51
|
Abstract
Skeletal muscle atrophy attributable to muscular inactivity has significant adverse functional consequences. While the initiating physiological event leading to atrophy seems to be the loss of muscle tension and a good deal of the physiology of muscle atrophy has been characterized, little is known about the triggers or the molecular signaling events underlying this process. Decreases in protein synthesis and increases in protein degradation both have been shown to contribute to muscle protein loss due to disuse, and recent work has delineated elements of both synthetic and proteolytic processes underlying muscle atrophy. It is also becoming evident that interactions among known proteolytic pathways (ubiquitin-proteasome, lysosomal, and calpain) are involved in muscle proteolysis during atrophy. Factors such as TNF-alpha, glucocorticoids, myostatin, and reactive oxygen species can induce muscle protein loss under specified conditions. Also, it is now apparent that the transcription factor NF-kappaB is a key intracellular signal transducer in disuse atrophy. Transcriptional profiles of atrophying muscle show both up- and downregulation of various genes over time, thus providing further evidence that there are multiple concurrent processes involved in muscle atrophy. The purpose of this review is to synthesize our current understanding of the molecular regulation of muscle atrophy. We also discuss how ongoing work should uncover more about the molecular underpinnings of muscle wasting, particularly that due to disuse.
Collapse
Affiliation(s)
- Robert W Jackman
- Boston University, Department of Health Sciences, 635 Commonwealth Ave., Rm. 443, Boston, MA 02215, USA
| | | |
Collapse
|
52
|
Durham WJ, Li YP, Gerken E, Farid M, Arbogast S, Wolfe RR, Reid MB. Fatiguing exercise reduces DNA binding activity of NF-kappaB in skeletal muscle nuclei. J Appl Physiol (1985) 2004; 97:1740-5. [PMID: 15208298 DOI: 10.1152/japplphysiol.00088.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study tested the hypothesis that skeletal muscle contraction activates nuclear factor-kappaB (NF-kappaB), a putative regulator of muscle protein breakdown. Muscle biopsies were obtained from the vastus lateralis of healthy humans before, immediately after, and 1 h after fatiguing resistance exercise of the lower limbs. Biopsies were analyzed for nuclear NF-kappaB DNA binding activity by using electrophoretic mobility shift assay. NF-kappaB activity, measured immediately after exercise, was less than preexercise activity; after 1-h recovery, activity returned to preexercise levels. In follow-up studies in adult mice, basal NF-kappaB activity varied among individual muscles. NF-kappaB activity in diaphragm fiber bundles was decreased after a 10-min bout of fatiguing tetanic contractions in vitro. NF-kappaB activity in soleus was increased by 12 days of unloading by hindlimb suspension; this increase was reversed by 10 min of fatiguing exercise. These data provide no support for our original hypothesis. Instead, acute fatiguing exercise appears to decrease NF-kappaB activity in muscle under a variety of conditions.
Collapse
Affiliation(s)
- William J Durham
- Pulmonary and Critical Care Medicine Section, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Li YP, Chen Y, Li AS, Reid MB. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 2003; 285:C806-12. [PMID: 12773310 DOI: 10.1152/ajpcell.00129.2003] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reactive oxygen species (ROS) are thought to promote muscle atrophy in chronic wasting diseases, but the underlying mechanism has not been determined. Here we show that H2O2 stimulates ubiquitin conjugation to muscle proteins through transcriptional regulation of the enzymes (E2 and E3 proteins) that conjugate ubiquitin to muscle proteins. Incubation of C2C12 myotubes with 100 microM H2O2 increased the rate of 125I-labeled ubiquitin conjugation to muscle proteins in whole cell extracts. This response required at least 4-h exposure to H2O2 and persisted for at least 24 h. Preincubating myotubes with cycloheximide or actinomycin D blocked H2O2 stimulation of ubiquitin-conjugating activity, suggesting that gene transcription is required. Northern blot analyses revealed that H2O2 upregulates expression of specific E3 and E2 proteins that are thought to regulate muscle catabolism, including atrogin1/MAFbx, MuRF1, and E214k. These results suggest that ROS stimulate protein catabolism in skeletal muscle by upregulating the ubiquitin conjugation system.
