loading plays a major role in bone remodeling and fracture healing. Mimicking the concept of mechanical loading of bone has been widely studied in bone tissue engineering by perfusion cultures. Nevertheless, there is still debate regarding the in-vitro mechanical stimulation regime. This study aims at investigating the effect of two different flow rates (vlow = 0.001m/s and vhigh = 0.061m/s) on the growth of mineralized tissue produced by human mesenchymal stromal cells cultured on 3-D silk fibroin scaffolds. The flow rates applied were chosen to mimic the mechanical environment during early fracture healing or during bone remodeling, respectively. Scaffolds cultured under static conditions served as a control. Time-lapsed micro-computed tomography showed that mineralized extracellular matrix formation was completely inhibited at vlow compared to vhigh and the static group. Biochemical assays and histology confirmed these results and showed enhanced osteogenic differentiation at vhigh whereas the amount of DNA was increased at vlow. The biological response at vlow might correspond to the early stage of fracture healing, where cell proliferation and matrix production is prominent. Visual mapping of shear stresses, simulated by computational fluid dynamics, to 3-D micro-computed tomography data revealed that shear stresses up to 0.39mPa induced a higher DNA amount and shear stresses between 0.55mPa and 24mPa induced osteogenic differentiation. This study demonstrates the feasibility to drive cell behavior of human mesenchymal stromal cells by the flow velocity applied in agreement with mechanical loading mimicking early fracture healing (vlow) or bone remodeling (vhigh). These results can be used in the future to tightly control the behavior of human mesenchymal stromal cells towards proliferation or differentiation. Additionally, the combination of experiment and simulation presented is a strong tool to link biological responses to mechanical stimulation and can be applied to various in-vitro cultures to improve the understanding of the cause-effect relationship of mechanical loading.
Collapse
|
67
|
Zujur D, Kanke K, Lichtler AC, Hojo H, Chung UI, Ohba S. Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions. SCIENCE ADVANCES 2017; 3:e1602875. [PMID: 28508073 PMCID: PMC5429032 DOI: 10.1126/sciadv.1602875] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/13/2017] [Indexed: 05/23/2023]
Abstract
The development of in vitro models for the maintenance and differentiation of pluripotent stem cells (PSCs) is an active area of stem cell research. The strategies used so far are based mainly on two-dimensional (2D) cultures, in which cellular phenotypes are regulated by soluble factors. We show that a 3D culture system with atelocollagen porous scaffolds can significantly improve the outcome of the current platforms intended for the maintenance and lineage specification of mouse PSCs (mPSCs). Unlike 2D conditions, the 3D conditions maintained the undifferentiated state of mouse embryonic stem cells (mESCs) without exogenous stimulation and also supported endoderm, mesoderm, and ectoderm differentiation of mESCs under serum-free conditions. Moreover, 3D mPSC-derived mesodermal cells showed accelerated osteogenic differentiation, giving rise to functional osteoblast-osteocyte populations within calcified structures. The present strategy offers a 3D platform suitable for the formation of organoids that mimic in vivo organs containing various cell types, and it may be adaptable to the generation of ectoderm-, mesoderm-, and endoderm-derived tissues when combined with appropriate differentiation treatments.
Collapse
Affiliation(s)
- Denise Zujur
- Department of Bioengineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kosuke Kanke
- Department of Sensory and Motor System Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Alexander C. Lichtler
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Hironori Hojo
- Department of Bioengineering, University of Tokyo, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Ung-il Chung
- Department of Bioengineering, University of Tokyo, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, University of Tokyo, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
68
|
Blanquer SBG, Werner M, Hannula M, Sharifi S, Lajoinie GPR, Eglin D, Hyttinen J, Poot AA, Grijpma DW. Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds. Biofabrication 2017; 9:025001. [DOI: 10.1088/1758-5090/aa6553] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
69
|
Varley MC, Markaki AE, Brooks RA. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors. Tissue Eng Part A 2017; 23:522-534. [PMID: 28125920 PMCID: PMC5467119 DOI: 10.1089/ten.tea.2016.0357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s−1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05).
