51
|
Baik JS, Lee TY, Kim NG, Pak K, Ko SH, Min JH, Shin YI. Effects of Photobiomodulation on Changes in Cognitive Function and Regional Cerebral Blood Flow in Patients with Mild Cognitive Impairment: A Pilot Uncontrolled Trial. J Alzheimers Dis 2021; 83:1513-1519. [PMID: 34420956 DOI: 10.3233/jad-210386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Photobiomodulation (PBM) affects local blood flow regulation through nitric oxide generation, and various studies have reported on its effect on improving cognitive function in neurodegenerative diseases. However, the effect of PBM in the areas of the vertebral arteries (VA) and internal carotid arteries (ICA), which are the major blood-supplying arteries to the brain, has not been previously investigated. OBJECTIVE We aimed to determine whether irradiating PBM in the areas of the VA and ICA, which are the major blood-supplying arteries to the brain, improved regional cerebral blood flow (rCBF) and cognitive function. METHODS Fourteen patients with mild cognitive impairments were treated with PBM. Cognitive assessment and single-photon emission computed tomography were implemented at the baseline and at the end of PBM. RESULTS Regarding rCBF, statistically significant trends were found in the medial prefrontal cortex, lateral prefrontal cortex, anterior cingulate cortex, and occipital lateral cortex. Based on the cognitive assessments, statistically significant trends were found in overall cognitive function, memory, and frontal/executive function. CONCLUSION We confirmed the possibility that PBM treatment in the VA and ICA areas could positively affect cognitive function by increasing rCBF. A study with a larger sample size is needed to validate the potential of PBM.
Collapse
Affiliation(s)
- Ji Soo Baik
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven. Seoul, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sung-Hwa Ko
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Ji Hong Min
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Rehabilitation Medicine & Institute of Medical Science, Pusan National University School of Medicine, Busan, Republic of Korea
| |
Collapse
|
52
|
Azmi H. Neuromodulation for Cognitive Disorders: In Search of Lazarus? Neurol India 2021; 68:S288-S296. [PMID: 33318364 DOI: 10.4103/0028-3886.302469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Alzheimer's disease (AD) and other forms of dementia can have a large impact on patients, their families, and for the society as a whole. Current medical treatments have not shown enough potential in treating or altering the course of the disease. Deep brain stimulation (DBS) has shown great neuromodulatory potential in Parkinson's disease, and there is a growing body of evidence for justifying its use in cognitive disorders. At the same time there is mounting interest at less invasive and alternative modes of neuromodulation for the treatment of AD. This manuscript is a brief review of the infrastructure of memory, the current understanding of the pathophysiology of AD, and the body of preclinical and clinical evidence for noninvasive and invasive neuromodulation modalities for the treatment of cognitive disorders and AD in particular.
Collapse
Affiliation(s)
- Hooman Azmi
- Department of Neurosurgery, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack; New Jersey Brain and Spine Center, Oradell, New Jersey, USA
| |
Collapse
|
53
|
Spera V, Sitnikova T, Ward MJ, Farzam P, Hughes J, Gazecki S, Bui E, Maiello M, De Taboada L, Hamblin MR, Franceschini MA, Cassano P. Pilot Study on Dose-Dependent Effects of Transcranial Photobiomodulation on Brain Electrical Oscillations: A Potential Therapeutic Target in Alzheimer's Disease. J Alzheimers Dis 2021; 83:1481-1498. [PMID: 34092636 DOI: 10.3233/jad-210058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain. OBJECTIVE We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF). METHODS We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.6±12.9 years]. c-tPBM near-infrared radiation (NIR) (830 nm; 54.8 mW/cm2; 65.8 J/cm2; 2.3 kJ) and p-tPBM (830 nm; 10 Hz; 54.8 mW/cm2; 33%; 21.7 J/cm2; 0.8 kJ) were delivered concurrently to the frontal areas by four LED clusters. EEG and DCS recordings were performed weekly before, during, and after each tPBM session. RESULTS c-tPBM significantly boosted gamma (t = 3.02, df = 7, p < 0.02) and beta (t = 2.91, df = 7, p < 0.03) EEG spectral powers in eyes-open recordings and gamma power (t = 3.61, df = 6, p < 0.015) in eyes-closed recordings, with a widespread increase over frontal-central scalp regions. There was no significant effect of tPBM on CBF compared to sham. CONCLUSION Our data suggest a dose-dependent effect of tPBM with NIR on cerebral gamma and beta neuronal activity. Altogether, our findings support the neuromodulatory effect of transcranial NIR.
