51
|
Wu QW, Kapfhammer JP. The Bacterial Enzyme RfxCas13d Is Less Neurotoxic Than PspCas13b and Could Be a Promising RNA Editing and Interference Tool in the Nervous System. Brain Sci 2021; 11:brainsci11081054. [PMID: 34439673 PMCID: PMC8394060 DOI: 10.3390/brainsci11081054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
RNA therapies using RNA editing and interference are currently being developed for neurological diseases. The CRISPR-Cas13 system, based on bacterial enzymes, holds great promise for developing efficient tools for RNA therapies. However, neurotoxic activity has been reported for Cas13a, and recent studies have reported toxic effects of PspCas13b and RfxCas13d during zebrafish and Drosophila embryonic development. It is important to investigate the safety of these bacterial enzymes in the context of the nervous system and neuronal development. In this study, we used mouse cerebellar Purkinje cells as a complex neuron type to test for the potential neurotoxic actions of RfxCas13d and PspCas13b. We found that PspCas13b significantly impeded the dendritic development of cultured Purkinje cells, similar to the neurotoxic action of Cas13a. In contrast, RfxCas13d did not exhibit a significant inhibition of dendritic development. A similar trend was found for axonal outgrowth. These results suggest varying neurotoxic properties for different Cas13 ortholog enzymes. We call for more studies to investigate, and possibly mitigate, the neurotoxicity of Cas13 proteins in order to improve the safety of the CRISPR-Cas13 system for RNA therapies.
Collapse
|
52
|
Xie S, Jin H, Yang F, Zheng H, Chang Y, Liao Y, Zhang Y, Zhou T, Li Y. Programmable RNA
N
1
‐Methyladenosine Demethylation by a Cas13d‐Directed Demethylase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shanshan Xie
- The Children's Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310058 China
| | - Hao Jin
- Department of Cell Biology, Zhejiang University School of Medicine Hangzhou Zhejiang 310058 China
| | - Feng Yang
- Department of Cell Biology, Zhejiang University School of Medicine Hangzhou Zhejiang 310058 China
| | - Hong Zheng
- Department of Cell Biology College of Life Science Sichuan Normal University Chengdu Sichuan 610101 China
| | - Yongxia Chang
- Department of Cell Biology, Zhejiang University School of Medicine Hangzhou Zhejiang 310058 China
| | - Ying Liao
- Department of Cell Biology College of Life Science Sichuan Normal University Chengdu Sichuan 610101 China
| | - Ye Zhang
- Department of Breast and Thyroid Surgery Southwest Hospital Army Medical University Chongqing 400038 China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine Hangzhou Zhejiang 310058 China
- Cancer Center Zhejiang University Hangzhou Zhejiang 310058 China
- Department of Molecular Genetics University of Toronto Toronto ON M5S 1A8 Canada
| | - Yang Li
- Department of Cell Biology College of Life Science Sichuan Normal University Chengdu Sichuan 610101 China
- Department of Cell Biology, Zhejiang University School of Medicine Hangzhou Zhejiang 310058 China
| |
Collapse
|
53
|
Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A, Ozsoz M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth Biol 2021; 10:1245-1267. [PMID: 34037380 DOI: 10.1021/acssynbio.1c00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decades, significant progress has been made in targeted cancer therapy. In precision oncology, molecular profiling of cancer patients enables the use of targeted cancer therapeutics. However, current diagnostic methods for molecular analysis of cancer are costly and require sophisticated equipment. Moreover, targeted cancer therapeutics such as monoclonal antibodies and small-molecule drugs may cause off-target effects and they are available for only a minority of cancer driver proteins. Therefore, there is still a need for versatile, efficient, and precise tools for cancer diagnostics and targeted cancer treatment. In recent years, the CRISPR-based genome and transcriptome engineering toolbox has expanded rapidly. Particularly, the RNA-targeting CRISPR-Cas13 system has unique biochemical properties, making Cas13 a promising tool for cancer diagnosis, therapy, and research. Cas13-based diagnostic methods allow early detection and monitoring of cancer markers from liquid biopsy samples without the need for complex instrumentation. In addition, Cas13 can be used for targeted cancer therapy through degrading and manipulating cancer-associated transcripts with high efficiency and specificity. Moreover, Cas13-mediated programmable RNA manipulation tools offer invaluable opportunities for cancer research, identification of drug-resistance mechanisms, and discovery of novel therapeutic targets. Here, we review and discuss the current use and potential applications of the CRISPR-Cas13 system in cancer diagnosis, therapy, and research. Thus, researchers will gain a deep understanding of CRISPR-Cas13 technologies, which have the potential to be used as next-generation cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Özgür Can