Collapse
Affiliation(s)
- Yi-Ping Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
54
|
Abstract
An imbalance between oxidants and antioxidants is proposed in the pathogenesis of COPD. Potential alterations responsible for an imbalance in oxidant production and intra- and extracellular antioxidant defense systems are discussed with respect to COPD-related changes in the pulmonary compartment. In line with the current view of COPD as a disease with multiple systemic consequences, there is increasing evidence that imbalances in the redox milieu extend beyond the diseased lung in COPD patients. Skeletal muscle dysfunction is often observed in COPD and may result from imbalances in the redox environment of skeletal muscle. Potential triggers of oxidative stress in the muscle compartment include inflammation and hypoxia, and local sources of reactive oxygen and nitrogen species are discussed, as well the mechanisms by which skeletal muscle trophical state, contractility and fatigability may be affected by oxidative stress, resulting in skeletal muscle dysfunction.
Collapse
Affiliation(s)
- R C J Langen
- Department of Respiratory Medicine, University Hospital Maastricht, Maastricht, The Netherlands
| | | | | |
Collapse
|
55
|
Kumar A, Boriek AM. Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 2003; 17:386-96. [PMID: 12631578 DOI: 10.1096/fj.02-0542com] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ex vivo effects of passive mechanical stretch on the activation of nuclear factor-kappaB (NF-kappaB) pathways in skeletal muscles from normal and mdx mouse, a model of Duchenne muscular dystrophy (DMD), were investigated. The NF-kappaB/DNA binding activity of the diaphragm muscle was increased by the application of axial mechanical stretch in a time-dependent manner. The increased activation of NF-kappaB was associated with a concomitant increase in I-kappaB (IkappaB) kinase activity and the degradation of IkappaBalpha protein. Pretreatment of the muscles with nifedipine (a Ca2+ channel blocker) and gadolinium(III) chloride (a stretch-activated channel blocker) did not alter the level of activation of NF-kappaB, ruling out involvement of Ca2+ influx through these channels. Furthermore, N-acetyl cysteine, a free radical inhibitor, blocked the mechanical stretch-induced NF-kappaB activation, suggesting the involvement of free radicals. Compared with normal diaphragm, the basal level of NF-kappaB activity was higher in muscles from mdx mice, and it was further enhanced in mechanically stretched muscles. Furthermore, activation of NF-kappaB and increased expression of inflammatory cytokines IL-1beta and tumor necrosis factor alpha in the mdx mouse precede the onset of muscular dystrophy. Our results show that mechanical stretch activates the classical NF-kappaB pathway and this pathway could be predominately active in DMD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
56
|
Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002; 14:879-97. [PMID: 12220615 DOI: 10.1016/s0898-6568(02)00053-0] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A progressive rise of oxidative stress due to the altered reduction-oxidation (redox) homeostasis appears to be one of the hallmarks of the processes that regulate gene transcription in physiology and pathophysiology. Reactive oxygen (ROS) and nitrogen (RNS) species serve as signaling messengers for the evolution and perpetuation of the inflammatory process that is often associated with the condition of oxidative stress, which involves genetic regulation. Changes in the pattern of gene expression through ROS/RNS-sensitive regulatory transcription factors are crucial components of the machinery that determines cellular responses to oxidative/redox conditions. Transcription factors that are directly influenced by reactive species and pro-inflammatory signals include nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha). Here, I describe the basic components of the intracellular oxidative/redox control machinery and its crucial regulation of oxygen- and redox-sensitive transcription factors such as NF-kappaB and HIF-1alpha.