Collapse
Affiliation(s)
- Vincenza Spera
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | - Tatiana Sitnikova
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Parya Farzam
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeremy Hughes
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Gazecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marco Maiello
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Angela Franceschini
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Yang M, Yang Z, Wang P, Sun Z. Current application and future directions of photobiomodulation in central nervous diseases. Neural Regen Res 2021; 16:1177-1185. [PMID: 33269767 PMCID: PMC8224127 DOI: 10.4103/1673-5374.300486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions. Photobiomodulation can promote neurogenesis and elicit anti-apoptotic, anti-inflammatory and antioxidative responses. Its therapeutic effects have been demonstrated in studies on neurological diseases, peripheral nerve injuries, pain relief and wound healing. We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019. The NCBI PubMed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. We reviewed 95 papers and analyzed. Photobiomodulation has wide applicability in the treatment of stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, major depressive disorder, and other diseases. Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases. However, additional studies with adequate sample size are needed to optimize treatment parameters.
Collapse
Affiliation(s)
- Muyue Yang
- Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Chengdu, Sichuan Province, China
| | - Pu Wang
- Department of Rehabilitation Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhihui Sun
- Department of Psychosomatic Medicine, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu Province, China
| |
Collapse
|
55
|
Salehpour F, Khademi M, Hamblin MR. Photobiomodulation Therapy for Dementia: A Systematic Review of Pre-Clinical and Clinical Studies. J Alzheimers Dis 2021; 83:1431-1452. [PMID: 33935090 DOI: 10.3233/jad-210029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Photobiomodulation (PBM) involves the use of red and/or near-infrared light from lasers or LEDs to improve a wide range of medical disorders. Transcranial PBM, sometimes accompanied by intranasal PBM, has been tested to improve many brain disorders, including dementia. OBJECTIVE To conduct a systematic review according to PRISMA guidelines of pre-clinical and clinical studies reporting the use of PBM, which were considered relevant to dementia. METHODS Literature was searched between 1967 and 2020 using a range of keywords relevant to PBM and dementia. The light source and wavelength(s), output power, irradiance, irradiation time, fluence or total energy (dose), operation mode (continuous or pulsed) irradiation, approach and site, number of treatment sessions, as well as study outcome(s) were extracted. RESULTS Out of 10,473 initial articles, 36 studies met the inclusion criteria. Nine articles reported in vitro studies, 17 articles reported studies in animal models of dementia, and 10 studies were conducted in dementia patients. All of the included studies reported positive results. The clinical studies were limited by the small number of patients, lack of placebo controls in some instances, and only a few used objective neuroimaging methods. CONCLUSION The preliminary evidence of clinical benefit, the lack of any adverse effects, and the remarkable ease of use, suggest larger clinical trials should be conducted as soon as possible.