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ayça Nur Demir
- Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03100, Turkey
| | - Abdullah Tozluyurt
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Ahsen Özcan
- Institute of Genetic Engineering and Biotechnology, TUBITAK Marmara Research Center, Kocaeli 41470, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, 10 Mersin, Nicosia, Turkey
| |
Collapse
|
54
|
The Bacterial Enzyme Cas13 Interferes with Neurite Outgrowth from Cultured Cortical Neurons. Toxins (Basel) 2021; 13:toxins13040262. [PMID: 33916905 PMCID: PMC8067550 DOI: 10.3390/toxins13040262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023] Open
Abstract
The CRISPR-Cas13 system based on a bacterial enzyme has been explored as a powerful new method for RNA manipulation. Due to the high efficiency and specificity of RNA editing/interference achieved by this system, it is currently being developed as a new therapeutic tool for the treatment of neurological and other diseases. However, the safety of this new generation of RNA therapies is still unclear. In this study, we constructed a vector expressing CRISPR-Cas13 under a constitutive neuron-specific promoter. CRISPR-Cas13 from Leptotrichia wadei was expressed in primary cultures of mouse cortical neurons. We found that the presence of CRISPR-Cas13 impedes the development of cultured neurons. These results show a neurotoxic action of Cas13 and call for more studies to test for and possibly mitigate the toxic effects of Cas13 enzymes in order to improve CRISPR-Cas13-based tools for RNA targeting.
Collapse
|
55
|
Wei Y, Zhou Y, Liu Y, Ying W, Lv R, Zhao Q, Zhou H, Zuo E, Sun Y, Yang H, Zhou C. Indiscriminate ssDNA cleavage activity of CRISPR-Cas12a induces no detectable off-target effects in mouse embryos. Protein Cell 2021; 12:741-745. [PMID: 33797032 PMCID: PMC8403096 DOI: 10.1007/s13238-021-00824-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingsi Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruiming Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qimeng Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China
| | - Erwei Zuo
- Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
56
|
Trivedi D. Using CRISPR-Cas9-based genome engineering tools in Drosophila melanogaster. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:85-121. [PMID: 33934839 DOI: 10.1016/bs.pmbts.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster has been used as a model organism for over a century. Mutant-based analyses have been used extensively to understand the genetic basis of different cellular processes, including development, neuronal function and diseases. Most of the earlier genetic mutants and specific tools were generated by random insertions and deletion strategies and then mapped to specific genomic loci. Since all genomic regions are not equally accessible to random mutations and insertions, many genes still remain uncharacterized. Low efficiency of targeted genomic manipulation approaches that rely on homologous recombination, and difficulty in generating resources for sequence-specific endonucleases, such as ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases), could not make these gene targeting techniques very popular. However, recently RNA directed DNA endonucleases, such as CRISPR-Cas, have transformed genome engineering owing to their comparative ease, versatility, and low expense. With the added advantage of preexisting genetic tools, CRISPR-Cas-based manipulations are being extensively used in Drosophila melanogaster and simultaneously being fine-tuned for specific experimental requirements. In this chapter, I will discuss various uses of CRISPR-Cas-based genetic engineering and specific design methods in Drosophila melanogaster. I will summarize various already available tools that are being utilized in conjunction with CRISPR-Cas technology to generate specific genetic manipulation and are being optimized to address specific questions. Finally, I will discuss the future directions of Drosophila genetics research and how CRISPR-Cas can be utilized to target specific questions, addressing which has not been possible thus far.
