51
|
Kidwai F, Edwards J, Zou L, Kaufman DS. Fibrinogen Induces RUNX2 Activity and Osteogenic Development from Human Pluripotent Stem Cells. Stem Cells 2016; 34:2079-89. [PMID: 27331788 PMCID: PMC5097445 DOI: 10.1002/stem.2427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells, both human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC), provide an important resource to produce specialized cells such as osteogenic cells for therapeutic applications such as repair or replacement of injured, diseased or damaged bone. hESCs and iPSCs can also be used to better define basic cellular and genetic mechanisms that regulate the earliest stages of human bone development. However, current strategies to mediate osteogenic differentiation of hESC and iPSC are typically limited by the use of xenogeneic components such as fetal bovine serum (FBS) that make defining specific agents that mediate human osteogenesis difficult. Runt-related transcription factor 2 (RUNX2) is a key regulator required for osteogenic differentiation. Here, we used a RUNX2-YFP reporter system to characterize the novel ability of fibrinogen to mediate human osteogenic development from hESC and iPSC in defined (serum-free) conditions. These studies demonstrate that fibrinogen mediates significant osteo-induction potential. Specifically, fibrinogen binds to the surface integrin (α9β1) to mediate RUNX2 gene expression through the SMAD1/5/8 signaling pathway. Additional studies characterize the fibrinogen-induced hESC/iPSC-derived osteogenic cells to demonstrate these osteogenic cells retain the capacity to express typical mature osteoblastic markers. Together, these studies define a novel fibrinogen-α9β1-SMAD1/5/8-RUNX2 signaling axis can efficiently induce osteogenic differentiation from hESCs and iPSCs. Stem Cells 2016;34:2079-2089.
Collapse
Affiliation(s)
- Fahad Kidwai
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, Minnesota 55455, USA
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Jessica Edwards
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Li Zou
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dan S. Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Medicine, University of California - San Diego, La Jolla, California 92093, USA
| |
Collapse
|
52
|
Linsley CS, Wu BM, Tawil B. Mesenchymal stem cell growth on and mechanical properties of fibrin-based biomimetic bone scaffolds. J Biomed Mater Res A 2016; 104:2945-2953. [DOI: 10.1002/jbm.a.35840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Chase S. Linsley
- Department of Bioengineering; University of California, Los Angeles; Los Angeles California 90095
| | - Benjamin M. Wu
- Department of Bioengineering; University of California, Los Angeles; Los Angeles California 90095
- Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology; University of California, Los Angeles; Los Angeles California 90095
| | - Bill Tawil
- Department of Bioengineering; University of California, Los Angeles; Los Angeles California 90095
| |
Collapse
|
53
|
Regassa BL, Vaidya A. Curcumin and extracellular matrix proteins synergistically act to inhibit the proliferation of breast cancer cells. BREAST CANCER MANAGEMENT 2016. [DOI: 10.2217/bmt-2016-0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Natural substances have been gaining attention as they are accessible, cheap and associated with milder adverse effects as compared with conventional treatment. Curcumin is polyphenol derived from turmeric plant and is known to possess anti-inflammatory, antioxidant and antimetastatic effects. In the present work, the effect of curcumin individually and in combination with extracellular matrix proteins has been systematically studied on the breast cancer cell line, MCF-7. Materials & methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to screen the effect of various concentrations of curcumin on MCF-7 cells. Flow cytometry and caspase-3 assays were done to detect apoptosis. Nitric oxide and reactive oxygen species generation levels were also examined as both are known to play very important roles in cancer initiation and progression. Results: It was observed that at low concentrations curcumin exhibited significant antiproliferative activity which was supported with increased apoptosis and reduced levels of reactive oxygen species and nitric oxide. Moreover, the combined treatment of curcumin and proteins further boosted the antiproliferative effect of low concentrations of curcumin indicating that they act synergistically to inhibit the proliferation of breast cancer cells. Conclusion: This finding could be further investigated for development of novel anticancer therapies.