Collapse
Affiliation(s)
- Farzad Salehpour
- College for Light Medicine and Photobiomodulation, Starnberg, Germany.,ProNeuroLIGHT LLC, Phoenix, AZ, USA
| | - Mahsa Khademi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
56
|
Johnstone DM, Hamilton C, Gordon LC, Moro C, Torres N, Nicklason F, Stone J, Benabid AL, Mitrofanis J. Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson's Disease: A Comparison of Direct and Indirect Systemic Stimulations. J Alzheimers Dis 2021; 83:1399-1413. [PMID: 33843683 DOI: 10.3233/jad-210052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent times, photobiomodulation has been shown to be beneficial in animal models of Parkinson's disease, improving locomotive behavior and being neuroprotective. Early observations in people with Parkinson's disease have been positive also, with improvements in the non-motor symptoms of the disease being evident most consistently. Although the precise mechanisms behind these improvements are not clear, two have been proposed: direct stimulation, where light reaches and acts directly on the distressed neurons, and remote stimulation, where light influences cells and/or molecules that provide systemic protection, thereby acting indirectly on distressed neurons. In relation to Parkinson's disease, given that the major zone of pathology lies deep in the brain and that light from an extracranial or external photobiomodulation device would not reach these vulnerable regions, stimulating the distressed neurons directly would require intracranial delivery of light using a device implanted close to the vulnerable regions. For indirect systemic stimulation, photobiomodulation could be applied to either the head and scalp, using a transcranial helmet, or to a more remote body part (e.g., abdomen, leg). In this review, we discuss the evidence for both the direct and indirect neuroprotective effects of photobiomodulation in Parkinson's disease and propose that both types of treatment modality, when working together using both intracranial and extracranial devices, provide the best therapeutic option.
Collapse
Affiliation(s)
| | | | - Luke C Gordon
- Department of Physiology, University of Sydney, Australia
| | - Cecile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - Napoleon Torres
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - Frank Nicklason
- Department of Anatomy, University of Sydney, Australia.,Geriatric Medicine, Royal Hobart Hospital, Hobart, Australia
| | - Jonathan Stone
- Department of Physiology, University of Sydney, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy, University of Sydney, Australia.,University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| |
Collapse
|
57
|
Martin PI, Chao L, Krengel MH, Ho MD, Yee M, Lew R, Knight J, Hamblin MR, Naeser MA. Transcranial Photobiomodulation to Improve Cognition in Gulf War Illness. Front Neurol 2021; 11:574386. [PMID: 33551948 PMCID: PMC7859640 DOI: 10.3389/fneur.2020.574386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction: Approximately 25-30% of veterans deployed to Kuwait, 1990-91, report persistent multi-symptom Gulf War Illness (GWI) likely from neurotoxicant exposures. Photobiomodulation (PBM) in red/near-infrared (NIR) wavelengths is a safe, non-invasive modality shown to help repair hypoxic/stressed cells. Red/NIR wavelengths are absorbed by cytochrome C oxidase in mitochondria, releasing nitric oxide (increasing local vasodilation), and increasing adenosine tri-phosphate production. We investigated whether PBM applied transcranially could improve cognition, and health symptoms in GWI. Materials and Methods: Forty-eight (40 M) participants completed this blinded, randomized, sham-controlled trial using Sham or Real, red/NIR light-emitting diodes (LED) applied transcranially. Fifteen, half-hour transcranial LED (tLED) treatments were twice a week (7.5 weeks, in-office). Goggles worn by participant and assistant maintained blinding for visible red. Pre-/Post- testing was at Entry, 1 week and 1 month post- 15th treatment. Primary outcome measures were neuropsychological (NP) tests; secondary outcomes, Psychosocial Questionnaires, including PTSD. Results: Primary Analyses (all participants), showed improvement for Real vs. Sham, for Digit Span Forwards (p < 0.01); and a trend for Trails 4, Number/Letter Sequencing (p < 0.10). For secondary outcomes, Real group reported more improvement on the SF-36V Plus, Physical Component Score (p < 0.08). Secondary Analyses included only subjects scoring below norm (50%ile) at Entry, on specific NP test/s. Real and Sham improved at 1 week after 15th treatment; however, at 1 month, only those receiving Real improved further: Digit Span Total, Forwards and Backwards; Trails 4, Number/Letter Sequencing; California Verbal Learning Test-II, long delay free recall; Continuous Performance Test-II, False Alarm Rate; and Color-Word Interference, Stroop, Trial 3, Inhibition; Sham group worsened, toward Entry values. Only those with more post-traumatic stress disorder (PTSD) symptomatology at Entry, receiving Real, continued to have additional PTSD reduction at 1 month; Sham regressed. Conclusion: This study was underpowered (n = 48), with large heterogeneity at Entry. This likely contributed to significance or trend to significance, for only two of the NP tests (Digit Span Forwards; Trails 4, Number/Letter Sequencing) and only one general health measure, the SF-36V Plus, Physical Component Score. More subjects receiving Real, self-reported increased concentration, relaxation and sleep. Controlled studies with newer, transcranial LED home treatment devices are warranted; this is expected to increase enrollment. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT01782378.
