51
|
Fang T, Xiao J, Zhang Y, Hu H, Zhu Y, Cheng Y. Combined with interventional therapy, immunotherapy can create a new outlook for tumor treatment. Quant Imaging Med Surg 2021; 11:2837-2860. [PMID: 34079746 PMCID: PMC8107298 DOI: 10.21037/qims-20-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in immunotherapy provides hope of a complete cure to cancer patients. However, recent studies have reported that only a limited number of cancer patients with a specific immune status, known as "cold tumor", can benefit from a single immune agent. Although the combination of immune agents with different mechanisms can partially increase the low response rate and improve efficacy, it can also result in more side effects. Therefore, discovering therapies that can improve tumors' response rate to immunotherapy without increasing toxicity for patients is urgently needed. Tumor interventional therapy is promising. It mainly includes transcatheter arterial chemoembolization, ablation, radioactive particle internal irradiation, and photodynamic interventional therapy based on a luminal stent. Interventional therapy can directly kill tumor cells by targeted drug delivery in situ, thus reducing drug dosage and systemic toxicity like cytokine release syndrome. More importantly, interventional therapy can regulate the immune system through numerous mechanisms, making it a suitable choice for immunotherapy to combine with. In this review, we provide a brief description of immunotherapies (and their side effects) on tumors of different immune types and preliminarily elaborate on interventional therapy mechanisms to improve immune efficacy. We also discuss the progress and challenges of the combination of interventional therapy and immunotherapy.
Collapse
Affiliation(s)
- Tonglei Fang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junyuan Xiao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
52
|
Santamaria-Alza Y, Vasquez G. Are chimeric antigen receptor T cells (CAR-T cells) the future in immunotherapy for autoimmune diseases? Inflamm Res 2021; 70:651-663. [PMID: 34018005 DOI: 10.1007/s00011-021-01470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE CAR-T cell therapy has revolutionized the treatment of oncological diseases, and potential uses in autoimmune diseases have recently been described. The review aims to integrate the available data on treatment with CAR-T cells, emphasizing autoimmune diseases, to determine therapeutic advances and their possible future clinical applicability in autoimmunity. MATERIALS AND METHODS A search was performed in PubMed with the keywords "Chimeric Antigen Receptor" and "CART cell". The documents of interest were selected, and a critical review of the information was carried out. RESULTS In the treatment of autoimmune diseases, in preclinical models, three different cellular strategies have been used, which include Chimeric antigen receptor T cells, Chimeric autoantibody receptor T cells, and Chimeric antigen receptor in regulatory T lymphocytes. All three types of therapy have been effective. The potential adverse effects within them, cytokine release syndrome, cellular toxicity and neurotoxicity must always be kept in mind. CONCLUSIONS Although information in humans is not yet available, preclinical models of CAR-T cells in the treatment of autoimmune diseases show promising results, so that in the future, they may become a useful and effective therapy in the treatment of these pathologies.
Collapse
Affiliation(s)
- Yeison Santamaria-Alza
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Street 52 number 61-30 lab 510, Medellín, Colombia.
| | - Gloria Vasquez
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Street 52 number 61-30 lab 510, Medellín, Colombia
| |
Collapse
|
53
|
Glover M, Avraamides S, Maher J. How Can We Engineer CAR T Cells to Overcome Resistance? Biologics 2021; 15:175-198. [PMID: 34040345 PMCID: PMC8141613 DOI: 10.2147/btt.s252568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved unrivalled success in the treatment of B cell and plasma cell malignancies, with five CAR T cell products now approved by the US Food and Drug Administration (FDA). However, CAR T cell therapies for solid tumours have not been nearly as successful, owing to several additional challenges. Here, we discuss mechanisms of tumour resistance in CAR T cell therapy and the emerging strategies that are under development to engineer CAR T cells to overcome resistance.
Collapse
Affiliation(s)
- Maya Glover
- Leucid Bio Ltd., Guy's Hospital, London, SE1 9RT, UK
| | - Stephanie Avraamides
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, SE1 9RT, UK
| | - John Maher
- Leucid Bio Ltd., Guy's Hospital, London, SE1 9RT, UK.,King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, SE1 9RT, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, BN21 2UD, UK
| |
Collapse
|
54
|
Dana H, Chalbatani GM, Jalali SA, Mirzaei HR, Grupp SA, Suarez ER, Rapôso C, Webster TJ. CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharm Sin B 2021; 11:1129-1147. [PMID: 34094824 PMCID: PMC8144892 DOI: 10.1016/j.apsb.2020.10.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.
Collapse
Affiliation(s)
- Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 13145-158, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
55
|
Horowitz NB, Mohammad I, Moreno-Nieves UY, Koliesnik I, Tran Q, Sunwoo JB. Humanized Mouse Models for the Advancement of Innate Lymphoid Cell-Based Cancer Immunotherapies. Front Immunol 2021; 12:648580. [PMID: 33968039 PMCID: PMC8100438 DOI: 10.3389/fimmu.2021.648580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse circulating and tissue-resident cells, which carry out functions including homeostasis and antitumor immunity. The development and behavior of human natural killer (NK) cells and other ILCs in the context of cancer is still incompletely understood. Since NK cells and Group 1 and 2 ILCs are known to be important for mediating antitumor immune responses, a clearer understanding of these processes is critical for improving cancer treatments and understanding tumor immunology as a whole. Unfortunately, there are some major differences in ILC differentiation and effector function pathways between humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-derived tumors alongside human genes or human immune cells represent an excellent tool for studying these pathways in vivo. Recent advancements in humanized mice enable unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC behavior in the context of cancer, the humanized mouse models that are most commonly employed in cancer research and their optimization for studying ILCs, current approaches to manipulating human ILCs for antitumor activity, and the relative utility of various mouse models for the development and assessment of these ILC-related immunotherapies.
Collapse
Affiliation(s)
- Nina B Horowitz
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, CA, United States
| | - Imran Mohammad
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Uriel Y Moreno-Nieves
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ievgen Koliesnik
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Quan Tran
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
56
|
CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 2021; 11:69. [PMID: 33824268 PMCID: PMC8024391 DOI: 10.1038/s41408-021-00459-7] [Citation(s) in RCA: 1403] [Impact Index Per Article: 350.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a revolutionary new pillar in cancer treatment. Although treatment with CAR-T cells has produced remarkable clinical responses with certain subsets of B cell leukemia or lymphoma, many challenges limit the therapeutic efficacy of CAR-T cells in solid tumors and hematological malignancies. Barriers to effective CAR-T cell therapy include severe life-threatening toxicities, modest anti-tumor activity, antigen escape, restricted trafficking, and limited tumor infiltration. In addition, the host and tumor microenvironment interactions with CAR-T cells critically alter CAR-T cell function. Furthermore, a complex workforce is required to develop and implement these treatments. In order to overcome these significant challenges, innovative strategies and approaches to engineer more powerful CAR-T cells with improved anti-tumor activity and decreased toxicity are necessary. In this review, we discuss recent innovations in CAR-T cell engineering to improve clinical efficacy in both hematological malignancy and solid tumors and strategies to overcome limitations of CAR-T cell therapy in both hematological malignancy and solid tumors.
Collapse
|
57
|
Lin S, Cheng L, Ye W, Li S, Zheng D, Qin L, Wu Q, Long Y, Lin S, Wang S, Huang G, Li P, Yao Y, Sun X. Chimeric CTLA4-CD28-CD3z T Cells Potentiate Antitumor Activity Against CD80/CD86-Positive B Cell Malignancies. Front Immunol 2021; 12:642528. [PMID: 33868277 PMCID: PMC8050336 DOI: 10.3389/fimmu.2021.642528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
The adoptive transfer of chimeric antigen receptor T (CAR T) cells have been recognized as a promising therapeutic strategy for the treatment of hematological malignancies; however, clinical success using CAR T cells for the treatment of solid tumors are still limited since the T-cell function is inhibited by negative signals in the microenvironment of solid tumors. CTLA4 is a well-known immune checkpoint molecule, thus we developed a novel CAR by converting this negative signal to positive signal. The CAR developed consists of the extracellular and transmembrane domains of CTLA4 and the cytoplasmic domains of CD28 and CD3z (CTLA4-CAR T). CTLA4-CAR T cells exhibited superior cytokine secreting activities and cytotoxic to tumor cells in vitro and in xenograft models. CTLA4-CAR T cells were found to accumulate in tumors and are toxic to myeloid-derived suppressor cells (MDSCs) without signs of severe GVHD and CRS in preclinical models. Thus, this chimeric CTLA4-CAR can enhance the antitumor activity of CAR T cells and shed light on the strategy of using armed CAR T cells to target the immunomodulatory tumor microenvironment.