Collapse
Affiliation(s)
- Mark C Varley
- 1 Department of Engineering, Cambridge University , Cambridge, United Kingdom
| | - Athina E Markaki
- 1 Department of Engineering, Cambridge University , Cambridge, United Kingdom
| | - Roger A Brooks
- 2 Division of Trauma and Orthopaedic Surgery, Cambridge University , Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
70
|
Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1047-1056. [DOI: 10.1016/j.msec.2016.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
|
71
|
Wittkowske C, Reilly GC, Lacroix D, Perrault CM. In Vitro Bone Cell Models: Impact of Fluid Shear Stress on Bone Formation. Front Bioeng Biotechnol 2016; 4:87. [PMID: 27896266 PMCID: PMC5108781 DOI: 10.3389/fbioe.2016.00087] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023] Open
Abstract
This review describes the role of bone cells and their surrounding matrix in maintaining bone strength through the process of bone remodeling. Subsequently, this work focusses on how bone formation is guided by mechanical forces and fluid shear stress in particular. It has been demonstrated that mechanical stimulation is an important regulator of bone metabolism. Shear stress generated by interstitial fluid flow in the lacunar-canalicular network influences maintenance and healing of bone tissue. Fluid flow is primarily caused by compressive loading of bone as a result of physical activity. Changes in loading, e.g., due to extended periods of bed rest or microgravity in space are associated with altered bone remodeling and formation in vivo. In vitro, it has been reported that bone cells respond to fluid shear stress by releasing osteogenic signaling factors, such as nitric oxide, and prostaglandins. This work focusses on the application of in vitro models to study the effects of fluid flow on bone cell signaling, collagen deposition, and matrix mineralization. Particular attention is given to in vitro set-ups, which allow long-term cell culture and the application of low fluid shear stress. In addition, this review explores what mechanisms influence the orientation of collagen fibers, which determine the anisotropic properties of bone. A better understanding of these mechanisms could facilitate the design of improved tissue-engineered bone implants or more effective bone disease models.
Collapse
Affiliation(s)
- Claudia Wittkowske
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Gwendolen C Reilly
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK; Department of Material Science, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Cecile M Perrault
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
72
|
Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Clin Orthop Relat Res 2016; 474:2373-2383. [PMID: 27154533 PMCID: PMC5052186 DOI: 10.1007/s11999-016-4833-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. QUESTIONS/PURPOSES (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? METHODS PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. RESULTS Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease in ductility compared with PEEK-IM and demonstrated fatigue strength > 38 MPa at one million cycles. All PEEK-SP groups also supported greater proliferation and cell-mediated mineralization compared with smooth PEEK and Ti6Al4V. CONCLUSIONS The PEEK-SP formulations evaluated in this study maintained favorable mechanical properties that merit further investigation into their use in load-bearing orthopaedic applications and supported greater in vitro osteogenic differentiation compared with smooth PEEK and Ti6Al4V. These results are independent of pore sizes ranging 200 µm to 508 µm. CLINICAL RELEVANCE PEEK-SP may provide enhanced osseointegration compared with current implants while maintaining the structural integrity to be considered for several load-bearing orthopaedic applications such as spinal fusion or soft tissue repair.
Collapse
|
73
|
Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast Differentiation at a Glance. Med Sci Monit Basic Res 2016; 22:95-106. [PMID: 27667570 PMCID: PMC5040224 DOI: 10.12659/msmbr.901142] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ossification is a tightly regulated process, performed by specialized cells called osteoblasts. Dysregulation of this process may cause inadequate or excessive mineralization of bones or ectopic calcification, all of which have grave consequences for human health. Understanding osteoblast biology may help to treat diseases such as osteogenesis imperfecta, calcific heart valve disease, osteoporosis, and many others. Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from mesenchymal progenitors, either directly or via an osteochondroprogenitor. The direct pathway is typical for intramembranous ossification of the skull and clavicles, while the latter is a hallmark of endochondral ossification of the axial skeleton and limbs. The pathways merge at the level of preosteoblasts, which progress through 3 stages: proliferation, matrix maturation, and mineralization. Osteoblasts can also differentiate into osteocytes, which are stellate cells populating narrow interconnecting passages within the bone matrix. The key molecular switch in the commitment of mesenchymal progenitors to osteoblast lineage is the transcription factor cbfa/runx2, which has multiple upstream regulators and a wide variety of targets. Upstream is the Wnt/Notch system, Sox9, Msx2, and hedgehog signaling. Cofactors of Runx2 include Osx, Atf4, and others. A few paracrine and endocrine factors serve as coactivators, in particular, bone morphogenetic proteins and parathyroid hormone. The process is further fine-tuned by vitamin D and histone deacetylases. Osteoblast differentiation is subject to regulation by physical stimuli to ensure the formation of bone adequate for structural and dynamic support of the body. Here, we provide a brief description of the various stimuli that influence osteogenesis: shear stress, compression, stretch, micro- and macrogravity, and ultrasound. A complex understanding of factors necessary for osteoblast differentiation paves a way to introduction of artificial bone matrices.