Collapse
Affiliation(s)
- Paula I. Martin
- VA Boston Healthcare System, Boston, MA, United States
- Department of Neurology, School of Medicine, Boston University, Boston, MA, United States
| | - Linda Chao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Maxine H. Krengel
- VA Boston Healthcare System, Boston, MA, United States
- Department of Neurology, School of Medicine, Boston University, Boston, MA, United States
| | - Michael D. Ho
- VA Boston Healthcare System, Boston, MA, United States
| | - Megan Yee
- VA Boston Healthcare System, Boston, MA, United States
| | - Robert Lew
- VA Boston Healthcare System, Boston, MA, United States
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, United States
| | - Jeffrey Knight
- VA Boston Healthcare System, National Center for Posttraumatic Stress Disorder, Boston, MA, United States
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Margaret A. Naeser
- VA Boston Healthcare System, Boston, MA, United States
- Department of Neurology, School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
58
|
Toniolo S, Sen A, Husain M. Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer's Disease. Int J Mol Sci 2020; 21:E9318. [PMID: 33297460 PMCID: PMC7730926 DOI: 10.3390/ijms21239318] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
People with Alzheimer's disease (AD) have significantly higher rates of subclinical and overt epileptiform activity. In animal models, oligomeric Aβ amyloid is able to induce neuronal hyperexcitability even in the early phases of the disease. Such aberrant activity subsequently leads to downstream accumulation of toxic proteins, and ultimately to further neurodegeneration and neuronal silencing mediated by concomitant tau accumulation. Several neurotransmitters participate in the initial hyperexcitable state, with increased synaptic glutamatergic tone and decreased GABAergic inhibition. These changes appear to activate excitotoxic pathways and, ultimately, cause reduced long-term potentiation, increased long-term depression, and increased GABAergic inhibitory remodelling at the network level. Brain hyperexcitability has therefore been identified as a potential target for therapeutic interventions aimed at enhancing cognition, and, possibly, disease modification in the longer term. Clinical trials are ongoing to evaluate the potential efficacy in targeting hyperexcitability in AD, with levetiracetam showing some encouraging effects. Newer compounds and techniques, such as gene editing via viral vectors or brain stimulation, also show promise. Diagnostic challenges include identifying best biomarkers for measuring sub-clinical epileptiform discharges. Determining the timing of any intervention is critical and future trials will need to carefully stratify participants with respect to the phase of disease pathology.
Collapse
Affiliation(s)
- Sofia Toniolo
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Masud Husain
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK
| |
Collapse
|
59
|
Does photobiomodulation influence the resting-state brain networks in young human subjects? Exp Brain Res 2020; 239:435-449. [PMID: 33211136 DOI: 10.1007/s00221-020-05981-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Using fMRI (functional magnetic resonance imaging), we explored the effect of transcranial photobiomodulation on four major resting-state brain networks, namely the sensorimotor, salience, default mode and central executive networks, in normal young subjects. We used a vielight transcranial device (810 nm) and compared the scans in 20 subjects (mean age 30.0 ± 2.8 years) after active- and sham-photobiomodulation sessions. Four sets of analysis-independent components, network connectivity, infra-slow oscillatory power and arterial spin labelling-were undertaken. Our results showed that when comparing pre- with post-active and pre- with post-sham photobiomodulation scans, there were no substantial differences in activity across any of the four resting-state networks examined, indicating no clear photobiomodulation effect. When taken together with previous findings, we suggest that the impact of photobiomodulation becomes much clearer only after brain circuitry is altered, for example, after a neurone undergoes some change in its equilibrium or homeostasis, either during pathology or ageing, or during a change in functional activity when individuals are engaged in a specific task (e.g. evoked brain activity).