Collapse
Affiliation(s)
- John J Haddad
- Molecular Neuroscience Research Division, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, San Francisco, CA 94143-0542, USA.
| |
Collapse
|
57
|
Langen RCJ, Schols AMWJ, Kelders MCJM, Van Der Velden JLJ, Wouters EFM, Janssen-Heininger YMW. Tumor necrosis factor-alpha inhibits myogenesis through redox-dependent and -independent pathways. Am J Physiol Cell Physiol 2002; 283:C714-21. [PMID: 12176728 DOI: 10.1152/ajpcell.00418.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle wasting accompanies diseases that are associated with chronic elevated levels of circulating inflammatory cytokines and oxidative stress. We previously demonstrated that tumor necrosis factor-alpha (TNF-alpha) inhibits myogenic differentiation via the activation of nuclear factor-kappaB (NF-kappaB). The goal of the present study was to determine whether this process depends on the induction of oxidative stress. We demonstrate here that TNF-alpha causes a decrease in reduced glutathione (GSH) during myogenic differentiation of C(2)C(12) cells, which coincides with an elevated generation of reactive oxygen species. Supplementation of cellular GSH with N-acetyl-l-cysteine (NAC) did not reverse the inhibitory effects of TNF-alpha on troponin I promoter activation and only partially restored creatine kinase activity in TNF-alpha-treated cells. In contrast, the administration of NAC before treatment with TNF-alpha almost completely restored the formation of multinucleated myotubes. NAC decreased TNF-alpha-induced activation of NF-kappaB only marginally, indicating that the redox-sensitive component of the inhibition of myogenic differentiation by TNF-alpha occurred independently, or downstream of NF-kappaB. Our observations suggest that the inhibitory effects of TNF-alpha on myogenesis can be uncoupled in a redox-sensitive component affecting myotube formation and a redox independent component affecting myogenic protein expression.
Collapse
Affiliation(s)
- Ramon C J Langen
- Department of Pulmonology, Maastricht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
58
|
Reid MB, Durham WJ. Generation of reactive oxygen and nitrogen species in contracting skeletal muscle: potential impact on aging. Ann N Y Acad Sci 2002; 959:108-16. [PMID: 11976190 DOI: 10.1111/j.1749-6632.2002.tb02087.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the early 1980s biologists have recognized that skeletal muscle generates free radicals. Of particular interest are two closely related redox cascades--reactive oxygen species (ROS) and nitric oxide (NO) derivatives. The ROS cascade is initiated by superoxide anion radicals derived from the mitochondrial electron transport chain, the membrane-associated NAD(P)H oxidase complex, or other sources. NO is produced by two NO synthase isoforms constitutively expressed by muscle fibers. ROS and NO derivatives are produced continually and are detectable in both the cytosolic and extracellular compartments. Production increases during strenuous exercise. Both ROS and NO modulate contractile function. Under basal conditions, low levels of ROS enhance force production. Excessive ROS accumulation inhibits force, for example, during fatiguing exercise. NO inhibits skeletal muscle contraction, an effect that is partially mediated by cyclic GMP as a second messenger. With aging, redox modulation of muscle contraction may be altered by changes in the rates of ROS and NO production, the levels of endogenous antioxidants that buffer ROS and NO, and the sensitivities of regulatory proteins to ROS and NO action. The impact of aging on contractile regulation depends on the relative magnitude of these changes and their net effects on ROS and NO activities at the cellular level.
Collapse
Affiliation(s)
- Michael B Reid
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | |
Collapse
|
59
|
Reid MB, Li YP. Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res 2002; 2:269-72. [PMID: 11686894 PMCID: PMC59514 DOI: 10.1186/rr67] [Citation(s) in RCA: 314] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2001] [Revised: 06/02/2001] [Accepted: 06/12/2001] [Indexed: 01/17/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a polypeptide cytokine that has been associated with muscle wasting and weakness in inflammatory disease. Despite its potential importance in muscle pathology, the direct effects of TNF-alpha on skeletal muscle have remained undefined until recently. Studies of cultured muscle cells indicate that TNF-alpha disrupts the differentiation process and can promote catabolism in mature cells. The latter response appears to be mediated by reactive oxygen species and nuclear factor-kappaB which upregulate ubiquitin/proteasome activity. This commentary outlines our current understanding of TNF-alpha effects on skeletal muscle and the mechanism of TNF-alpha action.