Collapse
Affiliation(s)
- Bilen Lemma Regassa
- Symbiosis School of Biomedical Sciences (SSBS), Symbiosis International University (SIU), Symbiosis Knowledge Village, Gram: Lavale, Taluka, Mulshi, Pune 412115, India
| | - Anuradha Vaidya
- Symbiosis School of Biomedical Sciences (SSBS), Symbiosis International University (SIU), Symbiosis Knowledge Village, Gram: Lavale, Taluka, Mulshi, Pune 412115, India
| |
Collapse
|
54
|
Yao W, Lay YAE, Kot A, Liu R, Zhang H, Chen H, Lam K, Lane NE. Improved Mobilization of Exogenous Mesenchymal Stem Cells to Bone for Fracture Healing and Sex Difference. Stem Cells 2016; 34:2587-2600. [PMID: 27334693 DOI: 10.1002/stem.2433] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/15/2016] [Accepted: 05/06/2016] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation has been tested in animal and clinical fracture studies. We have developed a bone-seeking compound, LLP2A-Alendronate (LLP2A-Ale) that augments MSC homing to bone. The purpose of this study was to determine whether treatment with LLP2A-Ale or a combination of LLP2A-Ale and MSCs would accelerate bone healing in a mouse closed fracture model and if the effects are sex dependent. A right mid-femur fracture was induced in two-month-old osterix-mCherry (Osx-mCherry) male and female reporter mice. The mice were subsequently treated with placebo, LLP2A-Ale (500 μg/kg, IV), MSCs derived from wild-type female Osx-mCherry adipose tissue (ADSC, 3 x 105 , IV) or ADSC + LLP2A-Ale. In phosphate buffered saline-treated mice, females had higher systemic and surface-based bone formation than males. However, male mice formed a larger callus and had higher volumetric bone mineral density and bone strength than females. LLP2A-Ale treatment increased exogenous MSC homing to the fracture gaps, enhanced incorporation of these cells into callus formation, and stimulated endochondral bone formation. Additionally, higher engraftment of exogenous MSCs in fracture gaps seemed to contribute to overall fracture healing and improved bone strength. These effects were sex-independent. There was a sex-difference in the rate of fracture healing. ADSC and LLP2A-Ale combination treatment was superior to on callus formation, which was independent of sex. Increased mobilization of exogenous MSCs to fracture sites accelerated endochondral bone formation and enhanced bone tissue regeneration. Stem Cells 2016;34:2587-2600.
Collapse
Affiliation(s)
- Wei Yao
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA.
| | - Yu-An Evan Lay
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Alexander Kot
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California at Davis Medical Center, Sacramento, California, USA
| | - Hongliang Zhang
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Haiyan Chen
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Kit Lam
- Department of Biochemistry and Molecular Medicine, University of California at Davis Medical Center, Sacramento, California, USA
| | - Nancy E Lane
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
55
|
de Rezende MLR, Coesta PTG, de Oliveira RC, Salmeron S, Sant'Ana ACP, Damante CA, Greghi SLA, Consolaro A. Bone demineralization with citric acid enhances adhesion and spreading of preosteoblasts. J Periodontol 2016; 86:146-54. [PMID: 25272980 DOI: 10.1902/jop.2014.130657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous studies have demonstrated that bone demineralization can improve consolidation in bone grafts. The biologic mechanisms underlying this phenomenon remain unclear. METHODS Twelve adult male guinea pigs were used in this experiment. Forty-five bone samples removed from the calvaria of nine animals were divided in groups (n = 9) according to the time of demineralization with citric acid (50%, pH 1): 15, 30, 90, and 180 seconds and non-demineralized samples (control). Preosteoblasts (MC3T3-E1) were cultured on the bone samples for 24, 48, and 72 hours (n = 3). Fifteen samples removed from the remaining three animals were analyzed by scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) after demineralization (n = 3). RESULTS The number of preosteoblasts increased significantly with time in all groups. The bone surface area covered by these cells increased with time, except in the control group. Intragroup differences occurred between 24 and 72 hours (P < 0.05). Samples demineralized for 30 seconds showed greater area covered by preosteoblast cells