Collapse
Affiliation(s)
- Shouheng Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Cheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Wei Ye
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shanglin Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Diwei Zheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Le Qin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qiting Wu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Youguo Long
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Simiao Lin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Suna Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Guohua Huang
- Department of Respiratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yao Yao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
58
|
Abstract
ABSTRACT The US Food and Drug Administration has approved 3 chimeric antigen receptor (CAR) T-cell therapies. For continued breakthroughs, novel CAR designs are needed. This includes different antigen-binding domains such as antigen-ligand binding partners and variable lymphocyte receptors. Another recent advancement in CAR design is Boolean logic gates that can minimize on-target, off-tumor toxicities. Recent studies on the optimization of costimulatory signaling have also shown how CAR design can impact function. By using specific signaling pathways and transcription factors, CARs can impact T-cell gene expression to enhance function. By using these techniques, the promise of CAR T-cell therapies for solid tumors can be fulfilled.
Collapse
|
59
|
Liu X, Li Z, Wang Y. Advances in Targeted Therapy and Immunotherapy for Pancreatic Cancer. Adv Biol (Weinh) 2021; 5:e1900236. [PMID: 33729700 DOI: 10.1002/adbi.201900236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly aggressive malignancy with an overall 5-year survival rate of <6% due to therapeutic resistance and late-stage diagnosis. These statistics have not changed despite 50 years of research and therapeutic development. Pancreatic cancer is predicted to become the second leading cause of cancer mortality by the year 2030. Currently, the treatment options for pancreatic cancer are limited. This disease is usually diagnosed at a late stage, which prevents curative surgical resection. Chemotherapy is the most frequently used approach for pancreatic cancer treatment and has limited effects. In many other cancer types, targeted therapy and immunotherapy have made great progress and have been shown to be very promising prospects; these treatments also provide hope for pancreatic cancer. The need for research on targeted therapy and immunotherapy is pressing due to the poor prognosis of pancreatic cancer, and in recent years, there have been some breakthroughs for targeted therapy and immunotherapy in pancreatic cancer. This review summarizes the current preclinical and clinical studies of targeted therapy and immunotherapy for pancreatic cancer and ends by describing the challenges and outlook.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
60
|
Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol 2021; 95:107508. [PMID: 33725635 DOI: 10.1016/j.intimp.2021.107508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors with a high mortality rate and poor survival rate. Depending on the tumor stage, PDAC is either treated by resection surgery, chemotherapies, or radiotherapies. Various chemotherapeutic agents have been used to treat PDAC, alone or in combination. Despite the combinations, chemotherapy exhibits many side-effects leading to an increase in the toxicity profile amongst the PDAC patients. Additionally, these standard chemotherapeutic agents have only a modest impact on patient survival due to their limited efficacy. PDAC was previously considered as an immunologically silent malignancy, but recent findings have demonstrated that effective immune-mediated tumor cell death can be used for its treatment. PDAC is characterized by an immunosuppressive tumor microenvironment accompanied by the major expression of myeloid-derived suppressor cells (MDSC) and M2 tumor-associated macrophages. In contrast, the expression of CD8+ T cells is significantly low. Additionally, infiltration of mast cells in PDAC correlates with the poor prognosis. Immunotherapeutic agents target the immunity mediators and empower them to suppress the tumor and effectively treat PDAC. Different targets are studied and exploited to induce an antitumor immune response in PDAC patients. In recent times, site-specific delivery of immunotherapeutics also gained attention among researchers to effectively treat PDAC. In the present review, existing immunotherapies for PDAC treatment along with their limitations are addressed in detail. The review also includes the pathophysiology, traditional strategies and significance of targeted immunotherapies to combat PDAC effectively. Separately, the identification of ideal targets for the targeted therapy of PDAC is also reviewed exhaustively. Additionally, the review also addresses the applications of targeted immunotherapeutics like checkpoint inhibitors, adoptive T-cell therapy etc.
Collapse
|
61
|
Javadrashid D, Baghbanzadeh A, Hemmat N, Hajiasgharzadeh K, Nourbakhsh NS, Lotfi Z, Baradaran B. Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or victim? Immunol Lett 2021; 232:48-59. [PMID: 33647329 DOI: 10.1016/j.imlet.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma has a poor 5-year survival rate that makes it one of the most fatal human malignancies. Unfortunately, despite the serious improvement in the survival of most cancers, there has been a minor advance in pancreatic cancer (PC). Major advances in PC treatment have been assessed over the bygone twenty-year time span, yet some complications make the survival of the patients shorter. Getting to know the PC tumor microenvironment (TME) and the immunosuppression that happens during the pathogenesis of this malignancy could be a great help to understand the nature of the immune system and find better treatment modalities based on it. Although many immune cells are present in PC, immunosuppression of the TME leads to severe immune dysfunction in the patients, therefore immune effectors fail to do their functions. Lately, immunotherapy has been presented as one of the promising treatment strategies for different malignancies including hepatocellular carcinoma, melanoma, non-small cell lung cancer, and kidney cancer. In PC, there has been shown promising results centered around the TME, immune checkpoint inhibitors, cancer vaccines, and other approaches especially when used as combinational therapy. Here we dig a little deeper into the role of the immune system and possible therapeutic options in the treatment of PC.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
62
|
Yang Q, Li X, Zhang F, Yang Q, Zhou W, Liu J. Efficacy and Safety of CAR-T Therapy for Relapse or Refractory Multiple Myeloma: A systematic review and meta-analysis. Int J Med Sci 2021; 18:1786-1797. [PMID: 33746596 PMCID: PMC7976586 DOI: 10.7150/ijms.46811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/23/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Multiple myeloma (MM) is incurable in spite of recent treatment improvements, highlighting the development of new therapies. Chimeric antigen receptor (CAR) T-cell therapy has dramatically changed the therapeutic effectiveness in high-risk B-cell malignancies. For relapsed/refractory multiple myeloma (RRMM), preclinical evaluations of CAR-T therapy have shown promising efficacy, thus various active clinical trials are under way. Herein, we conducted this review to summarize efficacy and safety of CAR-T therapy and provide more evidence to guide clinical treatments. Method: We systematically searched literature based on databases (PubMed, EMBASE, Cochrane Central Register of Controlled Trials), and conference abstracts reported from American Society of Hematology (ASH), European Hematology Association (EHA) and American Society of Clinical Oncology (ASCO), in addition to other sources (www.clinicaltrials.gov, article citations). Data assessed efficacy and safety of CAR-T therapy in patients with RRMM were extracted and evaluated, and then systematically analyzed by Comprehensive Meta-analysis 3.0 (CMA 3.0). Results: A total of 23 studies including 350 participants from different countries, diagnosed as RRMM and treated with CAR-T therapy (containing 7 antigens targeted by CARs) were combined. In summary, we discovered the pooled overall response rate (77%), complete response rate (37%) and minimal residual disease (MRD) negativity rate within responders (78%). Furthermore, the pooled relapse rate of responders was 38% and median progression-free survival was 8 months. The pooled survival rate was 87% at last follow-up (median, 12 months). In addition, the pooled grade 3-4 rates of cytokine release syndrome (CRS) and neurologic toxicities (NT) were 14% and 13%, respectively. Conclusion: Our study suggests that CAR-T therapy has demonstrated efficacy and safety in RRMM patients. BCMA-targeted CAR-T and anti-BCMA contained regimen have shown better efficacy.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qiaohui Yang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Wen Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China.,Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
63
|
Yin L, Wang XJ, Chen DX, Liu XN, Wang XJ. Humanized mouse model: a review on preclinical applications for cancer immunotherapy. Am J Cancer Res 2020; 10:4568-4584. [PMID: 33415020 PMCID: PMC7783739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023] Open
Abstract
Due to the refractory and partial sensitive treatments to malignant cancers, immunotherapy has increasingly become a hotspot in effective anti-tumor research. However, at present, existing animal models could not accurately describe the interaction between human tissue and tumor cells for preclinical trials. Furthermore, it is a tough obstacle to reconstitute the immune system and microenvironment in a mouse model identical to humans due to species differences. In the establishment of the humanized mouse model, the co-transplantation of human immunocytes with/without tissues and tumor cells is the key breakthrough to solve this problem. The compelling progress has been investigated in the preclinical drug test for diverse tumor types. This review mainly summarized the development of immunodeficient mice, and the construction and practicability of the humanized mouse model. Furthermore, the investigators also highlight the pros and cons, and recent progress in immunotherapy research for advanced utility of human cancer diseases.