Collapse
Affiliation(s)
- Arkady Rutkovskiy
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvar Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
74
|
Latifi N, Heris HK, Thomson SL, Taher R, Kazemirad S, Sheibani S, Li-Jessen NYK, Vali H, Mongeau L. A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications. Tissue Eng Part C Methods 2016; 22:823-38. [PMID: 27537192 DOI: 10.1089/ten.tec.2016.0053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies.
Collapse
Affiliation(s)
- Neda Latifi
- 1 Department of Mechanical Engineering, McGill University , Montreal, Canada
| | - Hossein K Heris
- 1 Department of Mechanical Engineering, McGill University , Montreal, Canada
| | - Scott L Thomson
- 2 Department of Mechanical Engineering, Brigham Young University , Provo, Utah
| | - Rani Taher
- 1 Department of Mechanical Engineering, McGill University , Montreal, Canada
| | - Siavash Kazemirad
- 1 Department of Mechanical Engineering, McGill University , Montreal, Canada
| | - Sara Sheibani
- 3 Department of Anatomy and Cell Biology, McGill University , Montreal, Canada
| | - Nicole Y K Li-Jessen
- 4 School of Communication Sciences and Disorders, McGill University , Montreal, Canada
| | - Hojatollah Vali
- 3 Department of Anatomy and Cell Biology, McGill University , Montreal, Canada
| | - Luc Mongeau
- 1 Department of Mechanical Engineering, McGill University , Montreal, Canada
| |
Collapse
|
75
|
Zhao L, Fan C, Zhang Y, Yang Y, Wang D, Deng C, Hu W, Ma Z, Jiang S, Di S, Qin Z, Lv J, Sun Y, Yi W. Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling. Sci Rep 2016; 6:28752. [PMID: 27418435 PMCID: PMC4945870 DOI: 10.1038/srep28752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Adiponectin has been demonstrated to protect the cardiovascular system and bone marrow mesenchymal stem cells (BMSCs). However, it is unclear whether adiponectin can protect BMSCs against flow shear stress (FSS). In this study, our aim was to explore the effects of adiponectin on BMSCs and to explore the role of AMP-activated protein kinase (AMPK) signaling in this process. Shear stress significantly inhibits the survival and increases the apoptosis of BMSCs in an intensity-dependent manner. The expression levels of TGF-β, bFGF, VEGF, PDGF, and Bcl2 are simultaneously reduced, and the phosphorylation levels of AMPK and ACC, as well as the expression level of Bax, are increased. Supplementation with adiponectin promotes the survival of BMSCs; reverses the changes in the expression levels of TGF-β, bFGF, VEGF, PDGF, Bcl2, and Bax; and further amplifies the phosphorylation of AMPK and ACC. Furthermore, the protective effects of adiponectin can be partially neutralized by AMPK siRNA. In summary, we have demonstrated for the first time that adiponectin can effectively protect BMSCs from FSS and that this effect depends, at least in part, on the activation of AMPK signaling.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.,Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yu Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Shouyi Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhigang Qin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Jianjun Lv
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
76
|
Rosa N, Simoes R, Magalhães FD, Marques AT. From mechanical stimulus to bone formation: A review. Med Eng Phys 2016; 37:719-28. [PMID: 26117332 DOI: 10.1016/j.medengphy.2015.05.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 05/12/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023]
Abstract
Bone is a remarkable tissue that can respond to external stimuli. The importance of mechanical forces on the mass and structural development of bone has long been accepted. This adaptation behaviour is very complex and involves multidisciplinary concepts, and significant progress has recently been made in understanding this process. In this review, we describe the state of the art studies in this area and highlight current insights while simultaneously clarifying some basic yet essential topics related to the origin of mechanical stimulus in bone, the biomechanisms associated with mechanotransduction, the nature of physiological bone stimuli and the test systems most commonly used to study the mechanical stimulation of bone.