Collapse
Affiliation(s)
- M B Reid
- Pulmonary Section, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
60
|
Vider J, Laaksonen DE, Kilk A, Atalay M, Lehtmaa J, Zilmer M, Sen CK. Physical exercise induces activation of NF-kappaB in human peripheral blood lymphocytes. Antioxid Redox Signal 2001; 3:1131-7. [PMID: 11813986 DOI: 10.1089/152308601317203639] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Current understanding of nuclear factor-kappaB (NF-kappaB) activation is derived mostly from in vitro studies, and in vivo human data are limited. This study provides first evidence showing that physical exercise (80% maximal O2 consumption, 1 h) may trigger NF-kappaB activation, as determined by electrophoretic mobility shift assay, in peripheral blood lymphocytes of physically fit young men. Supershift assay showed that the NF-kappaB protein complex contained the transcriptionally active p65 protein. Plasma levels of NF-kappaB-directed gene products such as tumor necrosis factor-alpha and interleukin-2 receptor confirmed that physical exercise caused NF-kappaB transactivation. Exercise-induced NF-kappaB activation in lymphocytes was associated with elevated levels of lipid peroxidation by-products in the plasma.
Collapse
Affiliation(s)
- J Vider
- Department of Surgery, Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Over the past year, considerable progress has been made in our understanding of biologic actions by which tumor necrosis factor-alpha (TNF-alpha) may influence skeletal muscle metabolism. Reports published during this period highlighted three general actions with metabolic consequences: accelerated catabolism (protein loss, insulin resistance), contractile dysfunction, and disruption of myogenesis. Recent research also indicates that skeletal muscle myocytes synthesize TNF-alpha and that the cytokine functions as an endogenous mediator of muscle adaptation via autocrine/paracrine effects. These advances demonstrate the fundamental importance of TNF-alpha effects on skeletal muscle myocytes and provide a focus for future studies of intracellular mechanism.
Collapse
Affiliation(s)
- Y P Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
62
|
Li YP, Schwartz RJ. TNF-alpha regulates early differentiation of C2C12 myoblasts in an autocrine fashion. FASEB J 2001; 15:1413-5. [PMID: 11387241 DOI: 10.1096/fj.00-0632fje] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Y P Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
63
|
Abstract
A growing body of literature indicates that cytokines regulate skeletal muscle function, including gene expression and adaptive responses. Tumour necrosis factor-alpha (TNF-alpha) is the cytokine most prominently linked to muscle pathophysiology and, therefore, has been studied most extensively in muscle-based systems. TNF-alpha is associated with muscle catabolism and loss of muscle function in human diseases that range from cancer to heart failure, from arthritis to AIDS. Recent advances have established that TNF-alpha causes muscle weakness via at least two mechanisms, accelerated protein loss and contractile dysfunction. Protein loss is a chronic response that occurs over days to weeks. Changes in gene expression required for TNF-alpha induced catabolism are regulated by the transcription factor nuclear factor-kappaB which is essential for the net loss of muscle protein caused by chronic TNF-alpha exposure. Contractile dysfunction is an acute response to TNF-alpha stimulation, developing over hours and resulting in decreased force production. Both actions of TNF-alpha involve a rapid rise in endogenous oxidants as an essential step in post-receptor signal transduction. These oxidants appear to include reactive oxygen species derived from mitochondrial electron transport. Such information provides insight into the cellular and molecular mechanisms of TNF-alpha action in skeletal muscle and establishes a scientific basis for continued research into cytokine signalling.
Collapse
Affiliation(s)
- M B Reid
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
64
|
Reid MB. Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol (1985) 2001; 90:724-31. [PMID: 11160074 DOI: 10.1152/jappl.2001.90.2.724] [Citation(s) in RCA: 298] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Over the past decade, reactive oxygen species (ROS) and nitric oxide (NO) derivatives have been established as physiological modulators of skeletal muscle function. This mini-review addresses the roles of these molecules as endogenous regulators of muscle contraction. The article is organized in two parts. First, established concepts are briefly outlined. This section provides an overview of ROS production by muscle, antioxidant buffers that oppose ROS effects, enzymatic synthesis of NO in muscle, the effects of endogenous ROS on contractile function, and NO as a contractile modulator. Second, a selected group of unresolved topics are highlighted. These more controversial issues include putative source(s) of regulatory ROS, the relative importance of the two NO synthase isoforms constitutively coexpressed by muscle fibers, molecular mechanisms of ROS and NO action, and the physiological relevance of redox regulation. By discussing current questions, as well as the established paradigm, this article is intended to further debate and stimulate research in this area.