than for the other times of demineralization in all periods of cell culture (P < 0.05) without a statistically significant difference compared with 15 seconds. SEM/EDS showed diminished content of calcium (Ca) after 15 seconds of demineralization, but the Ca content increased after 180 seconds of demineralization (P < 0.05). The phosphorus (P) amount increased significantly only after 30 seconds of demineralization (P < 0.5). The sulfur (S) content was increased in demineralized samples in relation to non-demineralized ones, reaching the highest level after 90 seconds, when the difference became significant in relation to all the other times of demineralization (P < 0.05). Magnesium (Mg) content did not differ significantly between demineralized and non-demineralized samples. CONCLUSIONS Bone surfaces demineralized for 30 seconds increased the spreading of preosteoblasts as well as the surface area covered by these cells. Bone demineralization deserves to be studied in periodontal and maxillofacial regenerative procedures.
Collapse
Affiliation(s)
- Maria Lúcia R de Rezende
- Department of Prosthodontics, Division of Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Somaiah C, Kumar A, Mawrie D, Sharma A, Patil SD, Bhattacharyya J, Swaminathan R, Jaganathan BG. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PLoS One 2015; 10:e0145068. [PMID: 26661657 PMCID: PMC4678765 DOI: 10.1371/journal.pone.0145068] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/29/2015] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.
Collapse
Affiliation(s)
- Chinnapaka Somaiah
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atul Kumar
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Darilang Mawrie
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Amit Sharma
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Suraj Dasharath Patil
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jina Bhattacharyya
- Department of Hematology, Gauhati Medical College Hospital, Assam, India
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
57
|
TAp63γ and ΔNp63β promote osteoblastic differentiation of human mesenchymal stem cells: regulation by vitamin D3 Metabolites. PLoS One 2015; 10:e0123642. [PMID: 25849854 PMCID: PMC4388628 DOI: 10.1371/journal.pone.0123642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/21/2015] [Indexed: 12/24/2022] Open
Abstract
The transcription factor p63 is required for skeletal formation, and is important for the regulation of 1α,25(OH)2D3 receptor (VDR) in human mesenchymal stem cells (hMSC). Herein we report that TAp63γ and ΔNp63β appear to be an integral part of the osteoblastic differentiation of hMSC and are differentially regulated by the vitamin D3 metabolites 1α,25(OH)2D3 and 24R,25(OH)2D3. We compared the endogenous expression of p63 isoforms (TA- and ΔNp63) and splice variants (p63α, -β, -γ), in naive hMSC and during osteoblastic differentiation of hMSC. TAp63α and -β were the predominant p63 variants in naive, proliferating hMSC. In contrast, under osteoblastic differentiation conditions, expression of p63 changed from the TAp63α and -β to the TAp63γ and ΔNp63β variants. Transient overexpression of the p63 variants demonstrated that TAp63β, ΔNp63β, and ΔNp63γ increased alkaline phosphatase activity and ΔNp63α and -γ increased the expression of mRNA for osteocalcin and osterix. Our results support the hypothesis that TAp63α and -β promote a naive state in hMSC. Moreover, TAp63γ is increased during and promotes early osteoblastic differentiation through the expression of pro-osteogenic genes; VDR, Osterix, Runx2 and Osteopontin. ΔNp63β also appears to support osteogenic maturation through increased alkaline phosphatase activity. Treatment with 1α,25(OH)2D3 increased the expression of mRNA for ΔNp63, while addition of 24R,25(OH)2D3 increased the expression of TA- and ΔNp63γ variants. These novel findings demonstrate for the first time that p63 variants are differentially expressed in naive hMSC (TAp63α,β), are important during the osteoblastic differentiation of hMSC (TAp63γ and ΔNp63β), and are differentially regulated by the vitamin D3 metabolites, 1α,25(OH)2D3 and 24R,25(OH)2D3. The molecular nuances and mechanisms of osteoblastic differentiation presented here will hopefully improve our understanding of bone development, complications in bone repair (mal- and non-union fractures), osteoporosis and possibly lead to new modalities of treatment.
