51
|
Silva JM, Duarte ARC, Caridade SG, Picart C, Reis RL, Mano JF. Tailored freestanding multilayered membranes based on chitosan and alginate. Biomacromolecules 2014; 15:3817-26. [PMID: 25244323 DOI: 10.1021/bm501156v] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL(-1) or 5 mg·mL(-1). Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.
Collapse
Affiliation(s)
- Joana M Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas/Guimarães, Portugal
| | | | | | | | | | | |
Collapse
|
52
|
Go DP, Palmer JA, Mitchell GM, Gras SL, O'Connor AJ. Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly. J Biomed Mater Res A 2014; 103:1849-63. [PMID: 25203163 DOI: 10.1002/jbm.a.35319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/16/2014] [Accepted: 08/15/2014] [Indexed: 01/15/2023]
Abstract
Tissue engineering is a complex and dynamic process that requires varied biomolecular cues to promote optimal tissue growth. Consequently, the development of delivery systems capable of sequestering more than one biomolecule with controllable release profiles is a key step in the advancement of this field. This study develops multilayered polyelectrolyte films incorporating alpha-melanocyte stimulating hormone (α-MSH), an anti-inflammatory molecule, and basic fibroblast growth factor (bFGF). The layers were successfully formed on macroporous poly lactic-co-glycolic acid microspheres produced using a combined inkjet and thermally induced phase separation technique. Release profiles could be varied by altering layer properties including the number of layers and concentrations of layering molecules. α-MSH and bFGF were released in a sustained manner and the bioactivity of α-MSH was shown to be preserved using an activated macrophage cell assay in vitro. The system performance was also tested in vivo subcutaneously in rats. The multilayered microspheres reduced the inflammatory response induced by a carrageenan stimulus 6 weeks after implantation compared to the non-layered microspheres without the anti-inflammatory and growth factors, demonstrating the potential of such multilayered constructs for the controlled delivery of bioactive molecules.
Collapse
Affiliation(s)
- Dewi P Go
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, 3010, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, 3010, Victoria, Australia
| | | | | | | | | |
Collapse
|
53
|
Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 2014; 15:11878-921. [PMID: 25000263 PMCID: PMC4139820 DOI: 10.3390/ijms150711878] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/21/2023] Open
Abstract
Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.
Collapse
|
54
|
Zhou B, Niu LN, Shi W, Zhang W, Arola DD, Breschi L, Mao J, Chen JH, Pashley DH, Tay FR. Adopting the principles of collagen biomineralization for intrafibrillar infiltration of yttria-stabilized zirconia into three-dimensional collagen scaffolds. ADVANCED FUNCTIONAL MATERIALS 2014; 24:1895-1903. [PMID: 25477773 PMCID: PMC4249694 DOI: 10.1002/adfm.201302920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we report a process for generating collagen-yttria-stabilized amorphous zirconia hybrid scaffolds by introducing acetylacetone-inhibited zirconia precursor nanodroplets into a poly(allylamine)-coated collagen matrix. This polyelectrolyte coating triggers intrafibrillar condensation of the precursors into amorphous zirconia, which is subsequently transformed into tetragonal yttria-stabilized zirconia after calcination. Our findings represent a new paradigm in the synthesis of non-naturally occurring collagen-based hybrid scaffolds under alcoholic mineralizing conditions.
Collapse
Affiliation(s)
- Bin Zhou
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan (PR China)
| | - Li-na Niu
- School of Stomatology, Fourth Military Medical University, Xi’an (PR China)
| | - Wei Shi
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan (PR China)
| | - Wei Zhang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan (PR China)
| | - Dwayne D. Arola
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland (USA)
| | | | - Jing Mao
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan (PR China)
| | - Ji-hua Chen
- School of Stomatology, Fourth Military Medical University, Xi’an (PR China)
| | - David H. Pashley
- Georgia Health Sciences University, Augusta, Georgia, 30912-1129 (USA) Fax: (706) 721-6252 Tel: (706) 7212031
| | - Franklin R. Tay
- Georgia Health Sciences University, Augusta, Georgia, 30912-1129 (USA) Fax: (706) 721-6252 Tel: (706) 7212031
| |
Collapse
|
55
|
Silva JM, Duarte ARC, Custódio CA, Sher P, Neto AI, Pinho ACM, Fonseca J, Reis RL, Mano JF. Nanostructured hollow tubes based on chitosan and alginate multilayers. Adv Healthc Mater 2014; 3:433-40. [PMID: 23983205 DOI: 10.1002/adhm.201300265] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/30/2013] [Indexed: 12/28/2022]
Abstract
The design and production of structures with nanometer-sized polymer films based on layer-by-layer (LbL) are of particular interest for tissue engineering since they allow the precise control of physical and biochemical cues of implantable devices. In this work, a method is developed for the preparation of nanostructured hollow multilayers tubes combining LbL and template leaching. The aim is to produce hollow tubes based on polyelectrolyte multilayer films with tuned physical-chemical properties and study their effects on cell behavior. The final tubular structures are characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), microscopy, swelling, and mechanical tests, including dynamic mechanical analysis (DMA) in physiological simulated conditions. It is found that more robust films could be produced upon chemical cross-linking with genipin. In particular, the mechanical properties confirms the viscoelastic properties and a storage and young modulus about two times higher. The water uptake decreases from about 390% to 110% after the cross-linking. The biological performance is assessed in terms of cell adhesion, viability, and proliferation. The results obtained with the cross-linked tubes demonstrate that these are more suitable structures for cell adhesion and spreading. The results suggest the potential of these structures to boost the development of innovative tubular structures for tissue engineering approaches.