Collapse
|
60
|
Fekete Z, Horváth ÁC, Zátonyi A. Infrared neuromodulation:a neuroengineering perspective. J Neural Eng 2020; 17:051003. [PMID: 33055373 DOI: 10.1088/1741-2552/abb3b2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infrared neuromodulation (INM) is a branch of photobiomodulation that offers direct or indirect control of cellular activity through elevation of temperature in a spatially confined region of the target tissue. Research on INM started about 15 ago and is gradually attracting the attention of the neuroscience community, as numerous experimental studies have provided firm evidence on the safe and reproducible excitation and inhibition of neuronal firing in both in vitro and in vivo conditions. However, its biophysical mechanism is not fully understood and several engineered interfaces have been created to investigate infrared stimulation in both the peripheral and central nervous system. In this review, recent applications and present knowledge on the effects of INM on cellular activity are summarized, and an overview of the technical approaches to deliver infrared light to cells and to interrogate the optically evoked response is provided. The micro- and nanoengineered interfaces used to investigate the influence of INM are described in detail.
Collapse
Affiliation(s)
- Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
61
|
Chao LL, Barlow C, Karimpoor M, Lim L. Changes in Brain Function and Structure After Self-Administered Home Photobiomodulation Treatment in a Concussion Case. Front Neurol 2020; 11:952. [PMID: 33013635 PMCID: PMC7509409 DOI: 10.3389/fneur.2020.00952] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a common neurological disorder among athletes. Although there are no widely accepted treatments for TBI, new investigational approaches, such as photobiomodulation (PBM), are being tested. PBM is a light therapy that uses red to near-infrared (NIR) light to stimulate, heal, and protect tissue that has been injured or is at risk of dying. Benefits following transcranial PBM treatments in animal models of acute TBI and a small number of chronic TBI patients have been reported. However, the human PBM TBI studies published to date have been based on behavioral assessments. This report describes changes in behavioral and neuroimaging measures after 8 weeks of PBM treatments. The subject was a 23-year professional hockey player with a history of concussions, presumed to have caused his symptoms of headaches, mild anxiety, and difficulty concentrating. He treated himself at home with commercially available, low-risk PBM devices that used light-emitting diodes (LEDs) to emit 810-nm light pulsing at 10 or 40 Hz delivered by an intranasal and four transcranial modules that targeted nodes of the default mode network (DMN) with a maximum power density of 100 mW/cm2. After 8 weeks of PBM treatments, increased brain volumes, improved functional connectivity, and increased cerebral perfusion and improvements on neuropsychological test scores were observed. Although this is a single, sport-related case with a history of concussions, these positive findings encourage replication studies that could provide further validation for this non-invasive, non-pharmacological modality as a viable treatment option for TBI.
Collapse
Affiliation(s)
- Linda L Chao
- Departments of Radiology & Biomedical Imaging and Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States.,VA Advanced Imaging Research Center, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Cody Barlow
- VA Advanced Imaging Research Center, San Francisco VA Health Care System, San Francisco, CA, United States
| | | | - Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
62
|
Heiskanen V, Pfiffner M, Partonen T. Sunlight and health: shifting the focus from vitamin D3 to photobiomodulation by red and near-infrared light. Ageing Res Rev 2020; 61:101089. [PMID: 32464190 DOI: 10.1016/j.arr.2020.101089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Both sun exposure and serum vitamin D levels have been associated with lower risks of all-cause mortality and chronic age-related diseases, e.g., cancer, diabetes and cardiovascular disease, in epidemiological studies. These associations have mainly been ascribed to beneficial effects of vitamin D. However, a vast body of randomized controlled trials (RCTs) and Mendelian randomization studies have failed to confirm any major health benefits from vitamin D supplementation. In this review, we present tentative evidence showing that red and near-infrared light, both being present in sunlight, could explain the associations between sunlight exposure and better health status. Body irradiation with red and near-infrared light, usually termed as photobiomodulation (PBM), has demonstrated beneficial effects in animal models of chronic diseases. Beyond this, preliminary evidence from RCTs suggest potential clinical benefit from PBM for chronic diseases. PBM is currently being investigated in many pre-registered clinical trials, results of which will eventually clarify the role of red and near-infrared light in the prevention and treatment of common age-related chronic diseases.