Collapse
|
58
|
Chen Q, Zhang Z, Liu J, He Q, Zhou Y, Shao G, Sun X, Cao X, Gong A, Jiang P. A fibrin matrix promotes the differentiation of EMSCs isolated from nasal respiratory mucosa to myelinating phenotypical Schwann-like cells. Mol Cells 2015; 38:221-8. [PMID: 25666351 PMCID: PMC4363721 DOI: 10.14348/molcells.2015.2170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/08/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022] Open
Abstract
Because Schwann cells perform the triple tasks of myelination, axon guidance and neurotrophin synthesis, they are candidates for cell transplantation that might cure some types of nervous-system degenerative diseases or injuries. However, Schwann cells are difficult to obtain. As another option, ectomesenchymal stem cells (EMSCs) can be easily harvested from the nasal respiratory mucosa. Whether fibrin, an important transplantation vehicle, can improve the differentiation of EMSCs into Schwann-like cells (SLCs) deserves further research. EMSCs were isolated from rat nasal respiratory mucosa and were purified using anti-CD133 magnetic cell sorting. The purified cells strongly expressed HNK-1, nestin, p75(NTR), S-100, and vimentin. Using nuclear staining, the MTT assay and Western blotting analysis of the expression of cell-cycle markers, the proliferation rate of EMSCs on a fibrin matrix was found to be significantly higher than that of cells grown on a plastic surface but insignificantly lower than that of cells grown on fibronectin. Additionally, the EMSCs grown on the fibrin matrix expressed myelination-related molecules, including myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and galactocerebrosides (GalCer), more strongly than did those grown on fibronectin or a plastic surface. Furthermore, the EMSCs grown on the fibrin matrix synthesized more neurotrophins compared with those grown on fibronectin or a plastic surface. The expression level of integrin in EMSCs grown on fibrin was similar to that of cells grown on fibronectin but was higher than that of cells grown on a plastic surface. These results demonstrated that fibrin not only promoted EMSC proliferation but also the differentiation of EMSCs into the SLCs. Our findings suggested that fibrin has great promise as a cell transplantation vehicle for the treatment of some types of nervous system diseases or injuries.
Collapse
Affiliation(s)
- Qian Chen
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Zhijian Zhang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Jinbo Liu
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, Changzhou,
China
| | - Qinghua He
- School of Pharmacology, Jiangsu University, Zhenjiang,
China
| | - Yuepeng Zhou
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Genbao Shao
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Xianglan Sun
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Xudong Cao
- Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario,
Canada
| | - Aihua Gong
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Ping Jiang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| |
Collapse
|
59
|
Faia-Torres AB, Goren T, Ihalainen TO, Guimond-Lischer S, Charnley M, Rottmar M, Maniura-Weber K, Spencer ND, Reis RL, Textor M, Neves NM. Regulation of human mesenchymal stem cell osteogenesis by specific surface density of fibronectin: a gradient study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2367-2375. [PMID: 25513839 DOI: 10.1021/am506951c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The success of synthetic bone implants requires good interface between the material and the host tissue. To study the biological relevance of fibronectin (FN) density on the osteogenic commitment of human bone marrow mesenchymal stem cells (hBM-MSCs), human FN was adsorbed in a linear density gradient on the surface of PCL. The evolution of the osteogenic markers alkaline phosphatase and collagen 1 alpha 1 was monitored by immunohistochemistry, and the cytoskeletal organization and the cell-derived FN were assessed. The functional analysis of the gradient revealed that the lower FN-density elicited stronger osteogenic expression and higher cytoskeleton spreading, hallmarks of the stem cell commitment to the osteoblastic lineage. The identification of the optimal FN density regime for the osteogenic commitment of hBM-MSCs presents a simple and versatile strategy to significantly enhance the surface properties of polycaprolactone as a paradigm for other synthetic polymers intended for bone-related applications.