Collapse
Affiliation(s)
- Ling Yin
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xue-Jing Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - De-Xi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xiao-Ni Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xiao-Jun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
64
|
Wang X, Wu Z, Qiu W, Chen P, Xu X, Han W. Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system. Front Med 2020; 14:726-745. [PMID: 32794014 DOI: 10.1007/s11684-020-0746-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have been indicated effective in treating B cell acute lymphoblastic leukemia and non-Hodgkin lymphoma and have shown encouraging results in preclinical and clinical studies. However, CAR T cells have achieved minimal success against solid malignancies because of the additional obstacles of their insufficient migration into tumors and poor amplification and persistence, in addition to antigen-negative relapse and an immunosuppressive microenvironment. Various preclinical studies are exploring strategies to overcome the above challenges. Mobilization of endogenous immune cells is also necessary for CAR T cells to obtain their optimal therapeutic effect given the importance of the innate immune responses in the elimination of malignant tumors. In this review, we focus on the recent advances in the engineering of CAR T cell therapies to restore the immune response in solid malignancies, especially with CAR T cells acting as cellular carriers to deliver immunomodulators to tumors to mobilize the endogenous immune response. We also explored the sensitizing effects of conventional treatment approaches, such as chemotherapy and radiotherapy, on CAR T cell therapy. Finally, we discuss the combination of CAR T cells with biomaterials or oncolytic viruses to enhance the anti-tumor outcomes of CAR T cell therapies in solid tumors.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Biotechnology, Southwest University, Chongqing, 400715, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiqiang Wu
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Qiu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China
| | - Ping Chen
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiang Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China.
| | - Weidong Han
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
65
|
Liu Y, Qin P, Wu R, Du L, Li F. ERas regulates cell proliferation and epithelial-mesenchymal transition by affecting Erk/Akt signaling pathway in pancreatic cancer. Hum Cell 2020; 33:1186-1196. [PMID: 32700262 PMCID: PMC7505876 DOI: 10.1007/s13577-020-00401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is the fourth most common lethal malignancy with an overall 5-year survival rate of less than 5%. ERas, a novel Ras family member, was first identified in murine embryonic stem cells and is upregulated in various cancers. However, the expression and potential role of ERas in pancreatic cancer have not been investigated. In this study, we found that ERas mRNA and protein were upregulated in pancreatic cancer tissues and cells compared with controls. Knockdown of ERas in pancreatic cancer cells by siRNA significantly decreased cell proliferation, colony formation, migration, and invasion and promoted cell apoptosis in vitro. Epithelial-mesenchymal transition (EMT) is closely related to tumor progression. We observed a significant decrease in N-cadherin expression in pancreatic cancer cells in response to ERas gene silencing by immunofluorescence assay and western blot. Furthermore, tumor growth and EMT were inhibited in xenografts derived from pancreatic cancer cells with ERas downregulation. We further investigated the regulatory mechanisms of ERas in pancreatic cancer and found that ERas may activate the Erk/Akt signaling pathway. Moreover, Erk inhibitor decreased pancreatic cancer cells proliferation and colony formation activities. Our data suggest that targeting ERas and its relevant signaling pathways might represent a novel therapeutic approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| | - Fan Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
66
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
67
|
Nguyen P, Okeke E, Clay M, Haydar D, Justice J, O’Reilly C, Pruett-Miller S, Papizan J, Moore J, Zhou S, Throm R, Krenciute G, Gottschalk S, DeRenzo C. Route of 41BB/41BBL Costimulation Determines Effector Function of B7-H3-CAR.CD28ζ T Cells. Mol Ther Oncolytics 2020; 18:202-214. [PMID: 32728609 PMCID: PMC7369352 DOI: 10.1016/j.omto.2020.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/19/2020] [Indexed: 01/13/2023] Open
Abstract
B7-H3 is actively being explored as an immunotherapy target for pediatric patients with solid tumors using monoclonal antibodies or T cells expressing chimeric antigen receptors (CARs). B7-H3-CARs containing a 41BB costimulatory domain are currently favored by several groups based on preclinical studies. In this study, we initially performed a detailed analysis of T cells expressing B7-H3-CARs with different hinge/transmembrane (CD8α versus CD28) and CD28 or 41BB costimulatory domains (CD8α/CD28, CD8α/41BB, CD28/CD28, CD28/41BB). Only subtle differences in effector function were observed between CAR T cell populations in vitro. However, CD8α/CD28-CAR T cells consistently outperformed other CAR T cell populations in three animal models, resulting in a significant survival advantage. We next explored whether adding 41BB signaling to CD8α/CD28-CAR T cells would further enhance effector function. Surprisingly, incorporating 41BB signaling into the CAR endodomain had detrimental effects, while expressing 41BBL on the surface of CD8α/CD28-CAR T cells enhanced their ability to kill tumor cells in repeat stimulation assays. Furthermore, 41BBL expression enhanced CD8α/CD28-CAR T cell expansion in vivo and improved antitumor activity in one of four evaluated models. Thus, our study highlights the intricate interplay between CAR hinge/transmembrane and costimulatory domains. Based on our study, we selected CD8α/CD28-CAR T cells expressing 41BBL for early phase clinical testing.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Emmanuel Okeke
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michael Clay
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Julie Justice
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Carla O’Reilly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - James Papizan
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Moore
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sheng Zhou
- Experimental Cellular Therapeutics Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robert Throm
- Vector Development and Production Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
68
|
Le Large TY, Mantini G, Meijer LL, Pham TV, Funel N, van Grieken NC, Kok B, Knol J, van Laarhoven HW, Piersma SR, Jimenez CR, Kazemier G, Giovannetti E, Bijlsma MF. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 2020; 5:e138290. [PMID: 32634123 PMCID: PMC7455080 DOI: 10.1172/jci.insight.138290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a relative paucity of cancer cells that are surrounded by an abundance of nontumor cells and extracellular matrix, known as stroma. The interaction between stroma and cancer cells contributes to poor outcome, but how proteins from these individual compartments drive aggressive tumor behavior is not known. Here, we report the proteomic analysis of laser-capture microdissected (LCM) PDAC samples. We isolated stroma, tumor, and bulk samples from a cohort with long- and short-term survivors. Compartment-specific proteins were measured by mass spectrometry, yielding what we believe to be the largest PDAC proteome landscape to date. These analyses revealed that, in bulk analysis, tumor-derived proteins were typically masked and that LCM was required to reveal biology and prognostic markers. We validated tumor CALB2 and stromal COL11A1 expression as compartment-specific prognostic markers. We identified and functionally addressed the contributions of the tumor cell receptor EPHA2 to tumor cell viability and motility, underscoring the value of compartment-specific protein analysis in PDAC.
Collapse
Affiliation(s)
- Tessa Y.S. Le Large
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Laura L. Meijer
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | - Jaco Knol
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
69
|
Suppressive myeloid cells are expanded by biliary tract cancer-derived cytokines in vitro and associate with aggressive disease. Br J Cancer 2020; 123:1377-1386. [PMID: 32747748 PMCID: PMC7591861 DOI: 10.1038/s41416-020-1018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
Background BTC is an aggressive disease exacerbated by inflammation and immune suppression. Expansion of immunosuppressive cells occurs in biliary tract cancer (BTC), yet the role of BTC-derived cytokines in this process is unclear. Methods Activated signalling pathways and cytokine production were evaluated in a panel of human BTC cell lines. Human peripheral blood mononuclear cells (PBMCs) were cultured with BTC supernatants, with and without cytokine neutralising antibodies, and analysed by flow cytometry or immunoblot. A human BTC tissue microarray (TMA, n = 69) was stained for IL-6, GM-CSF, and CD33+S100a9+ cells and correlated with clinical outcomes. Results Immunomodulatory factors (IL-6, GM-CSF, MCP-1) were present in BTC supernatants. BTC supernatants expanded CD33dimCD11b+HLA-DRlow/− myeloid-derived suppressor cells (MDSCs) from human PBMCs. Neutralisation of IL-6 and GM-CSF in BTC supernatants inhibited activation of STAT3/5, respectively, in PBMCs, with heterogeneous effects on MDSC expansion in vitro. Staining of a BTC TMA revealed a positive correlation between IL-6 and GM-CSF, with each cytokine and more CD33+S100a9+ cells. Increased CD33+S100a9+ staining positively correlated with higher tumour grade, differentiation and the presence of satellite lesions. Conclusion BTC-derived factors promote suppressive myeloid cell expansion, and higher numbers of CD33+S100a9+ cells in resectable BTC tumours correlates with more aggressive disease.