Collapse
|
63
|
Huang N, Yao D, Jiang W, Wei C, Li M, Li W, Mu H, Gao M, Ma Z, Lyu J, Tong Z. Safety and Efficacy of 630-nm Red Light on Cognitive Function in Older Adults With Mild to Moderate Alzheimer's Disease: Protocol for a Randomized Controlled Study. Front Aging Neurosci 2020; 12:143. [PMID: 32528273 PMCID: PMC7253693 DOI: 10.3389/fnagi.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/28/2020] [Indexed: 11/15/2022] Open
Abstract
Introduction: Studies have shown that excess formaldehyde accumulation in the brain accelerates cognitive decline in people with Alzheimer’s disease (AD). Recently, reports from our research team revealed that red light treatment (RLT) improved memory in AD mice by activating formaldehyde dehydrogenase (FDH) and thus reducing formaldehyde levels. Here, we developed a medical RLT device to investigate the safety and efficacy of this device in older adults with mild to moderate AD. Methods: This will be a randomized controlled trial (RCT) that will include 60 participants who will be recruited and randomly divided into an RLT group and a control group. The RLT group will receive RLT intervention 5 days a week for 30 min each time for 24 weeks while the control group will continue their routine treatments without RLT. All participants will undergo neuropsychological and functional assessments including the Mini-Mental State Examination, the AD assessment scale-cognitive subscale (ADAS-cog), the Geriatric Depression Scale (GDS), the Neuropsychiatric Inventory (NPI) and the Barthel Index at baseline, 12 weeks and 24 weeks. All participants will undergo functional magnetic resonance imaging (fMRI) scanning and blood/urine biomarkers tests at baseline and 24 weeks. The primary outcome will be the ADAS-cog score while the secondary outcomes will be the GDS and NPI scores. Adverse events will be recorded and treated when necessary. Both an intention-to-treat analysis and a per-protocol analysis will be performed to evaluate the safety and efficacy of RLT. Discussion: This protocol outlines the objectives of the study and explained the RLT device developed by the research team. The study is designed as an RCT to evaluate the safety and effects of the RLT device on older adults with mild to moderate AD. This study will provide evidence for the clinical use of RLT on treatment for AD. Clinical Trial Registration:www.ClinicalTrials.gov, ChiCTR1800020163; Pre-results.
Collapse
Affiliation(s)
- Nayan Huang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Dandan Yao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Wenjing Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Mo Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Wenjie Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Haiyan Mu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Maolong Gao
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Zongjuan Ma
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Jihui Lyu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Zhiqian Tong
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
64
|
Dmochowski GM, Shereen AD, Berisha D, Dmochowski JP. Near-Infrared Light Increases Functional Connectivity with a Non-thermal Mechanism. Cereb Cortex Commun 2020; 1:tgaa004. [PMID: 34296085 PMCID: PMC8152883 DOI: 10.1093/texcom/tgaa004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 02/22/2020] [Accepted: 03/15/2020] [Indexed: 12/05/2022] Open
Abstract
Although techniques for noninvasive brain stimulation are under intense investigation, an approach that has received limited attention is transcranial photobiomodulation (tPBM), the delivery of near-infrared light to the brain with a laser or light-emitting diode directed at the scalp. Here we employed functional magnetic resonance imaging to measure the blood-oxygenation-level–dependent signal in n = 20 healthy human participants while concurrently stimulating their right frontal pole with a near-infrared laser. Functional connectivity with the illuminated region increased by up to 15% during stimulation, with a quarter of all connections experiencing a significant increase. The time course of connectivity exhibited a sharp rise approximately 1 min after illumination onset. Brain-wide connectivity increases were also observed, with connections involving the stimulated hemisphere showing a significantly larger increase than those in the contralateral hemisphere. We subsequently employed magnetic resonance thermometry to measure brain temperature during tPBM (separate cohort, n = 20) and found no significant temperature differences between active and sham stimulation. Our findings suggest that near-infrared light synchronizes brain activity with a nonthermal mechanism, underscoring the promise of tPBM as a new technique for stimulating brain function.