Collapse
Affiliation(s)
- Natacha Rosa
- DEMec, Faculty of Engineering, University of Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
| | - Ricardo Simoes
- Polytechnic Institute of Cávado and Ave, School of Technology, Campus do IPCA, 4750-810 Barcelos, Portugal; Institute for Polymers and Composites IPC/I3N, University of Minho, Campus de Azurem, 4800-058 Guimarães, Portugal
| | - Fernão D Magalhães
- LEPABE - Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
| | - Antonio Torres Marques
- DEMec, Faculty of Engineering, University of Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
77
|
Ng J, Bernhard J, Vunjak-Novakovic G. Mesenchymal Stem Cells for Osteochondral Tissue Engineering. Methods Mol Biol 2016; 1416:35-54. [PMID: 27236665 DOI: 10.1007/978-1-4939-3584-0_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSC) are of major interest in regenerative medicine, as they are easily harvested from a variety of sources (including bone marrow and fat aspirates) and they are able to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss the limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, current advances enable engineering of physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease.
Collapse
Affiliation(s)
- Johnathan Ng
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY, 10032, USA
| | - Jonathan Bernhard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY, 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY, 10032, USA. .,Departments of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
78
|
Cellular Nutrition in Complex Three-Dimensional Scaffolds: A Comparison between Experiments and Computer Simulations. Int J Biomater 2015; 2015:584362. [PMID: 26539216 PMCID: PMC4619933 DOI: 10.1155/2015/584362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/30/2015] [Indexed: 12/22/2022] Open
Abstract
Studies on bone cell ingrowth into synthetic, porous three-dimensional (3D) implants showed difficulties arising from impaired cellular proliferation and differentiation in the core region of these scaffolds with increasing scaffold volume in vitro. Therefore, we developed an in vitro perfusion cell culture module, which allows the analysis of cells in the interior of scaffolds under different medium flow rates. For each flow rate the cell viability was measured and compared with results from computer simulations that predict the local oxygen supply and shear stress inside the scaffold based on the finite element method. We found that the local cell viability correlates with the local oxygen concentration and the local shear stress. On the one hand the oxygen supply of the cells in the core becomes optimal with a higher perfusion flow. On the other hand shear stress caused by high flow rates impedes cell vitality, especially at the surface of the scaffold. Our results demonstrate that both parameters must be considered to derive an optimal nutrient flow rate.
Collapse
|
79
|
Poon C, Boughton P, Ruys AJ. A dynamic perfusion bioreactor approach for engineering respiratory tissues in-vitro. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:6224-7. [PMID: 24111162 DOI: 10.1109/embc.2013.6610975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vitro culture of respiratory tissues poses many challenges due to the intrinsic complexity of the respiratory system. Multiple cellular phenotypes comprise the respiratory epithelium and operate under dynamic, gas-interchanging conditions that should be replicated for near-physiologic cultivation of functional tissues in vitro. A novel biomimetic perfusion bioreactor system has been proposed to reconstitute key functional conditions of the human lung. This portable system consists of several biologically-inspired components: (i) a 3-dimensional (3-D) elastomeric soft tissue scaffold construct, (ii) a mechanical actuator, (iii) a perfusion system and (iv) gaseous exchange capabilities. These integrated components operate synergistically to create a unique, dynamic air-liquid interface (ALI) environment that allows controlled application of physiological and pathological strain while complementing standard cell culture techniques. This system holds potential for engineering 3-D tissues to meet growing demand for a range of applications, from more ethical and efficient pharmaceutical screening to clinical graft transplants.