Collapse
|
70
|
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, Chen YY, Zhao W. CAR-T design: Elements and their synergistic function. EBioMedicine 2020; 58:102931. [PMID: 32739874 PMCID: PMC7393540 DOI: 10.1016/j.ebiom.2020.102931] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells use re-engineered cell surface receptors to specifically bind to and lyse oncogenic cells. Two clinically approved CAR-T–cell therapies have significant clinical efficacy in treating CD19-positive B cell cancers. With widespread interest to deploy this immunotherapy to other cancers, there has been great research activity to design new CAR structures to increase the range of targeted cancers and anti-tumor efficacy. However, several obstacles must be addressed before CAR-T–cell therapies can be more widely deployed. These include limiting the frequency of lethal cytokine storms, enhancing T-cell persistence and signaling, and improving target antigen specificity. We provide a comprehensive review of recent research on CAR design and systematically evaluate design aspects of the four major modules of CAR structure: the ligand-binding, spacer, transmembrane, and cytoplasmic domains, elucidating design strategies and principles to guide future immunotherapeutic discovery.
Collapse
Affiliation(s)
- Jayapriya Jayaraman
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States
| | - Michael P Mellody
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States
| | - Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Ruchi P Desai
- School of Medicine, University of California, Irvine, Irvine, CA, 92697
| | - Audrey W Fung
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - An Huynh Thuy Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, 90095; Parker Institute for Cancer Immunotherapy Center, University of California, Los Angeles, Los Angeles, Los Angeles, 90095
| | - Weian Zhao
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, United States; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, United States; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, United States; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
71
|
A Head Start: CAR-T Cell Therapy for Primary Malignant Brain Tumors. Curr Treat Options Oncol 2020; 21:73. [PMID: 32725495 DOI: 10.1007/s11864-020-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OPINION STATEMENT Oncology is the midst of a therapeutic renaissance. The realization of immunotherapy as an efficacious and expanding treatment option has empowered physicians and patients alike. However, despite these remarkable advances, we have only just broached the potential immunotherapy has to offer and have yet to successfully expand these novel modalities to the field of neuro-oncology. In recent years, exciting results in preclinical studies of immune adjuvants, oncolytic viruses, or cell therapy have been met with only fleeting signs of response when taken to early phase trials. Although many have speculated why these innovative approaches result in impaired outcomes, we are left empty-handed in a field plagued by a drought of new therapies. Herein, we will review the recent advances across cellular therapy for primary malignant brain tumors, an approach that lends itself to overcoming the inherent resistance mechanisms which have impeded the success of prior treatment attempts.
Collapse
|
72
|
Zhylko A, Winiarska M, Graczyk-Jarzynka A. The Great War of Today: Modifications of CAR-T Cells to Effectively Combat Malignancies. Cancers (Basel) 2020; 12:E2030. [PMID: 32722109 PMCID: PMC7466082 DOI: 10.3390/cancers12082030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy of cancer had its early beginnings in the times when the elements of the immune system were still poorly characterized. However, with the progress in molecular biology, it has become feasible to re-engineer T cells in order to eradicate tumour cells. The use of synthetic chimeric antigen receptors (CARs) helped to re-target and simultaneously unleash the cytotoxic potential of T cells. CAR-T therapy proved to be remarkably effective in cases of haematological malignancies, often refractory and relapsed. The success of this approach yielded two Food and Drug Administration (FDA) approvals for the first "living drug" modalities. However, CAR-T therapy is not without flaws. Apart from the side effects associated with the treatment, it became apparent that CAR introduction alters T cell biology and the possible therapeutic outcomes. Additionally, it was shown that CAR-T approaches in solid tumours do not recapitulate the success in the haemato-oncology. Therefore, in this review, we aim to discuss the recent concerns of CAR-T therapy for both haematological and solid tumours. We also summarise the general strategies that are implemented to enhance the efficacy and safety of the CAR-T regimens in blood and solid malignancies.
Collapse
|
73
|
Buchholz SM, Goetze RG, Singh SK, Ammer-Herrmenau C, Richards FM, Jodrell DI, Buchholz M, Michl P, Ellenrieder V, Hessmann E, Neesse A. Depletion of Macrophages Improves Therapeutic Response to Gemcitabine in Murine Pancreas Cancer. Cancers (Basel) 2020; 12:E1978. [PMID: 32698524 PMCID: PMC7409345 DOI: 10.3390/cancers12071978] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is composed of fibro-inflammatory cells and extracellular matrix (ECM) components. However, the exact contribution of the various TME compartments towards therapeutic response is unknown. Here, we aim to dissect the specific contribution of tumor-associated macrophages (TAMs) towards drug delivery and response in pancreatic ductal adenocarcinoma (PDAC). METHODS The effect of gemcitabine was assessed in human and murine macrophages, human pancreatic stellate cells (hPSCs), and tumor cells (L3.6pl, BxPC3 and KPC) in vitro. The drug metabolism of gemcitabine was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Preclinical studies were conducted using KrasG12D;p48-Cre and KrasG12D;p53172H;Pdx-Cre mice to investigate gemcitabine delivery at different stages of tumor progression and upon pharmacological TAM depletion. RESULTS Gemcitabine accumulation was significantly increased in murine PDAC tissue compared to pancreatic intraepithelial neoplasia (PanIN) lesions and healthy control pancreas tissue. In vitro, macrophages accumulated and rapidly metabolized gemcitabine resulting in a significant drug scavenging effect for gemcitabine. Finally, pharmacological TAM depletion enhanced therapeutic response to gemcitabine in tumor-bearing KPC mice. CONCLUSION Macrophages rapidly metabolize gemcitabine in vitro, and pharmacological depletion improves the therapeutic response to gemcitabine in vivo. Our study supports the notion that TAMs might be a promising therapeutic target in PDAC.
Collapse
Affiliation(s)
- Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Robert G. Goetze
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Frances M. Richards
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge CB2 1TN, UK; (F.M.R.); (D.I.J.)
| | - Duncan I. Jodrell
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge CB2 1TN, UK; (F.M.R.); (D.I.J.)
| | - Malte Buchholz
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, 35037 Marburg, Germany;
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany;
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| |
Collapse
|
74
|
Abstract
Purpose of the review The adoptive transfer of alloantigen-specific regulatory T cells (Tregs) following organ transplantation is an emerging treatment paradigm that may induce tolerance and reduce the risk for graft rejection. In particular, redirecting Treg specificity via expression of synthetic chimeric antigen receptors (CARs) has demonstrated therapeutic promise in several preclinical studies. In this review, we highlight recent progress and remaining barriers to the clinical translation of CAR-Treg therapies. Recent findings CAR Tregs targeting human leukocyte antigen (HLA)-A2 showed antigen-specific in vitro activation and superior in vivo protective function relative to polyclonal Tregs. Adoptively transferred anti-HLA-A2 CAR Tregs prolonged the survival of HLA-A2-positive grafts in humanized mouse models. Summary Donor HLA molecules are attractive candidate antigens to target with CAR Tregs in transplantation due to mismatched HLA only expressed on the transplanted organ. The feasibility of this approach has been demonstrated by several independent groups in recent years. However, substantial challenges in CAR design and preclinical modeling must be more extensively addressed prior to clinical application.