Collapse
Affiliation(s)
| | - Ahmed Duke Shereen
- Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Destiny Berisha
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA
| | - Jacek P Dmochowski
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA
| |
Collapse
|
65
|
Mitrofanis J, Henderson LA. How and why does photobiomodulation change brain activity? Neural Regen Res 2020; 15:2243-2244. [PMID: 32594038 PMCID: PMC7749488 DOI: 10.4103/1673-5374.284989] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- John Mitrofanis
- Department of Anatomy, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Luke A Henderson
- Department of Anatomy, School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
66
|
Enengl J, Hamblin MR, Dungel P. Photobiomodulation for Alzheimer's Disease: Translating Basic Research to Clinical Application. J Alzheimers Dis 2020; 75:1073-1082. [PMID: 32390621 PMCID: PMC7369090 DOI: 10.3233/jad-191210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Abstract
One of the challenges in translating new therapeutic approaches to the patient bedside lies in bridging the gap between scientists who are conducting basic laboratory research and medical practitioners who are not exposed to highly specialized journals. This review covers the literature on photobiomodulation therapy as a novel approach to prevent and treat Alzheimer's disease, aiming to bridge that gap by gathering together the terms and technical specifications into a single concise suggestion for a treatment protocol. In light of the predicted doubling in the number of people affected by dementia and Alzheimer's disease within the next 30 years, a treatment option which has already shown promising results in cell culture studies and animal models, and whose safety has already been proven in humans, must not be left in the dark. This review covers the mechanistic action of photobiomodulation therapy against Alzheimer's disease at a cellular level. Safe and effective doses have been found in animal models, and the first human case studies have provided reasons to undertake large-scale clinical trials. A brief discussion of the minimally effective and maximum tolerated dose concludes this review, and provides the basis for a successful translation from bench to bedside.
Collapse
Affiliation(s)
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
67
|
Exploring the Effects of Near Infrared Light on Resting and Evoked Brain Activity in Humans Using Magnetic Resonance Imaging. Neuroscience 2019; 422:161-171. [DOI: 10.1016/j.neuroscience.2019.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
68
|
Naeser MA, Ho MD, Martin PI, Hamblin MR, Koo BB. Increased Functional Connectivity Within Intrinsic Neural Networks in Chronic Stroke Following Treatment with Red/Near-Infrared Transcranial Photobiomodulation: Case Series with Improved Naming in Aphasia. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 38:115-131. [PMID: 31621498 DOI: 10.1089/photob.2019.4630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: To examine effects of four different transcranial, red/near-infrared (NIR), light-emitting diode (tLED) protocols on naming ability in persons with aphasia (PWA) due to left hemisphere (LH) stroke. This is the first study to report beneficial effects from tLED therapy in chronic stroke, and parallel changes on functional magnetic resonance imaging (fMRI). Materials and methods: Six PWA, 2-18 years poststroke, in whom 18 tLED treatments were applied (3 × /week, 6 weeks) using LED cluster heads: 500 mW, red (633 nm) and NIR (870 nm), 22.48 cm2, 22.2 mW/cm2. Results: After Protocol A with bilateral LED placements, including midline, at scalp vertex over left and right supplementary motor areas (L and R SMAs), picture naming was not improved. P1 underwent pre-/postovert, picture-naming task-fMRI scans; P2 could not. After Protocol A, P1 showed increased activation in LH and right hemisphere, including L and R SMAs. After Protocol B with LEDs only on ipsilesional, LH side, naming ability significantly improved for P1 and P2; the fMRI scans for P1 then showed activation only on the ipsilesional LH side. After Protocol C with LED placements on ipsilesional LH side, plus one midline placement over mesial prefrontal cortex (mPFC) at front hairline, a cortical node of the default mode network (DMN), P3 and P4 had only moderate/poor response, and no increase in functional connectivity on resting-state functional-connectivity MRI. After Protocol D, however, with LED placements on ipsilesional LH side, plus over two midline nodes of DMN, mPFC, and precuneus (high parietal) simultaneously, P5 and P6 each had good response with significant increase in functional connectivity within DMN, p < 0.0005; salience network, p < 0.0005; and central executive network, p < 0.05. Conclusions: NIR photons can affect surface brain cortex areas subjacent to where LEDs are applied on the scalp. Improved naming ability was present with optimal Protocol D. Transcranial photobiomodulation may be an additional noninvasive therapy for stroke.