Collapse
|
80
|
Cyclic Stretch and Perfusion Bioreactor for Conditioning Large Diameter Engineered Tissue Tubes. Ann Biomed Eng 2015; 44:1785-97. [PMID: 26307332 DOI: 10.1007/s10439-015-1437-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/19/2015] [Indexed: 01/19/2023]
Abstract
A cyclic stretch and perfusion bioreactor was designed to culture large diameter engineered tissue tubes for heart valve applications. In this bioreactor, tubular tissues consisting of dermal fibroblasts in a sacrificial fibrin gel scaffold were placed over porated latex support sleeves and mounted in a custom bioreactor. Pulsatile flow of culture medium into the system resulted in cyclic stretching as well as ablumenal, lumenal, and transmural flow (perfusion). In this study, lumenal remodeling, composition, and mechanical strength and stiffness were compared for tissues cyclically stretched in this bioreactor on either the porated latex sleeves or solid latex sleeves, which did not permit lumenal or transmural flow. Tissues cyclically stretched on porated sleeves had regions of increased lumenal remodeling and cellularity that were localized to the columns of pores in the latex sleeve. A CFD model was developed with COMSOL Multiphysics(®) to predict flow of culture medium in and around the tissue, and the predictions suggest that the enhanced lumenal remodeling was likely a result of elevated shear stresses and transmural velocity in these regions. This work highlights the beneficial effects of increased nutrient transport and flow stimulation for accelerating in vitro tissue remodeling.
Collapse
|
81
|
Influence of Different Three-Dimensional Open Porous Titanium Scaffold Designs on Human Osteoblasts Behavior in Static and Dynamic Cell Investigations. MATERIALS 2015; 8:5490-5507. [PMID: 28793519 PMCID: PMC5455497 DOI: 10.3390/ma8085259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/30/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration.
Collapse
|
82
|
An Experimental and Computational Investigation of Bone Formation in Mechanically Loaded Trabecular Bone Explants. Ann Biomed Eng 2015. [DOI: 10.1007/s10439-015-1378-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
83
|
Kleinhans C, Mohan RR, Vacun G, Schwarz T, Haller B, Sun Y, Kahlig A, Kluger P, Finne-Wistrand A, Walles H, Hansmann J. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects. Biotechnol J 2015; 10:1727-38. [PMID: 26011163 PMCID: PMC4744951 DOI: 10.1002/biot.201400813] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/20/2015] [Accepted: 05/19/2015] [Indexed: 12/28/2022]
Abstract
Critical size bone defects and non‐union fractions are still challenging to treat. Cell‐loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor‐made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L‐lactide‐co‐caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.
Collapse
Affiliation(s)
- Claudia Kleinhans
- Institute for Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Department of Orthopedics, Medical University Graz, Graz, Austria
| | - Ramkumar Ramani Mohan
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany Department
| | - Gabriele Vacun
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany Department
| | - Thomas Schwarz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany Department
| | | | - Yang Sun
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alexander Kahlig
- Institute for Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Petra Kluger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany Department
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Heike Walles
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany Department
| | - Jan Hansmann
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany. .,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany Department.
| |
Collapse
|
84
|
ZHANG XIANBIN, GONG HE. SIMULATION ON TISSUE DIFFERENTIATIONS FOR DIFFERENT ARCHITECTURE DESIGNS IN BONE TISSUE ENGINEERING SCAFFOLD BASED ON CELLULAR STRUCTURE MODEL. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In bone tissue engineering, mechanical stimuli are among the key factors affecting cell proliferation and differentiation. This study aimed to investigate the effects of different inlet fluid velocities and axial strains on the differentiation of bone marrow mesenchymal stem cells (BMSCs) on the surface of scaffolds with different morphologies. Five three-dimensional bone scaffold architectures with 65% porosity were designed using typical cellular structural models of trabecular bone. Apparent compressive strains between 0% and 5% were applied to simulate an unconfined compression test. Strain distributions were analyzed on the wall surface of the solid model. The interstitial fluid flow at inlet velocities ranging between 0.01 mm/s and 1 mm/s was applied to interconnected pores, simulating a steady state flow in the scaffold. The shear stress distributions on the surface of the scaffolds were calculated. The differentiation of BMSCs on the surface of the scaffolds with different morphologies was predicted according to mechanoregulation theory. This study shows that different levels of mechanical stimuli can be generated as a result of different scaffold morphologies under compressive loading and fluid flow to satisfy the mechanical requirements for different bone defect sites.