Collapse
|
75
|
Wang S, Li Y, Xing C, Ding C, Zhang H, Chen L, You L, Dai M, Zhao Y. Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer. Am J Cancer Res 2020; 10:1937-1953. [PMID: 32774994 PMCID: PMC7407356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023] Open
Abstract
Pancreatic cancer (PC) is a fatal disease with high malignancy and difficult for early diagnosis. PC causes more than 400,000 patient deaths world widely and becomes the severe health problems. The tumor microenvironment (TME) is comprised of acellular stroma, pancreatic stellate cells, immune cells, and soluble factors. TME is maintained by continuous cell-matrix and cell-cell interactions. TME induced by the interaction among pancreatic cancer cells, epithelial cells and stromal cells is essential for the progression of PC and leads to resistance to chemotherapy. Components in the microenvironment can also promote the formation of connective tissue in the primary or metastatic site, or promote the metastatic ability of PC by enhancing angiogenesis, epithelial-mesenchymal transformation, and lymph angiogenesis. In addition, the TME also leaves pancreatic cancer unsusceptible to different immunotherapeutic strategies. In this review, we summarized the current knowledge about TME in PC. And the focus was placed on the role of TME in chemotherapeutic resistance and metastasis in the field of PC. And we also paid attention to the immunological therapy targeting the TME, aiming to provide the novel therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Cheng Xing
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Cheng Ding
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College Beijing 100730, China
| |
Collapse
|
76
|
Sahlolbei M, Dehghani M, Kheiri Yeghane Azar B, Vafaei S, Roviello G, D'Angelo A, Madjd Z, Kiani J. Evaluation of targetable biomarkers for chimeric antigen receptor T-cell (CAR-T) in the treatment of pancreatic cancer: a systematic review and meta-analysis of preclinical studies. Int Rev Immunol 2020; 39:223-232. [PMID: 32546036 DOI: 10.1080/08830185.2020.1776274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/02/2020] [Accepted: 05/15/2020] [Indexed: 12/09/2022]
Abstract
One of the cutting edge techniques for treating cancer is the use of the patient's immune system to prevail cancerous disease. The versatility of the chimeric antigen receptor (CAR) T-cell approach in conjugation with promising treatments in haematological cancer has led to countless cases of research literature for the treatment of solid cancer. A systematic search of online databases as well as gray literature and reference lists of retrieved studies were carried out up to March 2019 to identify experimental animal studies that investigated the antigens targeted by CAR T-cell for pancreatic cancer treatment. Studies were evaluated for methodological quality using the SYstematic Review Center for Laboratory Animal Experimentation bias risk tool (SYRCLE's ROB tool). Pooled cytotoxicity ratio/percentage and 95% confidence intervals were calculated using the inverse-variance method while random-effects meta-analysis was used, taking into account conceptual heterogeneity. Heterogeneity was assessed with the Cochran Q statistic and quantified with the I2 statistic using Stata 13.0. Of the 485 identified studies, 56 were reviewed in-depth with 16 preclinical animal studies eligible for inclusion in the systematic review and 11 studies included in our meta-analysis. CAR immunotherapy significantly increased the cytotoxicity assay (percentage: 65%; 95% CI: 46%, 82%). There were no evidence for significant heterogeneity across studies [P = 0.38 (Q statistics), I2 = 7.14%] and for publication bias. The quality assessment of included studies revealed that the evidence was moderate to low quality and none of studies was judged as having a low risk of bias across all domains. CAR T-cell therapy is effective for pancreatic cancer treatment in preclinical animal studies. Further high-quality studies are needed to confirm our finding and a standard approach of this type of studies is necessary according to our assessment.
Collapse
Affiliation(s)
- Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Dehghani
- Department of, Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behghat Kheiri Yeghane Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - G Roviello
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Yang CY, Fan MH, Miao CH, Liao YJ, Yuan RH, Liu CL. Engineering Chimeric Antigen Receptor T Cells against Immune Checkpoint Inhibitors PD-1/PD-L1 for Treating Pancreatic Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:571-585. [PMID: 32637575 PMCID: PMC7321819 DOI: 10.1016/j.omto.2020.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year survival rate of 9%. Major obstacles to successful treatment of pancreatic cancer are the immunosuppressive tumor microenvironment (TME) and antigenic complexity or heterogeneity. Programmed death-ligand 1 (PD-L1) is expressed on PDAC and immunosuppressed cells within the TME, providing suitable immunotherapy targets. We applied a chimeric antigen receptor (CAR) strategy to target immune checkpoint programmed death-1 (PD-1)/PD-L1 interactions. Lentiviral vectors were used to express the extracellular domain of human PD-1 (PD-1-CD28-4-1BB activating chimeric receptor [PD1ACR]) or the single-chain variable fragment (scFv) region of anti-PD-L1 (PDL1CAR) that binds to PD-L1, and each was fused to intracellular signaling domains containing CD3 zeta, CD28, and 4-1BB (CD137). Both engineered CAR T cells recognized and eliminated PD-L1-overexpressing CFPAC1 cells efficiently at approximately 80% in vitro. Adoptive transfer of both CAR T cells enhanced T cell persistence and induced specific regression of established CFPAC1 cancer by >80% in both xenograft and orthotopic models. Ki67 expression in tumors decreased, whereas proinflammatory cytokines/chemokines increased in CAR T cell-treated mouse sera. PD1ACR and PDL1CAR obtained a similar therapeutic efficacy. Thus, these armed third-generation PD-L1-targeted CAR T cells confer antitumor activity and the ability to combat T cell exhaustion, providing a potentially new and innovative CAR T cell immunotherapy against pancreatic cancers.
Collapse
Affiliation(s)
- Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming Huei Fan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Carol H. Miao
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yi Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Surgery, National Taiwan University Hospital Biomedical Park Hospital, Hsinchu County 30261, Taiwan
| | - Chao Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Corresponding author: Chao Lien Liu, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| |
Collapse
|
78
|
Mucciolo G, Roux C, Scagliotti A, Brugiapaglia S, Novelli F, Cappello P. The dark side of immunotherapy: pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:491-520. [PMID: 35582441 PMCID: PMC8992483 DOI: 10.20517/cdr.2020.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Since the journal Science deemed cancer immunotherapy as the "breakthrough of the year" in 2014, there has been an explosion of clinical trials involving immunotherapeutic approaches that, in the last decade - thanks also to the renaissance of the immunosurveillance theory (renamed the three Es theory) - have been continuously and successfully developed. In the latest update of the development of the immuno-oncology drug pipeline, published last November by Nature Review Drug Discovery, it was clearly reported that the immunoactive drugs under study almost doubled in just two years. Of the different classes of passive and active immunotherapies, "cell therapy" is the fastest growing. The aim of this review is to discuss the preclinical and clinical studies that have focused on different immuno-oncology approaches applied to pancreatic cancer, which we assign to the "dark side" of immunotherapy, in the sense that it represents one of the solid tumors showing less response to this type of therapeutic strategy.
Collapse
Affiliation(s)
- Gianluca Mucciolo
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Cecilia Roux
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Alessandro Scagliotti
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Silvia Brugiapaglia
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| |
Collapse
|
79
|
Roselli E, Frieling JS, Thorner K, Ramello MC, Lynch CC, Abate-Daga D. CAR-T Engineering: Optimizing Signal Transduction and Effector Mechanisms. BioDrugs 2020; 33:647-659. [PMID: 31552606 DOI: 10.1007/s40259-019-00384-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adoptive transfer of genetically engineered T cells expressing a chimeric antigen receptor (CAR) has shown remarkable results against B cell malignancies. This immunotherapeutic approach has advanced and expanded rapidly from preclinical models to the recent approval of CAR-T cells to treat lymphomas and leukemia by the Food and Drug Administration (FDA). Ongoing research efforts are focused on employing CAR-T cells as a therapy for other cancers, and enhancing their efficacy and safety by optimizing their design. Here we summarize modifications in the intracellular domain of the CAR that gave rise to first-, second-, third- and next-generation CAR-T cells, together with the impact that these different designs have on CAR-T cell biology and function. Further, we describe how the structure of the antigen-sensing ectodomain can be enhanced, leading to superior CAR-T cell signaling and/or function. Finally we discuss how tissue-specific factors may impact the clinical efficacy of CAR-T cells for bone and the central nervous system, as examples of specific indications that may require further CAR signaling optimization to perform in such inhospitable microenvironments.
