51
|
Foster E, You J, Siltanen C, Patel D, Haque A, Anderson L, Revzin A. Heparin hydrogel sandwich cultures of primary hepatocytes. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.12.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater 2015; 55:87-103. [PMID: 26569044 DOI: 10.1016/j.jmbbm.2015.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.
Collapse
Affiliation(s)
- Daniel B Deegan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| | - Cynthia Zimmerman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas D Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
53
|
Greene T, Lin CC. Modular Cross-Linking of Gelatin-Based Thiol–Norbornene Hydrogels for in Vitro 3D Culture of Hepatocellular Carcinoma Cells. ACS Biomater Sci Eng 2015; 1:1314-1323. [DOI: 10.1021/acsbiomaterials.5b00436] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tanja Greene
- Department
of Biomedical
Engineering, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, 46202 United States
| | - Chien-Chi Lin
- Department
of Biomedical
Engineering, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, 46202 United States
| |
Collapse
|
54
|
Psarra E, Foster E, König U, You J, Ueda Y, Eichhorn KJ, Müller M, Stamm M, Revzin A, Uhlmann P. Growth Factor-Bearing Polymer Brushes - Versatile Bioactive Substrates Influencing Cell Response. Biomacromolecules 2015; 16:3530-42. [DOI: 10.1021/acs.biomac.5b00967] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Evmorfia Psarra
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Faculty
of Science, Department of Chemistry, Chair of Physical Chemistry of
Polymeric Materials, The Technische Universität Dresden, Bergstrasse
66, 01069 Dresden, Germany
| | - Elena Foster
- Department
of Biomedical Engineering, University of California at Davis, 451 East Health Sciences Drive, California 95616, United States
| | - Ulla König
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Jungmok You
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Yuichiro Ueda
- Institute for
Biomaterial Science Teltow, Helmholtz-Zentrum Geesthacht, Berlin-Brandenburg
Center for Regenerative Therapies, Kantstrasse 55, 14513 Teltow, Germany
| | - Klaus-J. Eichhorn
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Faculty
of Science, Department of Chemistry, Chair of Physical Chemistry of
Polymeric Materials, The Technische Universität Dresden, Bergstrasse
66, 01069 Dresden, Germany
| | - Alexander Revzin
- Department
of Biomedical Engineering, University of California at Davis, 451 East Health Sciences Drive, California 95616, United States
| | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Department
of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, 639 North 12th Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
55
|
Browning MB, Guiza V, Russell B, Rivera J, Cereceres S, Höök M, Hahn MS, Cosgriff-Hernandez EM. Endothelial cell response to chemical, biological, and physical cues in bioactive hydrogels. Tissue Eng Part A 2015; 20:3130-41. [PMID: 24935249 DOI: 10.1089/ten.tea.2013.0602] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The highly tunable biological, chemical, and physical properties of bioactive hydrogels enable their use in an array of tissue engineering and drug delivery applications. Systematic modulation of these properties can be used to elucidate key cell-material interactions to improve therapeutic effects. For example, the rate and extent of endothelialization are critical to the long-term success of many blood-contacting devices. To this end, we have developed a bioactive hydrogel that could be used as coating on cardiovascular devices to enhance endothelial cell (EC) adhesion and migration. The current work investigates the relative impact of hydrogel variables on key endothelialization processes. The bioactive hydrogel is based on poly(ethylene glycol) (PEG) and a streptococcal collagen-like (Scl2-2) protein that has been modified with integrin α1β1 and α2β1 binding sites. The use of PEG hydrogels allows for incorporation of specific bioactive cues and independent manipulation of scaffold properties. The selective integrin binding of Scl2-2 was compared to more traditional collagen-modified PEG hydrogels to determine the effect of integrin binding on cell behavior. Protein functionalization density, protein concentration, and substrate modulus were independently tuned with both Scl2-2 and collagen to determine the effect of each variable on EC adhesion, spreading, and migration. The findings here demonstrate that increasing substrate modulus, decreasing functionalization density, and increasing protein concentration can be utilized to increase EC adhesion and migration. Additionally, PEG-Scl2-2 hydrogels had higher migration speeds and proliferation over 1 week compared with PEG-collagen gels, demonstrating that selective integrin binding can be used to enhance cell-material interactions. Overall, these studies contribute to the understanding of the effects of matrix cues on EC interactions and demonstrate the strong potential of PEG-Scl2-2 hydrogels to promote endothelialization of blood-contacting devices.