Collapse
Affiliation(s)
- XIANBIN ZHANG
- Department of Engineering Mechanics, Jilin University, Changchun 130025, P. R. China
| | - HE GONG
- Department of Engineering Mechanics, Jilin University, Changchun 130025, P. R. China
| |
Collapse
|
85
|
Shakhawath Hossain M, Bergstrom DJ, Chen XB. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor. Biotechnol Bioeng 2015; 112:2601-10. [PMID: 26061385 DOI: 10.1002/bit.25678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/29/2022]
Abstract
The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process.
Collapse
Affiliation(s)
- Md Shakhawath Hossain
- Mechanical Engineering Department, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| | - D J Bergstrom
- Mechanical Engineering Department, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - X B Chen
- Mechanical Engineering Department, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|
86
|
Yao MH, Yang J, Song JT, Zhao DH, Du MS, Zhao YD, Liu B. Directed self-assembly of polypeptide-engineered physical microgels for building porous cell-laden hydrogels. Chem Commun (Camb) 2015; 50:9405-8. [PMID: 25007229 DOI: 10.1039/c4cc04018j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel approach to build porous cell-laden hydrogels through the self-assembly of coiled-coil polypeptides on the surface of physical microgels was developed. Both the extracellular microenvironments of pores and physical microgels within assembled constructs could be tailored simultaneously by tuning the polypeptide and morphological features of microgels.
Collapse
Affiliation(s)
- Ming-Hao Yao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
87
|
Siddiqui N, Pramanik K, Jabbari E. Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:76-83. [PMID: 26046270 DOI: 10.1016/j.msec.2015.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/28/2015] [Accepted: 05/02/2015] [Indexed: 11/16/2022]
Abstract
The objective of this work was to investigate material properties and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in genipin (GN) crosslinked chitosan/nano β-tricalcium phosphate (CS/nano β-TCP) scaffolds, and compare the results with tripolyphosphate (TPP) crosslinked scaffolds. Porous crosslinked CS/nano β-TCP scaffolds were produced by freeze-gelation using GN (CBG scaffold) and TPP (CBT scaffold) as crosslinkers. The prepared CBT and CBG scaffolds were characterized with respect to porosity, pore size, water content, wettability, compressive strength, mass loss, and osteogenic differentiation of hMSCs. All scaffolds displayed interconnected honeycomb-like microstructures. There was a significant difference between the average pore size, porosity, contact angle, and percent swelling of CBT and CBG scaffolds. The average pore size of CBG scaffolds was higher than CBT, the porosity of CBG was lower than CBT, the water contact angle of CBG was higher than CBT, and the percent swelling of CBG was lower than CBT. At a given crosslinker concentration, there was not a significant difference in compressive modulus and mass loss of CBG and CBT scaffolds. Metabolic activity of hMSCs seeded in CBG scaffolds was slightly higher than CBT. Furthermore, CBG scaffolds displayed slightly higher extent of mineralization after 21 days of incubation in osteogenic medium compared to CBT.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
88
|
Gelinsky M, Bernhardt A, Milan F. Bioreactors in tissue engineering: Advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Gelinsky
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Anne Bernhardt
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Falk Milan
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
89
|
Costa PF, Hutmacher DW, Theodoropoulos C, Gomes ME, Reis RL, Vaquette C. Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs. Adv Healthc Mater 2015; 4:864-73. [PMID: 25721231 DOI: 10.1002/adhm.201400591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/08/2015] [Indexed: 11/05/2022]
Abstract
The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Pedro F. Costa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Avepark-Zona Industrial da Gandra; S. Cláudio do Barco; 4806-09 Caldas das Taipas, Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Manuela E. Gomes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Avepark-Zona Industrial da Gandra; S. Cláudio do Barco; 4806-09 Caldas das Taipas, Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Avepark-Zona Industrial da Gandra; S. Cláudio do Barco; 4806-09 Caldas das Taipas, Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Cédryck Vaquette
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| |
Collapse
|
90
|
Paulsen SJ, Miller JS. Tissue vascularization through 3D printing: Will technology bring us flow? Dev Dyn 2015; 244:629-40. [PMID: 25613150 DOI: 10.1002/dvdy.24254] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. RESULTS 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. CONCLUSIONS As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases.