Collapse
Affiliation(s)
- Deepti Trivedi
- National Centre for Biological Sciences-TIFR, Bengaluru, India.
| |
Collapse
|
57
|
Sun R, Brogan D, Buchman A, Yang T, Akbari OS. Ubiquitous and Tissue-specific RNA Targeting in Drosophila Melanogaster using CRISPR/CasRx. J Vis Exp 2021:10.3791/62154. [PMID: 33616113 PMCID: PMC10564239 DOI: 10.3791/62154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
CasRx, a member of the RNA-targeting Cas13 family, is a promising new addition of the CRISPR/Cas technologies in efficient gene transcript reduction with an attractive off-target profile at both cellular and organismal levels. It is recently reported that the CRISPR/CasRx system can be used to achieve ubiquitous and tissue-specific gene transcript reduction in Drosophila melanogaster. This paper details the methods from the recent work, consisting of three parts: 1) ubiquitous in vivo endogenous RNA targeting using a two-component CasRx system; 2) ubiquitous in vivo exogenous RNA targeting using a three-component CasRx system; and 3) tissue-specific in vivo RNA targeting using a three-component CasRx system. The effects of RNA targeting observed include targeted gene specific phenotypic changes, targeted RNA transcript reduction, and occasional lethality phenotypes associated with high expression of CasRx protein and collateral activity. Overall, these results showed that the CasRx system is capable of target RNA transcript reduction at the organismal level in a programmable and efficient manner, demonstrating that in vivo transcriptome targeting, and engineering is feasible and lays the foundation for future in vivo CRISPR-based RNA targeting technologies.
Collapse
Affiliation(s)
- Ruichen Sun
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California
| | - Daniel Brogan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California
| | - Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California;
| |
Collapse
|
58
|
Bosch JA, Birchak G, Perrimon N. Precise genome engineering in Drosophila using prime editing. Proc Natl Acad Sci U S A 2021; 118:e2021996118. [PMID: 33443210 PMCID: PMC7817132 DOI: 10.1073/pnas.2021996118] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Precise genome editing is a valuable tool to study gene function in model organisms. Prime editing, a precise editing system developed in mammalian cells, does not require double-strand breaks or donor DNA and has low off-target effects. Here, we applied prime editing for the model organism Drosophila melanogaster and developed conditions for optimal editing. By expressing prime editing components in cultured cells or somatic cells of transgenic flies, we precisely introduce premature stop codons in three classical visible marker genes, ebony, white, and forked Furthermore, by restricting editing to germ cells, we demonstrate efficient germ-line transmission of a precise edit in ebony to 36% of progeny. Our results suggest that prime editing is a useful system in Drosophila to study gene function, such as engineering precise point mutations, deletions, or epitope tags.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
| | - Gabriel Birchak
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
- HHMI, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
59
|
Huynh N, Depner N, Larson R, King-Jones K. A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biol 2020; 21:279. [PMID: 33203452 PMCID: PMC7670108 DOI: 10.1186/s13059-020-02193-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023] Open
Abstract
Advances in CRISPR technology have immensely improved our ability to manipulate nucleic acids, and the recent discovery of the RNA-targeting endonuclease Cas13 adds even further functionality. Here, we show that Cas13 works efficiently in Drosophila, both ex vivo and in vivo. We test 44 different Cas13 variants to identify enzymes with the best overall performance and show that Cas13 could target endogenous Drosophila transcripts in vivo with high efficiency and specificity. We also develop Cas13 applications to edit mRNAs and target mitochondrial transcripts. Our vector collection represents a versatile tool collection to manipulate gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Nhan Huynh
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Noah Depner
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Raegan Larson
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
60
|