Collapse
Affiliation(s)
- Mary Beth Browning
- 1 Department of Biomedical Engineering, Texas A&M University , College Station, Texas
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Natarajan V, Berglund EJ, Chen DX, Kidambi S. Substrate stiffness regulates primary hepatocyte functions. RSC Adv 2015; 5:80956-80966. [PMID: 32733675 PMCID: PMC7392243 DOI: 10.1039/c5ra15208a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis occurs as a consequence of chronic injuries from viral infections, metabolic disorders, and alcohol abuse. Fibrotic liver microenvironment (LME) is characterized by excessive deposition and aberrant turnover of extracellular matrix proteins, which leads to increased tissue stiffness. Liver stiffness acts as a vital cue in the regulation of hepatic responses in both healthy and diseased states; however, the effect of varying stiffness on liver cells is not well understood. There is a critical need to engineer in vitro models that mimic the liver stiffness corresponding to various stages of disease progression in order to elucidate the role of individual cellular responses. Here we employed polydimethyl siloxane (PDMS) based substrates with tunable mechanical properties to investigate the effect of substrate stiffness on the behavior of primary rat hepatocytes. To recreate physiologically relevant stiffness, we designed soft substrates (2 kPa) to represent the healthy liver and stiff substrates (55 kPa) to represent the diseased liver. Tissue culture plate surface (TCPS) served as the control substrate. We observed that hepatocytes cultured on soft substrates displayed a more differentiated and functional phenotype for a longer duration as compared to stiff substrates and TCPS. We demonstrated that hepatocytes on soft substrates exhibited higher urea and albumin synthesis. Cytochrome P450 (CYP) activity, another critical marker of hepatocytes, displayed a strong dependence on substrate stiffness, wherein hepatocytes on soft substrates retained 2.7 fold higher CYP activity on day 7 in culture, as compared to TCPS. We further observed that an increase in stiffness induced downregulation of key drug transporter genes (NTCP, UGT1A1, and GSTM-2). In addition, we observed that the epithelial cell phenotype was better maintained on soft substrates as indicated by higher expression of hepatocyte nuclear factor 4α, cytokeratin 18, and connexin 32. These results indicate that the substrate stiffness plays a significant role in modulating hepatocyte behavior. Our PDMS based liver model can be utilized to investigate the signaling pathways mediating the hepatocyte-LME communication to understand the progression of liver diseases.
Collapse
Affiliation(s)
- Vaishaali Natarajan
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, 68588, USA
| | - Eric J Berglund
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, 68588, USA
| | - Dorothy X Chen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, 68588, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, NE, 68198, USA
| |
Collapse
|
57
|
You J, Raghunathan VK, Son KJ, Patel D, Haque A, Murphy CJ, Revzin A. Impact of Nanotopography, Heparin Hydrogel Microstructures, and Encapsulated Fibroblasts on Phenotype of Primary Hepatocytes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12299-12308. [PMID: 25247391 PMCID: PMC4372509 DOI: 10.1021/am504614e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/03/2014] [Indexed: 06/01/2023]
Abstract
Hepatocytes, the main epithelial cell type in the liver, perform most of the biochemical functions of the liver. Thus, maintenance of a primary hepatocyte phenotype is crucial for investigations of in vitro drug metabolism, toxicity, and development of bioartificial liver constructs. Here, we report the impact of topographic cues alone and in combination with soluble signals provided by encapsulated feeder cells on maintenance of the primary hepatocyte phenotype. Topographic features were 300 nm deep with pitches of either 400, 1400, or 4000 nm. Hepatocyte cell attachment, morphology and function were markedly better on 400 nm pitch patterns compared with larger scale topographies or planar substrates. Interestingly, topographic features having biomimetic size scale dramatically increased cell adhesion whether or not substrates had been precoated with collagen I. Albumin production in primary hepatocytes cultured on 400 nm pitch substrates without collagen I was maintained over 10 days and was considerably higher compared to albumin synthesis on collagen-coated flat substrates. In order to investigate the potential interaction of soluble cytoactive factors supplied by feeder cells with topographic cues in determining cell phenotype, bioactive heparin-containing hydrogel microstructures were molded (100 μm spacing, 100 μm width) over the surface of the topographically patterned substrates. These hydrogel microstructures either carried encapsulated fibroblasts or were free of cells. Hepatocytes cultured on nanopatterned substrates next to fibroblast carrying hydrogel microstructures were significantly more functional than hepatocytes cultured on nanopatterned surfaces without hydrogels or stromal cells significantly elevated albumin expression and cell junction formation compared to cells provided with topographic cues only. The simultaneous presentation of topographic biomechanical cues along with soluble signaling molecules provided by encapsulated fibroblasts cells resulted in optimal functionality of cultured hepatocytes. The provision of both topographic and soluble signaling cues could enhance our ability to create liver surrogates and inform the development of engineered liver constructs.