Collapse
Affiliation(s)
- Ana B Faia-Torres
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho , 4806-909 Caldas das Taipas, Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Sima F, Davidson PM, Dentzer J, Gadiou R, Pauthe E, Gallet O, Mihailescu IN, Anselme K. Inorganic-organic thin implant coatings deposited by lasers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:911-920. [PMID: 25485841 DOI: 10.1021/am507153n] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 μg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials.
Collapse
Affiliation(s)
- Felix Sima
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics , 409 Atomistilor Street, Magurele, Ilfov, RO-77125, Romania
| | | | | | | | | | | | | | | |
Collapse
|
61
|
|
62
|
He F, Liu X, Xiong K, Chen S, Zhou L, Cui W, Pan G, Luo ZP, Pei M, Gong Y. Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells. J Endocrinol 2014; 223:167-80. [PMID: 25210047 DOI: 10.1530/joe-14-0430] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both self-renewal and lineage-specific differentiation of mesenchymal stem cells (MSCs) are triggered by their in vivo microenvironment including the extracellular matrix (ECM) and secreted hormones. The ECM may modulate the physiological functions of hormones by providing binding sites and by regulating downstream signaling pathways. Thus, the purpose of this study was to evaluate the degree of adsorption of melatonin to a natural cell-deposited ECM and the effects of this interaction on the biological functions of melatonin in human bone marrow-derived MSCs (BM-MSCs). The fibrillar microstructure, matrix composition, and melatonin-binding affinity of decellularized ECM were characterized. The cell-deposited ECM improved melatonin-mediated cell proliferation by 31.4%, attenuated accumulation of intracellular reactive oxygen species accumulation, and increased superoxide dismutase (SOD) mRNA and protein expression. Interaction with ECM significantly enhanced the osteogenic effects of melatonin on BM-MSCs by increasing calcium deposition by 30.5%, up-regulating osteoblast-specific gene expression and down-regulating matrix metalloproteinase (MMP) expression. The underlying mechanisms of these changes in expression may involve intracellular antioxidant enzymes, because osteoblast-specific genes were down-regulated, whereas MMP expression was up-regulated, in the presence of SOD-specific inhibitors. Collectively, our findings indicate the importance of native ECM in modulating the osteoinductive and antioxidant effects of melatonin and provide a novel platform for studying the biological actions of growth factors or hormones in a physiologically relevant microenvironment. Moreover, a better understanding of the enhancement of MSC growth and osteogenic differentiation resulting from the combination of ECM and melatonin could improve the design of graft substitutes for skeletal tissue engineering.