Collapse
Affiliation(s)
- Emiliano Roselli
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy S Frieling
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Konrad Thorner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - María C Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Oncologic Sciences, Morsani School of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
80
|
Pancreatic Cancer UK Grand Challenge: Developments and challenges for effective CAR T cell therapy for pancreatic ductal adenocarcinoma. Pancreatology 2020; 20:394-408. [PMID: 32173257 DOI: 10.1016/j.pan.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Death from pancreatic ductal adenocarcinoma (PDAC) is rising across the world and PDAC is predicted to be the second most common cause of cancer death in the USA by 2030. Development of effective biotherapies for PDAC are hampered by late presentation, a low number of differentially expressed molecular targets and a tumor-promoting microenvironment that forms both a physical, collagen-rich barrier and is also immunosuppressive. In 2017 Pancreatic Cancer UK awarded its first Grand Challenge Programme award to tackle this problem. The team plan to combine the use of novel CAR T cells with strategies to overcome the barriers presented by the tumor microenvironment. In advance of publication of those data this review seeks to highlight the key problems in effective CAR T cell therapy of PDAC and to describe pre-clinical and clinical progress in CAR T bio-therapeutics.
Collapse
|
81
|
Li KY, Yuan JL, Trafton D, Wang JX, Niu N, Yuan CH, Liu XB, Zheng L. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis Transl Med 2020; 6:6-17. [PMID: 32226930 PMCID: PMC7096327 DOI: 10.1016/j.cdtm.2020.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 02/08/2023] Open
Abstract
The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) is non-immunogenic, which consists of the stellate cells, fibroblasts, immune cells, extracellular matrix, and some other immune suppressive molecules. This low tumor perfusion microenvironment with physical dense fibrotic stroma shields PDAC from traditional antitumor therapies like chemotherapy and various strategies that have been proven successful in other types of cancer. Immunotherapy has the potential to treat minimal and residual diseases and prevent recurrence with minimal toxicity, and studies in patients with metastatic and nonresectable disease have shown some efficacy. In this review, we highlighted the main components of the pancreatic tumor microenvironment, and meanwhile, summarized the advances of some promising immunotherapies for PDAC, including checkpoint inhibitors, chimeric antigen receptors T cells, and cancer vaccines. Based on our previous researches, we specifically discussed how granulocyte-macrophage colony stimulating factor based pancreatic cancer vaccine prime the pancreatic tumor microenvironment, and introduced some novel immunoadjuvants, like the stimulator of interferon genes.
Collapse
Affiliation(s)
- Ke-Yu Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jia-Long Yuan
- School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Diego Trafton
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jian-Xin Wang
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Hepatic-biliary-pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Nan Niu
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Chun-Hui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Xu-Bao Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| |
Collapse
|
82
|
Sur D, Havasi A, Cainap C, Samasca G, Burz C, Balacescu O, Lupan I, Deleanu D, Irimie A. Chimeric Antigen Receptor T-Cell Therapy for Colorectal Cancer. J Clin Med 2020; 9:182. [PMID: 31936611 PMCID: PMC7019711 DOI: 10.3390/jcm9010182] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a new genetically engineered method of immunotherapy for cancer. The patient's T-cells are modified to express a specific receptor that sticks to the tumor antigen. This modified cell is then reintroduced into the patient's body to fight the resilient cancer cells. After exhibiting positive results in hematological malignancies, this therapy is being proposed for solid tumors like colorectal cancer. The clinical data of CAR T-cell therapy in colorectal cancer is rather scarce. In this review, we summarize the current state of knowledge, challenges, and future perspectives of CAR T-cell therapy in colorectal cancer. A total of 22 articles were included in this review. Eligible studies were selected and reviewed by two researchers from 49 articles found on Pubmed, Web of Science, and clinicaltrials.gov. This therapy, at the moment, provides modest benefits in solid tumors. Not taking into consideration the high manufacturing and retail prices, there are still limitations like increased toxicities, relapses, and unfavorable tumor microenvironment for CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Daniel Sur
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Andrei Havasi
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Gabriel Samasca
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology and Biotehnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Diana Deleanu
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, “IuliuHatieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| |
Collapse
|
83
|
Stern LA, Jonsson VD, Priceman SJ. CAR T Cell Therapy Progress and Challenges for Solid Tumors. Cancer Treat Res 2020; 180:297-326. [PMID: 32215875 DOI: 10.1007/978-3-030-38862-1_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The past two decades have marked the beginning of an unprecedented success story for cancer therapy through redirecting antitumor immunity [1]. While the mechanisms that control the initial and ongoing immune responses against tumors remain a strong research focus, the clinical development of technologies that engage the immune system to target and kill cancer cells has become a translational research priority. Early attempts documented in the late 1800s aimed at sparking immunity with cancer vaccines were difficult to interpret but demonstrated an opportunity that more than 100 years later has blossomed into the current field of cancer immunotherapy. Perhaps the most recent and greatest illustration of this is the widespread appreciation that tumors actively shut down antitumor immunity, which has led to the emergence of checkpoint pathway inhibitors that re-invigorate the body's own immune system to target cancer [2, 3]. This class of drugs, with first FDA approvals in 2011, has demonstrated impressive durable clinical responses in several cancer types, including melanoma, lung cancer, Hodgkin's lymphoma, and renal cell carcinoma, with the ongoing investigation in others. The biology and ultimate therapeutic successes of these drugs led to the 2018 Nobel Prize in Physiology or Medicine, awarded to Dr. James Allison and Dr. Tasuku Honjo for their contributions to cancer therapy [4]. In parallel to the emerging science that aided in unleashing the body's own antitumor immunity with checkpoint pathway inhibitors, researchers were also identifying ways to re-engineer antitumor immunity through adoptive cellular immunotherapy approaches. Chimeric antigen receptor (CAR)-based T cell therapy has achieved an early head start in the field, with two recent FDA approvals in 2017 for the treatment of B-cell malignancies [5]. There is an explosion of preclinical and clinical efforts to expand the therapeutic indications for CAR T cell therapies, with a specific focus on improving their clinical utility, particularly for the treatment of solid tumors. In this chapter, we will highlight the recent progress, challenges, and future perspectives surrounding the development of CAR T cell therapies for solid tumors.
Collapse
Affiliation(s)
- Lawrence A Stern
- Department of Hematology and Hematopoietic Cell Transplantation, Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vanessa D Jonsson
- Department of Hematology and Hematopoietic Cell Transplantation, Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
84
|
Han J, Gao F, Geng S, Ye X, Wang T, Du P, Cai Z, Fu Z, Zhao Z, Shi L, Li Q, Cai J. Minicircle DNA-Engineered CAR T Cells Suppressed Tumor Growth in Mice. Mol Cancer Ther 2020; 19:178-186. [PMID: 31582530 DOI: 10.1158/1535-7163.mct-19-0204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/04/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
Viral-based chimeric antigen receptor-engineered T (CAR T)-cell manufacturing has potential safety risks and relatively high costs. The nonviral minicircle DNA (mcDNA) is safer for patients, cheaper to produce, and may be a more suitable technique to generate CAR T cells. In this study, we produced mcDNA-based CAR T cells specifically targeting prostate stem cell antigen (PSCA; mcDNA-PSCA-CAR T cells). Our results showed that mcDNA-PSCA-CAR T cells persisted in mouse peripheral blood as long as 28 days and demonstrated more CAR T-cell infiltration, higher cytokine secretion levels, and better antitumor effects. Together, our results suggest that mcDNA-CAR can be a safe and cost-effective platform to produce CAR T cells.
Collapse
Affiliation(s)
- Jinsheng Han
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Gao
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Surgery and Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Songsong Geng
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Company Ltd., Shijiazhuang, Hebei, China
| | - Xueshuai Ye
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Company Ltd., Shijiazhuang, Hebei, China
| | - Tie Wang
- Department of Surgery, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei, China
| | - Pingping Du
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Company Ltd., Shijiazhuang, Hebei, China
| | - Ziqi Cai
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Company Ltd., Shijiazhuang, Hebei, China
| | - Zexian Fu
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Company Ltd., Shijiazhuang, Hebei, China
- Department of Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Zhilong Zhao
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Company Ltd., Shijiazhuang, Hebei, China
- Department of Surgery, the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Long Shi
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Company Ltd., Shijiazhuang, Hebei, China
- Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qingxia Li
- Department of Surgery and Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China.