Collapse
Affiliation(s)
- S J Paulsen
- Department of Bioengineering, Rice University, Houston, Texas
| | | |
Collapse
|
91
|
Panda N, Bissoyi A, Pramanik K, Biswas A. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:521-32. [DOI: 10.1016/j.msec.2014.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 10/12/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022]
|
92
|
Zong C, Wang M, Yang F, Chen G, Chen J, Tang Z, Liu Q, Gao C, Ma L, Wang J. A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs. J Tissue Eng Regen Med 2015; 11:966-976. [DOI: 10.1002/term.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 07/22/2014] [Accepted: 12/09/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Chen Zong
- Laboratory of Stem Cells, Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
- Tumor Immunology and Gene Therapy Centre, Eastern Hepatobiliary Surgery Hospital; The Second Military Medical University; Shanghai China
| | - Meicong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou China
| | - Fuchun Yang
- Hepatic Biliary Pancreatic Surgery, The First Affiliated Hospital; Zhejiang University; Hangzhou Zhejiang China
| | - Guojun Chen
- Division of Paediatrics; Zhejiang General Hospital of Armed Police Forces; Jiaxing City Zhejiang China
| | - Jiarong Chen
- Laboratory of Stem Cells, Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Zihua Tang
- Laboratory of Stem Cells, Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Quanwen Liu
- Laboratory of Stem Cells, Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou China
| | - Jinfu Wang
- Laboratory of Stem Cells, Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
93
|
Bouet G, Marchat D, Cruel M, Malaval L, Vico L. In VitroThree-Dimensional Bone Tissue Models: From Cells to Controlled and Dynamic Environment. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:133-56. [DOI: 10.1089/ten.teb.2013.0682] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guenaelle Bouet
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - David Marchat
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR 5307, Saint-Etienne, France
| | - Magali Cruel
- University of Lyon, LTDS, UMR CNRS 5513, Ecole Centrale de Lyon, Ecully, France
| | - Luc Malaval
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
94
|
Zhang Z, Yuan L, Lee PD, Jones E, Jones JR. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants. J Biomed Mater Res B Appl Biomater 2014; 102:1689-99. [PMID: 24664988 PMCID: PMC4288932 DOI: 10.1002/jbm.b.33146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 01/05/2023]
Abstract
Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier-Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
95
|
Development of 3D in vitro technology for medical applications. Int J Mol Sci 2014; 15:17938-62. [PMID: 25299693 PMCID: PMC4227198 DOI: 10.3390/ijms151017938] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering.
Collapse
|
96
|
Birmingham E, Kreipke TC, Dolan EB, Coughlin TR, Owens P, McNamara LM, Niebur GL, McHugh PE. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann Biomed Eng 2014; 43:1036-50. [PMID: 25281407 DOI: 10.1007/s10439-014-1135-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/20/2014] [Indexed: 11/25/2022]
Abstract
Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters.
Collapse
Affiliation(s)
- E Birmingham
- Biomechanics Research Centre (BMEC), Mechanical and Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, 2nd Floor Engineering Building, Galway, Ireland,
| | | | | | | | | | | | | | | |
Collapse
|
97
|
McCoy RJ, Widaa A, Watters KM, Wuerstle M, Stallings RL, Duffy GP, O'Brien FJ. Orchestrating osteogenic differentiation of mesenchymal stem cells--identification of placental growth factor as a mechanosensitive gene with a pro-osteogenic role. Stem Cells 2014; 31:2420-31. [PMID: 23897668 DOI: 10.1002/stem.1482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 01/09/2023]
Abstract
Skeletogenesis is initiated during fetal development and persists through adult life as either a remodeling process in response to homeostatic regulation or as a regenerative process in response to physical injury. Mesenchymal stem cells (MSCs) play a crucial role providing progenitor cells from which osteoblasts, bone matrix forming cells are differentiated. The mechanical environment plays an important role in regulating stem cell differentiation into osteoblasts, however, the mechanisms by which MSCs respond to mechanical stimuli are yet to be fully elucidated. To increase understanding of MSC mechanotransuction and osteogenic differentiation, this study aimed to identify novel, mechanically augmented genes and pathways with pro-osteogenic functionality. Using collagen glycoaminoglycan scaffolds as mimics of native extracellular matrix, to create a 3D environment more representative of that found in bone, MSC-seeded constructs were mechanically stimulated in a flow-perfusion bioreactor. Global gene expression profiling techniques were used to identify potential candidates warranting further