Collapse
Affiliation(s)
- Fan He
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Xiaozhen Liu
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Ke Xiong
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Sijin Chen
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Long Zhou
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Wenguo Cui
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Guoqing Pan
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Zong-Ping Luo
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Ming Pei
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Yihong Gong
- School of EngineeringSun Yat-sen University, No. 132 East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, ChinaOrthopaedic InstituteSoochow University, No. 708 Renmin Road, Suzhou, Jiangsu 215007, ChinaDepartment of OrthopaedicsThe First Affiliated Hospital of Soochow University, Suzhou 215006, ChinaNanfang HospitalSouthern Medical University, Guangzhou 510515, ChinaStem Cell and Tissue Engineering LaboratoryDepartment of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, USA
| |
Collapse
|
63
|
Reinertsen E, Skinner M, Wu B, Tawil B. Concentration of fibrin and presence of plasminogen affect proliferation, fibrinolytic activity, and morphology of human fibroblasts and keratinocytes in 3D fibrin constructs. Tissue Eng Part A 2014; 20:2860-9. [PMID: 24738616 PMCID: PMC4229906 DOI: 10.1089/ten.tea.2013.0423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
Fibrin is a hemostatic protein found in the clotting cascade. It is used in the operating room to stop bleeding and deliver cells and growth factors to heal wounds. However, formulations of clinically approved fibrin are optimized for hemostasis, and the extent to which biochemical and physical cues in fibrin mediate skin cell behavior is not fully understood nor utilized in the design of biomaterials. To determine if the concentration of fibrinogen and the presence of plasminogen affect cell behavior relevant to wound healing, we fabricated three-dimensional fibrin constructs made from 5, 10, or 20 mg/mL of clinical fibrin or plasminogen-depleted (PD) fibrin. We cultured dermal fibroblasts or epidermal keratinocytes in these constructs. Fibroblasts proliferated similarly in both types of fibrin, but keratinocytes proliferated more in low concentrations of clinical fibrin and less in PD fibrin. Clinical fibrin constructs with fibroblasts were less stiff and degraded faster than PD fibrin constructs with fibroblasts. Similarly, keratinocytes degraded clinical fibrin, but not PD fibrin. Fibroblast spreading varied with fibrin concentration in both types of fibrin. In conclusion, the concentration of fibrinogen and the presence of plasminogen affect fibroblast and keratinocyte proliferation, morphology, and fibrin degradation. Creating materials with heterogeneous regions of fibrin formulations and concentrations could be a novel strategy for controlling the phenotype of encapsulated fibroblasts and keratinocytes, and the subsequent biomechanical properties of the construct. However, other well-investigated aspects of wound healing remain to be utilized in the design of fibrin biomaterials, such as autocrine and paracrine signaling between fibroblasts, keratinocytes, and immune cells.
Collapse
Affiliation(s)
- Erik Reinertsen
- Department of Bioengineering, UCLA School of Engineering , Los Angeles, California
| | | | | | | |
Collapse
|
64
|
Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M. The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res 2014; 358:651-65. [PMID: 25173883 DOI: 10.1007/s00441-014-1984-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.
Collapse
Affiliation(s)
- Abbas Hajifathali
- Bone Marrow Transplantation Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
65
|
Xue P, Bao J, Chuah YJ, Menon NV, Zhang Y, Kang Y. Protein covalently conjugated SU-8 surface for the enhancement of mesenchymal stem cell adhesion and proliferation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3110-3117. [PMID: 24597829 DOI: 10.1021/la500048z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cell growing behavior is significantly dependent on the surface chemistry of materials. SU-8 as an epoxy-based negative photoresist is commonly used for fabricating patterned layers in lab-on-a-chip devices. As a hydrophobic material, SU-8 substrate is not favorable for cell culture, and cell attachment on native SU-8 is limited attributed to poor surface biocompatibility. Although physical adsorption of proteins could enhance the cell adhesion, the effect is not durable. In this work, SU-8 surface chemistry is modified by immobilizing fibronectin (FN) and collagen type I (COL I) covalently using (3-aminopropyl)triethoxysilane (APTES) and cross-linker glutaraldehyde (GA) to increase surface biofunctionality. The effectiveness of this surface treatment to improve the adhesion and viability of mesenchymal stem cells (MSCs) is investigated. It is found that the wettability of SU-8 surface can be significantly increased by this chemical modification. In addition, the spreading area of MSCs increases on the SU-8 surfaces with covalently conjugated matrix proteins, as compared to other unmodified SU-8 surface or those coated with proteins simply by physical adsorption. Furthermore, cell proliferation is dramatically enhanced on the SU-8 surfaces modified under the proposed scheme. Therefore, SU-8 surface modification with covalently bound matrix proteins assisted by APTES+GA provides a highly biocompatible interface for the enhanced adhesion, spreading, and proliferation of MSCs.