Collapse
Affiliation(s)
- Joana M. Silva
- 3Bs Research Group-Biomaterials; Biodegradables, and Biomimetics; AvePark, Zona Industrial, da Gandra S. Claúdio do Barco 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Ana Rita C. Duarte
- 3Bs Research Group-Biomaterials; Biodegradables, and Biomimetics; AvePark, Zona Industrial, da Gandra S. Claúdio do Barco 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Catarina A. Custódio
- 3Bs Research Group-Biomaterials; Biodegradables, and Biomimetics; AvePark, Zona Industrial, da Gandra S. Claúdio do Barco 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Praveen Sher
- 3Bs Research Group-Biomaterials; Biodegradables, and Biomimetics; AvePark, Zona Industrial, da Gandra S. Claúdio do Barco 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Ana I. Neto
- 3Bs Research Group-Biomaterials; Biodegradables, and Biomimetics; AvePark, Zona Industrial, da Gandra S. Claúdio do Barco 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - António C. M. Pinho
- University of Minho, Department of Mechanical Engineering; Campus de Azurém Guimarães Portugal
| | - Jaime Fonseca
- University of Minho, Department of Industrial Electronics; Campus de Azurém Guimarães Portugal
| | - Rui L. Reis
- 3Bs Research Group-Biomaterials; Biodegradables, and Biomimetics; AvePark, Zona Industrial, da Gandra S. Claúdio do Barco 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3Bs Research Group-Biomaterials; Biodegradables, and Biomimetics; AvePark, Zona Industrial, da Gandra S. Claúdio do Barco 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
56
|
Almodóvar J, Guillot R, Monge C, Vollaire J, Selimović S, Coll JL, Khademhosseini A, Picart C. Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate. Biomaterials 2014; 35:3975-85. [PMID: 24485790 DOI: 10.1016/j.biomaterials.2014.01.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
In the cellular microenvironment, growth factor gradients are crucial in dictating cell fate. Towards developing materials that capture the native microenvironment we engineered biomimetic films that present gradients of matrix-bound bone morphogenetic proteins (BMP-2 and BMP-7). To this end layer-by-layer films composed of poly(L-lysine) and hyaluronan were combined in a simple microfluidic device enabling spatially controlled growth factor diffusion along the film. Linear long-range gradients of both BMPs induced the trans-differentiation of C2C12 myoblasts towards the osteogenic lineage in a dose dependent manner with a different signature for each BMP. The osteogenic marker alkaline phosphatase (ALP) increased in a linear manner for BMP-7 and non-linearly for BMP-2. Moreover, an increased expression of the myogenic marker troponin T was observed with decreasing matrix-bound BMP concentration, providing a substrate that it is both osteo- and myo-inductive. Lastly, dual parallel matrix-bound gradients of BMP-2 and -7 revealed a complete saturation of the ALP signal. This suggested an additive or synergistic effect of the two BMPs. This simple technology allows for determining quickly and efficiently the optimal concentration of matrix-bound growth factors, as well as for investigating the presentation of multiple growth factors in their solid-phase and in a spatially controlled manner.
Collapse
Affiliation(s)
- Jorge Almodóvar
- CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Raphaël Guillot
- CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Claire Monge
- CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France
| | | | - Seila Selimović
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France.
| |
Collapse
|
57
|
Mzyk A, Major R, Lackner JM, Bruckert F, Major B. Cytotoxicity control of SiC nanoparticles introduced into polyelectrolyte multilayer films. RSC Adv 2014. [DOI: 10.1039/c4ra03914a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nowadays, biosensor technology development is directed toward improvement of sensing devices' biocompatibility.