investigation. Of these, placental growth factor (PGF) was selected and expression levels were shown to strongly correlate to both the magnitude and duration of mechanical stimulation. We demonstrated that PGF gene expression was modulated through an actin polymerization-mediated mechanism. The functional role of PGF in modulating MSC osteogenic differentiation was interrogated, and we showed a concentration-dependent response whereby low concentrations exhibited the strongest pro-osteogenic effect. Furthermore, pre-osteoclast migration and differentiation, as well as endothelial cell tubule formation also maintained concentration-dependent responses to PGF, suggesting a potential role for PGF in bone resorption and angiogenesis, processes key to bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Ryan J McCoy
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | | | | | | | | | | | | |
Collapse
|
98
|
Du D, Asaoka T, Ushida T, Furukawa KS. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication 2014; 6:045002. [DOI: 10.1088/1758-5082/6/4/045002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
99
|
Sonnaert M, Papantoniou I, Bloemen V, Kerckhofs G, Luyten FP, Schrooten J. Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation. J Tissue Eng Regen Med 2014; 11:519-530. [PMID: 25186024 DOI: 10.1002/term.1951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/07/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
Abstract
Perfusion bioreactor systems have shown to be a valuable tool for the in vitro development of three-dimensional (3D) cell-carrier constructs. Their use for cell expansion, however, has been much less explored. Since maintenance of the initial cell phenotype is essential in this process, it is imperative to obtain insight into the bioreactor-related variables determining cell fate. Therefore, this study investigated the influence of fluid flow-induced shear stress on the proliferation, differentiation and matrix deposition of human periosteal-derived cells in the absence of additional differentiation-inducing stimuli; 120 000 cells were seeded on additive manufactured 3D Ti6Al4V scaffolds and cultured for up to 28 days at different flow rates in the range 0.04-6 ml/min. DNA measurements showed, on average, a three-fold increase in cell content for all perfused conditions in comparison to static controls, whereas the magnitude of the flow rate did not have an influence. Contrast-enhanced nanofocus X-ray computed tomography showed substantial formation of an engineered neotissue in all perfused conditions, resulting in a filling (up to 70%) of the total internal void volume, and no flow rate-dependent differences were observed. The expression of key osteogenic markers, such as RunX2, OCN, OPN and Col1, did not show any significant changes in comparison to static controls after 28 days of culture, with the exception of OSX at high flow rates. We therefore concluded that, in the absence of additional osteogenic stimuli, the investigated perfusion conditions increased cell proliferation but did not significantly enhance osteogenic differentiation, thus allowing for this process to be used for cell expansion. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Sonnaert
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
| | - I Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Katholieke Universiteit Leuven, Belgium
| | - V Bloemen
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Biomedical Engineering Research Team, Groep T, Leuven Engineering College (Association Katholieke Universiteit Leuven), Belgium
| | - G Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium.,Biomechanics Research Unit, Université de Liege, Belgium
| | - F P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Katholieke Universiteit Leuven, Belgium
| | - J Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Belgium.,Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
100
|
Pretreatment with mechano-growth factor E peptide protects bone marrow mesenchymal cells against damage by fluid shear stress. Biotechnol Lett 2014; 36:2559-69. [PMID: 25129046 DOI: 10.1007/s10529-014-1625-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/06/2014] [Indexed: 01/16/2023]
Abstract
Improper fluid shear stress (FSS) can cause serious damages to bone marrow mesenchymal stem cells (MSCs). Mechano-growth factor (MGF) E peptide pretreatment was proposed to protect MSCs against FSS damage in this study. MSCs were exposed to FSS for 30 min after they were pretreated with MGF E peptide for 24 h. Then, the effects of MGF E peptide on the viability, proliferation and cell apoptosis of MSCs were investigated. MGF E peptide pretreatment could recover the cellular metabolic activity of MSCs reduced by 72 dyne cm(-2) FSS and had a synergistic effect with FSS on the cellular metabolic viability of MSCs under 24 and 72 dyne cm(-2) FSS. These results suggested that MGF E peptide pretreatment could be an effective method for the protection of FSS damage in bone tissue engineering.
Collapse
|