Collapse
Affiliation(s)
- Margaret A Naeser
- VA Boston Healthcare System (12-A), Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael D Ho
- VA Boston Healthcare System (12-A), Boston, Massachusetts
| | - Paula I Martin
- VA Boston Healthcare System (12-A), Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Bang-Bon Koo
- Brain-Imaging and Informatics Lab (BIL), Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
69
|
Abstract
Next to cancer, Alzheimer's disease (AD) and dementia is probably the most worrying health problem facing the Western world today. A large number of clinical trials have failed to show any benefit of the tested drugs in stabilizing or reversing the steady decline in cognitive function that is suffered by dementia patients. Although the pathological features of AD consisting of beta-amyloid plaques and tau tangles are well established, considerable debate exists concerning the genetic or lifestyle factors that predispose individuals to developing dementia. Photobiomodulation (PBM) describes the therapeutic use of red or near-infrared light to stimulate healing, relieve pain and inflammation, and prevent tissue from dying. In recent years PBM has been applied for a diverse range of brain disorders, frequently applied in a non-invasive manner by shining light on the head (transcranial PBM). The present review discusses the mechanisms of action of tPBM in the brain, and summarizes studies that have used tPBM to treat animal models of AD. The results of a limited number of clinical trials that have used tPBM to treat patients with AD and dementia are discussed.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
70
|
Meynaghizadeh-Zargar R, Salehpour F, Hamblin MR, Mahmoudi J, Sadigh-Eteghad S. Potential Application of Upconverting Nanoparticles for Brain Photobiomodulation. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:596-605. [PMID: 31335302 DOI: 10.1089/photob.2019.4659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Brain photobiomodulation (PBM) describes the use of visible to near-infrared light for modulation or stimulation of the central nervous system in both healthy individuals and diseased conditions. Although the transcranial approach to delivering light to the head is the most common technique to stimulate the brain, delivery of light to deeper structures in the brain is still a challenge. The science of nanoparticle engineering in combination with biophotonic excitation could provide a way to overcome this problem. Upconversion is an anti-Stokes process that is capable of transforming low energy photons that penetrate tissue well to higher energy photons with a greater biological effect, but poor tissue penetration. Wavelengths in the third optical window are optimal for light penetration into brain tissue, followed by windows II, IV, and I. The combination of trivalent lanthanide ions within a crystalline host provides a nanostructure that exhibits the upconversion phenomenon. Upconverting nanoparticles (UCNPs) have been successfully used in various medical fields. Their ability to cross the brain-blood barrier and their low toxicity make them a good candidate for application in brain disorders. It is possible that delivery of UCNPs to the brainstem or deeper parts of the cerebral tissue, followed by irradiation using light wavelengths with good tissue penetration properties, could allow more efficient PBM of the brain.
Collapse
Affiliation(s)
| | - Farzad Salehpour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,ProNeuroLIGHT LLC, Phoenix, Arizona
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|