- Department of Surgery and Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Company Ltd., Shijiazhuang, Hebei, China
| |
Collapse
|
85
|
Curran M, Mairesse M, Matas-Céspedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K. Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology. Toxicol Pathol 2019; 48:302-316. [PMID: 31847725 DOI: 10.1177/0192623319886304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Collapse
Affiliation(s)
- Michelle Curran
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maelle Mairesse
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bethany Bareham
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ardi Liaunardy
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Edward Powell
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emanuela Cuomo
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J Betts
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
86
|
Panagopoulou TI, Rafiq QA. CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and clinical outcome through CAR engineering. Biotechnol Adv 2019; 37:107411. [DOI: 10.1016/j.biotechadv.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
|
87
|
Bowers JS, Bailey SR, Rubinstein MP, Paulos CM, Camp ER. Genomics meets immunity in pancreatic cancer: Current research and future directions for pancreatic adenocarcinoma immunotherapy. Oncol Rev 2019; 13:430. [PMID: 31456872 PMCID: PMC6686121 DOI: 10.4081/oncol.2019.430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) remains a formidable disease that needs improved therapeutic strategies. Even though immunotherapy has revolutionized treatment for various solid tumor types, it remains largely ineffective in treating individuals with PDAC. This review describes how the application of genome-wide analysis is revitalizing the field of PDAC immunotherapy. Major themes include new insights into the body’s immune response to the cancer, and key immunosuppressive elements that blunt that antitumor immunity. In particular, new evidence indicates that T cell-based antitumor immunity against PDAC is more common, and more easily generated, than previously thought. However, equally common are an array of cellular and molecular defenses employed by the tumor against those T cells. These discoveries have changed how current immunotherapies are deployed and have directed development of novel strategies to better treat this disease. Thus, the impact of genomic analysis has been two-fold: both in demonstrating the heterogeneity of immune targets and defenses in this disease, as well as providing a powerful tool for designing and identifying personalized therapies that exploit each tumor’s unique phenotype. Such personalized treatment combinations may be the key to developing successful immunotherapies for pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Jacob S Bowers
- Department of Surgery, Medical University of South Carolina.,Hollings Cancer Center, Medical University of South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina
| | - Stefanie R Bailey
- Cellular Immunotherapy Program, Massachusetts General Hospital.,Harvard Medical School
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina.,Hollings Cancer Center, Medical University of South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina
| | - Chrystal M Paulos
- Hollings Cancer Center, Medical University of South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina
| | - E Ramsay Camp
- Department of Surgery, Medical University of South Carolina.,Hollings Cancer Center, Medical University of South Carolina.,Ralph H. Johnson VA Medical Center, South Carolina, USA
| |
Collapse
|
88
|
Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, Neri S, Fang B, Lin SH, Tinkey PT, Shpall EJ, Morris J, Roth JA. An Improved Patient-Derived Xenograft Humanized Mouse Model for Evaluation of Lung Cancer Immune Responses. Cancer Immunol Res 2019; 7:1267-1279. [PMID: 31186248 PMCID: PMC7213862 DOI: 10.1158/2326-6066.cir-18-0874] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Human tumor xenograft models do not replicate the human immune system and tumor microenvironment. We developed an improved humanized mouse model, derived from fresh cord blood CD34+ stem cells (CD34+ HSC), and combined it with lung cancer cell line-derived human xenografts or patient-derived xenografts (Hu-PDX). Fresh CD34+ HSCs could reconstitute detectable mature human leukocytes (hCD45+) in mice at four weeks without the onset of graft-versus-host disease (GVHD). Repopulated human T cells, B cells, natural killer (NK) cells, dendritic cells (DC), and myeloid-derived suppressor cells (MDSC) increased in peripheral blood, spleen, and bone marrow over time. Although cultured CD34+ HSCs labeled with luciferase could be detected in mice, the cultured HSCs did not develop into mature human immune cells by four weeks, unlike fresh CD34+ HSCs. Ex vivo, reconstituted T cells, obtained from the tumor-bearing humanized mice, secreted IFNγ upon treatment with phorbol myristate acetate (PMA) or exposure to human A549 lung tumor cells and mediated antigen-specific CTL responses, indicating functional activity. Growth of engrafted PDXs and tumor xenografts was not dependent on the human leukocyte antigen status of the donor. Treatment with the anti-PD-1 checkpoint inhibitors pembrolizumab or nivolumab inhibited tumor growth in humanized mice significantly, and correlated with an increased number of CTLs and decreased MDSCs, regardless of the donor HLA type. In conclusion, fresh CD34+HSCs are more effective than their expanded counterparts in humanizing mice, and do so in a shorter time. The Hu-PDX model provides an improved platform for evaluation of immunotherapy.
Collapse
Affiliation(s)
- Ismail M Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Meng
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - RuPing Shao
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shinya Neri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peggy T Tinkey
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
89
|
Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S, Kobold S. Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells 2019; 8:cells8050472. [PMID: 31108883 PMCID: PMC6562702 DOI: 10.3390/cells8050472] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer therapy has entered a new era, transitioning from unspecific chemotherapeutic agents to increasingly specific immune-based therapeutic strategies. Among these, chimeric antigen receptor (CAR) T cells have shown unparalleled therapeutic potential in treating refractory hematological malignancies. In contrast, solid tumors pose a much greater challenge to CAR T cell therapy, which has yet to be overcome. As this novel therapeutic modality matures, increasing effort is being invested to determine the optimal structure and properties of CARs to facilitate the transition from empirical testing to the rational design of CAR T cells. In this review, we highlight how individual CAR domains contribute to the success and failure of this promising treatment modality and provide an insight into the most notable advances in the field of CAR T cell engineering.
Collapse
Affiliation(s)
- Stefan Stoiber
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
- German Center for Translational Cancer Research (DKTK), 80337 Munich, Germany.
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
- German Center for Translational Cancer Research (DKTK), 80337 Munich, Germany.
| |
Collapse
|
90
|
Jiang J, Zhou H, Ni C, Hu X, Mou Y, Huang D, Yang L. Immunotherapy in pancreatic cancer: New hope or mission impossible? Cancer Lett 2019; 445:57-64. [DOI: 10.1016/j.canlet.2018.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
91
|
Ali AI, Oliver AJ, Samiei T, Chan JD, Kershaw MH, Slaney CY. Genetic Redirection of T Cells for the Treatment of Pancreatic Cancer. Front Oncol 2019; 9:56. [PMID: 30809507 PMCID: PMC6379296 DOI: 10.3389/fonc.2019.00056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Conventional treatments for pancreatic cancer are largely ineffective, and the prognosis for the vast majority of patients is poor. Clearly, new treatment options are desperately needed. Immunotherapy offers hope for the development of treatments for pancreatic cancer. A central requirement for the efficacy of this approach is the existence of cancer antigen-specific T cells, but these are often not present or difficult to isolate for most pancreatic tumors. Nevertheless, specific T cells can be generated using genetic modification to express chimeric antigen receptors (CAR), which can enable T cell responses against pancreatic tumor cells. CAR T cells can be produced ex vivo and expanded in vitro for infusion into patients. Remarkable responses have been documented using CAR T cells against several malignancies, including leukemias and lymphomas. Based on these successes, the extension of CAR T cell therapy for pancreatic cancer holds great promise. However, there are a number of challenges that limit the full potential of CAR T cell therapies for pancreatic cancer, including the highly immunosuppressive tumor microenvironment (TME). In this article, we will review the recent progress in using CAR T cells in pancreatic cancer preclinical and clinical settings, discuss hurdles for utilizing the full potential of CAR T cell therapy and propose research strategies and future perspectives. Research into the use of CAR T cell therapy in pancreatic cancer setting is rapidly gaining momentum and understanding strategies to overcome the current challenges in the pancreatic cancer setting will allow the development of effective CAR T cell therapies, either alone or in combination with other treatments to benefit pancreatic cancer patients.