Brogan DJ, Chaverra-Rodriguez D, Lin CP, Smidler AL, Yang T, Alcantara LM, Antoshechkin I, Liu J, Raban RR, Belda-Ferre P, Knight R, Komives EA, Akbari OS. A Sensitive, Rapid, and Portable CasRx-based Diagnostic Assay for SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.14.20212795. [PMID: 33106816 PMCID: PMC7587836 DOI: 10.1101/2020.10.14.20212795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since its first emergence from China in late 2019, the SARS-CoV-2 virus has spread globally despite unprecedented containment efforts, resulting in a catastrophic worldwide pandemic. Successful identification and isolation of infected individuals can drastically curtail virus spread and limit outbreaks. However, during the early stages of global transmission, point-of-care diagnostics were largely unavailable and continue to remain difficult to procure, greatly inhibiting public health efforts to mitigate spread. Furthermore, the most prevalent testing kits rely on reagent- and time-intensive protocols to detect viral RNA, preventing rapid and cost-effective diagnosis. Therefore the development of an extensive toolkit for point-of-care diagnostics that is expeditiously adaptable to new emerging pathogens is of critical public health importance. Recently, a number of novel CRISPR-based diagnostics have been developed to detect COVID-19. Herein, we outline the development of a CRISPR-based nucleic acid molecular diagnostic utilizing a Cas13d ribonuclease derived from Ruminococcus flavefaciens (CasRx) to detect SARS-CoV-2, an approach we term SENSR (Sensitive Enzymatic Nucleic-acid Sequence Reporter). We demonstrate SENSR robustly detects SARS-CoV-2 sequences in both synthetic and patient-derived samples by lateral flow and fluorescence, thus expanding the available point-of-care diagnostics to combat current and future pandemics.
Collapse
Affiliation(s)
- Daniel J Brogan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Duverney Chaverra-Rodriguez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Calvin P Lin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92092
| | - Andrea L Smidler
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Lenissa M. Alcantara
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Robyn R Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92092
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
61
|
Gamez S, Srivastav S, Akbari OS, Lau NC. Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells 2020; 9:E2180. [PMID: 32992598 PMCID: PMC7601171 DOI: 10.3390/cells9102180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Animals face the dual threat of virus infections hijacking cellular function and transposons proliferating in germline genomes. For insects, the deeply conserved RNA interference (RNAi) pathways and other chromatin regulators provide an important line of defense against both viruses and transposons. For example, this innate immune system displays adaptiveness to new invasions by generating cognate small RNAs for targeting gene silencing measures against the viral and genomic intruders. However, within the Dipteran clade of insects, Drosophilid fruit flies and Culicids mosquitoes have evolved several unique mechanistic aspects of their RNAi defenses to combat invading transposons and viruses, with the Piwi-piRNA arm of the RNAi pathways showing the greatest degree of novel evolution. Whereas central features of Piwi-piRNA pathways are conserved between Drosophilids and Culicids, multiple lineage-specific innovations have arisen that may reflect distinct genome composition differences and specific ecological and physiological features dividing these two branches of Dipterans. This perspective review focuses on the most recent findings illuminating the Piwi/piRNA pathway distinctions between fruit flies and mosquitoes, and raises open questions that need to be addressed in order to ameliorate human diseases caused by pathogenic viruses that mosquitoes transmit as vectors.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA;
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Nelson C. Lau
- Department of Biochemistry and Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
62
|
Kushawah G, Hernandez-Huertas L, Abugattas-Nuñez del Prado J, Martinez-Morales JR, DeVore ML, Hassan H, Moreno-Sanchez I, Tomas-Gallardo L, Diaz-Moscoso A, Monges DE, Guelfo JR, Theune WC, Brannan EO, Wang W, Corbin TJ, Moran AM, Sánchez Alvarado A, Málaga-Trillo E, Takacs CM, Bazzini AA, Moreno-Mateos MA. CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Dev Cell 2020; 54:805-817.e7. [DOI: 10.1016/j.devcel.2020.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023]
|