Collapse
Affiliation(s)
- M B Reid
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
65
|
Li X, Moody MR, Engel D, Walker S, Clubb FJ, Sivasubramanian N, Mann DL, Reid MB. Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 2000; 102:1690-6. [PMID: 11015349 DOI: 10.1161/01.cir.102.14.1690] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We have developed a transgenic mouse with cardiac-restricted overexpression of tumor necrosis factor-alpha (TNF-alpha). These mice develop a heart failure phenotype characterized by left ventricular dysfunction and remodeling, pulmonary edema, and elevated levels of TNF-alpha in the peripheral circulation from cardiac spillover. Given that TNF-alpha causes atrophy and loss of function in respiratory muscle, we asked whether transgenic mice developed diaphragm dysfunction and whether contractile losses were caused by oxidative stress or tissue remodeling. METHODS AND RESULTS muscles excised from transgenic mice and littermate controls were studied in vitro with direct electrical stimulation. Cytosolic oxidant levels were measured with 2', 7'-dichlorofluorescin diacetate; emissions of the oxidized product were detected by fluorescence microscopy. Force generation by the diaphragm of transgenic animals was 47% less than control (13.2+/-0. 8 [+/-SEM] versus 25.1+/-0.6 N/cm(2); P:<0.001); this weakness was associated with greater intracellular oxidant levels (P:<0.025) and was partially reversed by 30-minute incubation with the antioxidant N:-acetylcysteine 10 mmol/L (P:<0.01). Exogenous TNF-alpha 500 micromol/L increased oxidant production in diaphragm of wild-type mice and caused weakness that was inhibited by N:-acetylcysteine, suggesting that changes observed in the diaphragm of transgenic animals were mediated by TNF-alpha. There were no differences in body or diaphragm weights between transgenic and control animals, nor was there evidence of muscle injury or apoptosis. CONCLUSIONS Elevated circulating levels of TNF-alpha provoke contractile dysfunction in the diaphragm through an endocrine mechanism thought to be mediated by oxidative stress.
Collapse
Affiliation(s)
- X Li
- Baylor College of Medicine and Texas Heart Institute, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Li YP, Reid MB. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1165-70. [PMID: 11003979 DOI: 10.1152/ajpregu.2000.279.4.r1165] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) regulates the transcription of a variety of genes involved in immune responses, cell growth, and cell death. However, the role of NF-kappaB in muscle biology is poorly understood. We recently reported that tumor necrosis factor-alpha (TNF-alpha) rapidly activates NF-kappaB in differentiated skeletal muscle myotubes and that TNF-alpha acts directly on the muscle cell to induce protein degradation. In the present study, we ask whether NF-kappaB mediates the protein loss induced by TNF-alpha. We addressed this problem by creating stable, transdominant negative muscle cell lines. C2C12 myoblasts were transfected with viral plasmid constructs that induce overexpression of mutant I-kappaBalpha proteins that are insensitive to degradation via the ubiquitin-proteasome pathway. These mutant proteins selectively inhibit NF-kappaB activation. We found that differentiated myotubes transfected with the empty viral vector (controls) underwent a drop in total protein content and in fast-type myosin heavy-chain content during 72 h of exposure to TNF-alpha. In contrast, total protein and fast-type myosin heavy-chain levels were unaltered by TNF-alpha in the transdominant negative cell lines. TNF-alpha did not induce apoptosis in any cell line, as assessed by DNA ladder and annexin V assays. These data indicate that NF-kappaB is an essential mediator of TNF-alpha-induced catabolism in differentiated muscle cells.
Collapse
Affiliation(s)
- Y P Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|