Collapse
Affiliation(s)
- A. Mzyk
- Institute of Metallurgy and Materials Science
- Polish Academy of Sciences
- Krakow, Poland
| | - R. Major
- Institute of Metallurgy and Materials Science
- Polish Academy of Sciences
- Krakow, Poland
| | - J. M. Lackner
- Joanneum Research Forschungs-GmbH
- Materials – Functional Surfaces
- Leoben, Austria
| | | | - B. Major
- Institute of Metallurgy and Materials Science
- Polish Academy of Sciences
- Krakow, Poland
| |
Collapse
|
58
|
Peterson AM, Pilz-Allen C, Möhwald H, Shchukin DG. Evaluation of the role of polyelectrolyte deposition conditions in growth factor release. J Mater Chem B 2014; 2:2680-2687. [DOI: 10.1039/c3tb21757d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
59
|
Chitosan/polyanion surface modification of styrene–butadiene–styrene block copolymer membrane for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:140-8. [DOI: 10.1016/j.msec.2013.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/13/2013] [Accepted: 09/04/2013] [Indexed: 11/24/2022]
|
60
|
A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater 2013; 9:8690-703. [PMID: 23707500 DOI: 10.1016/j.actbio.2013.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/26/2023]
Abstract
The development of polyelectrolyte multilayered coatings on magnesium alloy substrates that can be used for controlled delivery of growth factors and required biomolecules from the surface of these degradable implants could have a significant impact in the field of bone tissue regeneration. The current work reports on the fabrication of multilayered coatings of alginate and poly-L-lysine on alkaline- and fluoride-pretreated AZ31 substrates using a layer-by-layer (LbL) technique under physiological conditions. Furthermore, these coatings were surface functionalized by chemical cross-linking and fibronectin immobilization, and the resultant changes in surface properties have been shown to influence the cellular activity of these multilayered films. The physicochemical characteristics of these coated substrates have been investigated using attenuated total reflectance Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cytocompatibility studies using MC3T3-E1 osteoblasts show that the fluoride-pretreated, cross-linked and fibronectin-immobilized LbL-coated substrates are more bioactive and less cytotoxic than the hydroxide-pretreated, cross-linked and fibronectin-immobilized LbL-coated samples. The in vitro degradation results show that the multilayered coatings of these natural polysaccharide- and synthetic polyamino acid-based polyelectrolytes do not alter the degradation kinetics of the substrates; however, the pretreatment conditions have a significant impact on the overall coating degradation behavior. These preliminary results collectively show the potential use of LbL coatings on magnesium-based degradable scaffolds to improve their surface bioactivity.
Collapse
|
61
|
Sripriya J, Anandhakumar S, Achiraman S, Antony JJ, Siva D, Raichur AM. Laser receptive polyelectrolyte thin films doped with biosynthesized silver nanoparticles for antibacterial coatings and drug delivery applications. Int J Pharm 2013; 457:206-13. [DOI: 10.1016/j.ijpharm.2013.09.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 10/26/2022]
|
62
|
Ostrowski N, Lee B, Enick N, Carlson B, Kunjukunju S, Roy A, Kumta PN. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys. Acta Biomater 2013; 9:8704-13. [PMID: 23684762 DOI: 10.1016/j.actbio.2013.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/17/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation.
Collapse
|
63
|
Castleberry S, Wang M, Hammond PT. Nanolayered siRNA dressing for sustained localized knockdown. ACS NANO 2013; 7:5251-61. [PMID: 23672676 PMCID: PMC3873513 DOI: 10.1021/nn401011n] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The success of RNA interference (RNAi) in medicine relies on the development of technology capable of successfully delivering it to tissues of interest. Significant research has focused on the difficult task of systemic delivery of RNAi; however its local delivery could be a more easily realized approach. Localized delivery is of particular interest for many medical applications, including the treatment of localized diseases, the modulation of cellular response to implants or tissue engineering constructs, and the management of wound healing and regenerative medicine. In this work we present an ultrathin electrostatically assembled coating for localized and sustained delivery of short interfering RNA (siRNA). This film was applied to a commercially available woven nylon dressing commonly used for surgical applications and was demonstrated to sustain significant knockdown of protein expression in multiple cell types for more than one week in vitro. Significantly, this coating can be easily applied to a medically relevant device and requires no externally delivered transfection agents for effective delivery of siRNA. These results present promising opportunities for the localized administration of RNAi.