Collapse
Affiliation(s)
- Peng Xue
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| | | | | | | | | | | |
Collapse
|
66
|
Curtis KM, Aenlle KK, Roos BA, Howard GA. 24R,25-dihydroxyvitamin D3 promotes the osteoblastic differentiation of human mesenchymal stem cells. Mol Endocrinol 2014; 28:644-58. [PMID: 24597546 DOI: 10.1210/me.2013-1241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is considered the most biologically active vitamin D3 metabolite, the vitamin D3 prohormone, 25-hydroxyvitamin D3 [25(OH)D3], is metabolized into other forms, including 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3]. Herein we show that 24R,25(OH)2D3 is fundamental for osteoblastic differentiation of human mesenchymal stem cells (hMSCs). Our approach involved analyses of cell proliferation, alkaline phosphatase activity, and pro-osteogenic genes (collagen 1A1, osteocalcin, vitamin D receptor [VDR], vitamin D3-hydroxylating enzymes [cytochrome P450 hydroxylases: CYP2R1, CYP27A1, CYP27B1 and CYP24A1]) and assessment of Ca(2+) mineralization of extracellular matrix. 24R,25(OH)2D3 inhibited hMSC proliferation, decreased 1α-hydroxylase (CYP27B) expression, thereby reducing the ability of hMSCs to convert 25(OH)D3 to 1α,25(OH)2D3, and promoted osteoblastic differentiation through increased alkaline phosphatase activity and Ca(2+) mineralization. 24R,25(OH)2D3 decreased expression of the 1α,25(OH)2D3 receptor, VDR. 24R,25(OH)2D3 but not 1α,25(OH)2D3 induced Ca(2+) mineralization dependent on the absence of the glucocorticoid analog, dexamethasone. To elucidate the mechanism(s) for dexamethasone-independent 1α,25(OH)2D3 inhibition/24R,25(OH)2D3 induction of Ca(2+) mineralization, we demonstrated that 1α,25(OH)2D3 increased whereas 24R,25(OH)2D3 decreased reactive oxygen species (ROS) production. 25(OH)D3 also decreased ROS production, potentially by conversion to 24R,25(OH)2D3. Upon inhibition of the vitamin D3-metabolizing enzymes (cytochrome P450s), 25(OH)D3 increased ROS production, potentially due to its known (low) affinity for VDR. We hypothesize that vitamin D3 actions on osteoblastic differentiation involve a regulatory relationship between 24R,25(OH)2D3 and 1α,25(OH)2D3. These results implicate 24R,25(OH)2D3 as a key player during hMSC maturation and bone development and support the concept that 24R,25(OH)2D3 has a bioactive role in the vitamin D3 endocrine system.
Collapse
Affiliation(s)
- Kevin M Curtis
- Geriatric Research, Education, and Clinical Center and Research Service (K.M.C., K.K.A., B.A.R., G.A.H.), Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida 33125; and Departments of Biochemistry and Molecular Biology (K.M.C., G.A.H.), Medicine (B.A.R., G.A.H.), and Neurology (B.A.R.), University of Miami Miller School of Medicine, Miami, Florida 33101
| | | | | | | |
Collapse
|
67
|
Moroz A, Deffune E. Platelet-rich plasma and chronic wounds: remaining fibronectin may influence matrix remodeling and regeneration success. Cytotherapy 2013; 15:1436-9. [DOI: 10.1016/j.jcyt.2013.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/09/2013] [Accepted: 05/27/2013] [Indexed: 11/17/2022]
|
68
|
Moroz A, Felisbino SL, Deffune E. Platelet and plasma bioactive scaffolds for stem cell differentiation: What are we missing? Platelets 2013; 25:556-7. [DOI: 10.3109/09537104.2013.836748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|