Collapse
Affiliation(s)
- Jungmok You
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Vijay Krishna Raghunathan
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Kyung Jin Son
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Dipali Patel
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Amranul Haque
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Christopher J Murphy
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| | - Alexander Revzin
- Department of Biomedical
Engineering, Department of Surgical & Radiological Sciences, School of Veterinary
Medicine, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
58
|
Thompson AI, Conroy KP, Henderson NC. Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC Gastroenterol 2015; 15:63. [PMID: 26013123 PMCID: PMC4445994 DOI: 10.1186/s12876-015-0291-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/15/2015] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related death worldwide, and is increasing in incidence. Currently, our therapeutic repertoire for the treatment of HCC is severely limited, and therefore effective new therapies are urgently required. Recently, there has been increasing interest focusing on the cellular and molecular interactions between cancer cells and their microenvironment. HCC represents a unique opportunity to study the relationship between a diseased stroma and promotion of carcinogenesis, as 90 % of HCCs arise in a cirrhotic liver. Hepatic stellate cells (HSC) are the major source of extracellular proteins during fibrogenesis, and may directly, or via secreted products, contribute to tumour initiation and progression. In this review we explore the complex cellular and molecular interplay between HSC biology and hepatocarcinogenesis. We focus on the molecular mechanisms by which HSC modulate HCC growth, immune cell evasion and angiogenesis. This is followed by a discussion of recent progress in the field in understanding the mechanistic crosstalk between HSC and HCC, and the pathways that are potentially amenable to therapeutic intervention. Furthermore, we summarise the exciting recent developments in strategies to target HSC specifically, and novel techniques to deliver pharmaceutical agents directly to HSC, potentially allowing tailored, cell-specific therapy for HCC.
Collapse
Affiliation(s)
- Alexandra I Thompson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| | - Kylie P Conroy
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| | - Neil C Henderson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| |
Collapse
|
59
|
Hepatocyte fate upon TGF-β challenge is determined by the matrix environment. Differentiation 2015; 89:105-16. [PMID: 25982745 DOI: 10.1016/j.diff.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/25/2015] [Accepted: 04/14/2015] [Indexed: 01/04/2023]
Abstract
Primary hepatocytes are a versatile tool to investigate all aspects of liver function, and frequently used in drug development and testing. Upon TGF-β challenge, hepatocytes either undergo an epithelial to mesenchymal transition (EMT) or apoptosis: culture on stiff collagen (monolayer) results in EMT whereas hepatocytes in a soft collagen matrix (sandwich) undergo programmed cell death. In this study, we analyzed the transcriptional programs triggered by TGF-β under different culture conditions. Our results indicate that TGF-β initiates an identical transcription profile in hepatocytes irrespective of the cellular environment. The fact that we nevertheless observe two vastly different phenotypes indicates that the matrix environment rather than the TGF-β induced expression signature is the major determinant of the hepatocellular response. To confirm the impact of the surrounding matrix environment on the hepatocytes׳ phenotype in response to TGF-β signaling, we studied the effect of Snail overexpression and knockout in both culture conditions. Neither genetic manipulation showed an impact on hepatocytes' fate upon TGF-β treatment, confirming the crucial role of the surrounding matrix. Our findings provide novel insights into the hepatocellular basis of the fate decision between EMT and apoptotic cell death, and might explain why liver cells can react in very different manners to identical stimuli when tissue remodeling has changed the matrix environment, as occurs in a fibrotic liver.