Collapse
Affiliation(s)
- Aesha I Ali
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Amanda J Oliver
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Tinaz Samiei
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jack D Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
92
|
Ramello MC, Benzaïd I, Kuenzi BM, Lienlaf-Moreno M, Kandell WM, Santiago DN, Pabón-Saldaña M, Darville L, Fang B, Rix U, Yoder S, Berglund A, Koomen JM, Haura EB, Abate-Daga D. An immunoproteomic approach to characterize the CAR interactome and signalosome. Sci Signal 2019; 12:12/568/eaap9777. [PMID: 30755478 DOI: 10.1126/scisignal.aap9777] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adoptive transfer of T cells that express a chimeric antigen receptor (CAR) is an approved immunotherapy that may be curative for some hematological cancers. To better understand the therapeutic mechanism of action, we systematically analyzed CAR signaling in human primary T cells by mass spectrometry. When we compared the interactomes and the signaling pathways activated by distinct CAR-T cells that shared the same antigen-binding domain but differed in their intracellular domains and their in vivo antitumor efficacy, we found that only second-generation CARs induced the expression of a constitutively phosphorylated form of CD3ζ that resembled the endogenous species. This phenomenon was independent of the choice of costimulatory domains, or the hinge/transmembrane region. Rather, it was dependent on the size of the intracellular domains. Moreover, the second-generation design was also associated with stronger phosphorylation of downstream secondary messengers, as evidenced by global phosphoproteome analysis. These results suggest that second-generation CARs can activate additional sources of CD3ζ signaling, and this may contribute to more intense signaling and superior antitumor efficacy that they display compared to third-generation CARs. Moreover, our results provide a deeper understanding of how CARs interact physically and/or functionally with endogenous T cell molecules, which will inform the development of novel optimized immune receptors.
Collapse
Affiliation(s)
- Maria C Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ismahène Benzaïd
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brent M Kuenzi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Maritza Lienlaf-Moreno
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wendy M Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Daniel N Santiago
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mibel Pabón-Saldaña
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lancia Darville
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Sean Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anders Berglund
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. .,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
93
|
Perkhofer L, Beutel AK, Ettrich TJ. Immunotherapy: Pancreatic Cancer and Extrahepatic Biliary Tract Cancer. Visc Med 2019; 35:28-37. [PMID: 31312647 DOI: 10.1159/000497291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and extrahepatic biliary tract cancer (BTC) are among the malignancies with the highest morbidity and mortality. Despite increasing knowledge on biology and novel therapies, outcome remains poor in these patients. Recent progress in immunotherapies created new hopes in the treatment of PDAC and extrahepatic BTC. Several trials tested immunotherapies in various therapeutic situations as monotherapies or in combinations. Although responses were seen in some of the trials, the value of immunotherapy in PDAC and extrahepatic BTC remains unclear in the current situation, especially regarding the complex biological characteristics with a high stroma component, intrinsic resistance mechanisms and an immunosuppressive, hypoxic microenvironment. These major hurdles have to be taken into account and overcome if immunotherapies should be successful in these tumor entities. Thereby, combinational approaches that allow on the one hand targeted therapy and on the other restore or boost the function of immune cells are promising.
Collapse
Affiliation(s)
- Lukas Perkhofer
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | - Alica K Beutel
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | - Thomas J Ettrich
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
94
|
Yu H, Pan J, Guo Z, Yang C, Mao L. CART cell therapy for prostate cancer: status and promise. Onco Targets Ther 2019; 12:391-395. [PMID: 30655675 PMCID: PMC6322708 DOI: 10.2147/ott.s185556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In recent years, the, chimeric antigen receptor T (CAR-T) cell therapy as an adoptive immunotherapy has received great attention and made great breakthroughs. CAR-T cells show great specificity, targeting, and less major histocompatibility complex restriction in tumor immunotherapy, significantly different from traditional T cells. In spite of the progress of CART-T technology in the treatment of lymphoma, leukemia, and other blood system tumor, there are still many difficulties in the treatment of solid tumors by CAR-T technology. In this review, we will make a brief summary of the present situation of CAR-T cells in the treatment of prostate cancer, and discuss the promise of the application of this technology to prostate cancer therapy.
Collapse
Affiliation(s)
- Haiyuan Yu
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, ,
| | - Jun Pan
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, ,
| | - Zhicheng Guo
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, ,
| | - Chunhua Yang
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, , .,Jiangsu Key Laboratory of Biological Cancer Therapy, Department of Clinic Institute, Xuzhou Medical University, Xuzhou 221002, China, ,
| | - Lijun Mao
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, , .,Jiangsu Key Laboratory of Biological Cancer Therapy, Department of Clinic Institute, Xuzhou Medical University, Xuzhou 221002, China, ,
| |
Collapse
|
95
|
Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 2019; 68:159-171. [PMID: 30177543 DOI: 10.1136/gutjnl-2018-316451] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is notoriously aggressive and hard to treat. The tumour microenvironment (TME) in PDA is highly dynamic and has been found to promote tumour progression, metastasis niche formation and therapeutic resistance. Intensive research of recent years has revealed an incredible heterogeneity and complexity of the different components of the TME, including cancer-associated fibroblasts, immune cells, extracellular matrix components, tumour vessels and nerves. It has been hypothesised that paracrine interactions between neoplastic epithelial cells and TME compartments may result in either tumour-promoting or tumour-restraining consequences. A better preclinical understanding of such complex and dynamic network systems is required to develop more powerful treatment strategies for patients. Scientific activity and the number of compelling findings has virtually exploded during recent years. Here, we provide an update of the most recent findings in this area and discuss their translational and clinical implications for basic scientists and clinicians alike.
Collapse
Affiliation(s)
- Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, Goettingen, Germany
| | - Christian Alexander Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Matthias Lauth
- Department of Medicine, Philipps University, Center for Tumour and Immune Biology, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin, Luther University Halle-Wittenberg, Halle, Germany
| | - David A Tuveson
- Lustgarten Foundation Designated Pancreatic Cancer Research Lab at Cold Spring Harbor Laboratory, New York, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
96
|
Abstract
Immunotherapy is one of the most exciting recent breakthroughs in the field of cancer treatment. Many different approaches are being developed and a number have already gained regulatory approval or are under investigation in clinical trials. However, learning from the past, preclinical animal models often insufficiently reflect the physiological situation in humans, which subsequently causes treatment failures in clinical trials. Due to species-specific differences in most parts of the immune system, the transfer of knowledge from preclinical studies to clinical trials is eminently challenging. Human tumor cell line-based or patient-derived xenografts in immunocompromised mice have been successfully applied in the preclinical testing of cytotoxic or molecularly targeted agents, but naturally these systems lack the human immune system counterpart. The co-transplantation of human peripheral blood mononuclear cells or hematopoietic stem cells is employed to overcome this limitation. This review summarizes some important aspects of the different available tumor xenograft mouse models, their history, and their implementation in drug development and personalized therapy. Moreover, recent progress, opportunities and limitations of different humanized mouse models will be discussed.
Collapse
|
97
|
Akce M, Zaidi MY, Waller EK, El-Rayes BF, Lesinski GB. The Potential of CAR T Cell Therapy in Pancreatic Cancer. Front Immunol 2018; 9:2166. [PMID: 30319627 PMCID: PMC6167429 DOI: 10.3389/fimmu.2018.02166] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer has a dismal prognosis and effective treatment options are limited. It is projected to be the second most common cause of cancer related mortality in the United States by 2030 and there is urgent unmet need for novel systemic treatment options. Immunotherapy with antibodies targeting PD-1, PD-L1, CTLA-4 has not shown clinical activity in unselected pancreatic cancer, emphasizing the need for combination immunotherapy approaches or other therapeutic strategies. As such, chimeric antigen receptor (CAR) T cell therapy represents an emerging therapeutic option for pancreatic cancer. This modality utilizes genetically engineered T cells that are redirected to specific cancer-associated antigens to elicit potent cytotoxic activity. This review summarizes the available preclinical data and highlights early phase clinical trials using CAR T cell approaches in pancreatic cancer, a disease state that is gaining attention as a conduit for cell therapy. Future directions in application of CAR T cell therapy are also considered including its ability to be directed against novel epitopes and combined with other therapeutic regimens.
Collapse
Affiliation(s)
- Mehmet Akce
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Mohammad Y Zaidi
- Department of General Surgery, Indiana University, Bloomington, IN, United States.,Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Gregory B Lesinski
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
98
|
Humanized Mice for the Study of Immuno-Oncology. Trends Immunol 2018; 39:748-763. [DOI: 10.1016/j.it.2018.07.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/28/2023]
|
99
|
Pantuck M, Palaskas N, Drakaki A. Next generation T-cell therapy for genitourinary malignancies, part B: Overcoming obstacles and future strategies for success. Cancer Treat Res Commun 2018; 17:1-7. [PMID: 30170288 DOI: 10.1016/j.ctarc.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Nicolaos Palaskas
- Division of Hematology and Oncology, David Geffen School of Medicine, UCLA, Los Angeles, USA.
| | - Alexandra Drakaki
- Division of Hematology and Oncology, David Geffen School of Medicine, UCLA, Los Angeles, USA.
| |
Collapse
|
100
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|