Collapse
|
60
|
You J, Shin DS, Patel D, Gao Y, Revzin A. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes. Adv Healthc Mater 2014; 3:126-32. [PMID: 23828859 PMCID: PMC4354952 DOI: 10.1002/adhm.201300054] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Indexed: 11/09/2022]
Abstract
The biomaterial scaffolds for regenerative medicine need to be rationally designed to achieve the desired cell fate and function. This paper describes the development of hydrogel microstructures for cultivation of primary hepatocytes. Four different micropatterned surfaces are tested: 1) poly(ethyelene glycol) (PEG) microwells patterned on glass, 2) heparin hydrogel microwells patterned on glass, 3) PEG microwells patterned on heparin hydrogel-coated substrates, and 4) heparin hydrogel microwells patterned on heparin hydrogel-coated substrates. The latter surfaces are constructed by a combination of micromolding and microcontact printing techniques to create microwells with both walls and floor composed of heparin hydrogel. Individual microwell dimensions are 200 μm diameter and 20 μm in height. In all cases, the floor of the microwells is modified with collagen I to promote cell adhesion. Cultivation of hepatocytes followed by analysis of hepatic markers (urea production, albumin synthesis, and E-cadherin expression) reveals that the all-heparin gel microwells are most conducive to hepatic phenotype maintenance. For example, ELISA analysis shows 2.3 to 13.1 times higher levels of albumin production in all-heparin gel wells compared with other micropatterned surfaces. Importantly, hepatic phenotype expression can be further enhanced by culturing fibroblasts on the heparin gel walls of the microwells. In the future, multicomponent all-heparin gel microstructures may be employed in designing hepatic niche for liver-specific differentiation of stem cells.
Collapse
Affiliation(s)
- Jungmok You
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Dong-Sik Shin
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Dipali Patel
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Yandong Gao
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| |
Collapse
|
61
|
Abstract
Liver extracellular matrix (ECM) composition, topography and biomechanical properties influence cell-matrix interactions. The ECM presents guiding cues for hepatocyte phenotype maintenance, differentiation and proliferation both in vitro and in vivo. Current understanding of such cell-guiding cues along with advancement of techniques for scaffold fabrication has led to evolution of matrices for liver tissue culture from simple porous scaffolds to more complex 3D matrices with microarchitecture similar to in vivo. Natural and synthetic polymeric biomaterials fabricated in different topographies and porous matrices have been used for hepatocyte culture. Heterotypic and homotypic cell interactions are necessary for developing an adult liver as well as an artificial liver. A high oxygen demand of hepatocytes as well as graded oxygen distribution in liver is another challenging attribute of the normal liver architecture that further adds to the complexity of engineered substrate design. A balanced interplay of cell-matrix interactions along with cell-cell interactions and adequate supply of oxygen and nutrient determines the success of an engineered substrate for liver cells. Techniques devised to incorporate these features of hepatic function and mimic liver architecture range from maintaining liver cells in mm-sized tailor-made scaffolds to a more bottoms up approach that starts from building the microscopic subunit of the whole tissue. In this review, we discuss briefly various biomaterials used for liver tissue engineering with respect to design parameters such as scaffold composition and chemistry, biomechanical properties, topography, cell-cell interactions and oxygenation.
Collapse
Affiliation(s)
- Era Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.,Biomedical Engineering Department, St. Louis University, St. Louis, MO, USA
| | - Apeksha Damania
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|