Collapse
Affiliation(s)
- Steven Castleberry
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
64
|
Silva JM, Georgi N, Costa R, Sher P, Reis RL, Van Blitterswijk CA, Karperien M, Mano JF. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering. PLoS One 2013; 8:e55451. [PMID: 23437056 PMCID: PMC3577876 DOI: 10.1371/journal.pone.0055451] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/27/2012] [Indexed: 02/01/2023] Open
Abstract
Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Joana M. Silva
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães,Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nicole Georgi
- Department of Tissue Regeneration, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Developmental BioEngineering, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Rui Costa
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães,Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Praveen Sher
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães,Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães,Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Clemens A. Van Blitterswijk
- Department of Tissue Regeneration, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Department of Tissue Regeneration, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Developmental BioEngineering, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - João F. Mano
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães,Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
65
|
Peterson AM, Möhwald H, Shchukin DG. pH-Controlled Release of Proteins from Polyelectrolyte-Modified Anodized Titanium Surfaces for Implant Applications. Biomacromolecules 2012; 13:3120-6. [DOI: 10.1021/bm300928s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amy M. Peterson
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam-Golm,
Germany
| | - Helmuth Möhwald
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam-Golm,
Germany
| | - Dmitry G. Shchukin
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam-Golm,
Germany
- Stephenson Institute
for Renewable Energy, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
66
|
Eby DM, Harbaugh S, Tatum RN, Farrington KE, Kelley-Loughnane N, Johnson GR. Bacterial sunscreen: layer-by-layer deposition of UV-absorbing polymers on whole-cell biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10521-10527. [PMID: 22694254 DOI: 10.1021/la3014514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UV-protective coatings on live bacterial cells were created from the assembly of cationic and UV-absorbing anionic polyelectrolytes using layer-by-layer (LbL) methodology. A cationic polymer (polyallylamine) and three different anionic polymers with varying absorbance in the UV range (poly(vinyl sulfate), poly(4-styrenesulfonic acid), and humic acid) were used to encapsulate Escherichia coli cells with two different green fluorescent protein (GFP) expression systems: constitutive expression of a UV-excitable GFP (GFPuv) and regulated expression of the intensely fluorescent GFP from amphioxus (GFPa1) through a theophylline-inducible riboswitch. Riboswitches activate protein expression after specific ligand-RNA binding events. Hence, they operate as a cellular biosensor that will activate reporter protein synthesis after exposure to a ligand target. E. coli cells coated with UV-absorbing polymers demonstrated enhanced protection of GFP stability, metabolic activity, and viability after prolonged exposure to radiation from a germicidal lamp. The results show the effectiveness of LbL coatings to provide UV protection to living cells for biotechnological applications.
Collapse
Affiliation(s)
- D Matthew Eby
- Universal Technology Corporation and Air Force Research Laboratory, Materials and Manufacturing Directorate, Tyndall Air Force Base, 139 Barnes Drive, Building 1117, Tyndall AFB, Florida 32403, United States.
| | | | | | | | | | | |
Collapse
|
67
|
Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (Lond) 2012; 7:1045-66. [DOI: 10.2217/nnm.12.78] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.
Collapse
Affiliation(s)
- Vítor E Santo
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Manuela E Gomes
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - João F Mano
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| |
Collapse
|
68
|
Zahn R, Thomasson E, Guillaume-Gentil O, Vörös J, Zambelli T. Ion-induced cell sheet detachment from standard cell culture surfaces coated with polyelectrolytes. Biomaterials 2012; 33:3421-7. [DOI: 10.1016/j.biomaterials.2012.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/09/2012] [Indexed: 12/26/2022]
|
69
|
Nolte A, Hossfeld S, Schroeppel B, Mueller A, Stoll D, Walker T, Wendel HP, Krastev R. Impact of polyelectrolytes and their corresponding multilayers to human primary endothelial cells. J Biomater Appl 2012; 28:84-99. [PMID: 22457040 DOI: 10.1177/0885328212437610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The layer-by-layer technique, which allows simple preparation of polyelectrolyte multilayers, came into the focus of research for development of functionalized medical devices. Numerous literature exist that concentrate on the film build-up and the behaviour of cells on polyelectrolyte multilayers. However, in case of very soft polyelectrolyte multilayers, studies of the cell behaviour on these films are sometimes misleading with regard to clinical applications because cells do not die due to cytotoxicity but due to apoptosis by missing cell adhesion. It turns out that the adhesion in vitro, and thus, the viability of cells on polyelectrolyte multilayers is mostly influenced by their mechanical properties. In order to decide, which polyelectrolyte multilayers are suitable for implants, we take this problem into account by putting the substrates with soft films on top of pre-cultured human primary endothelial cells ('reverse assay'). Hence, the present work aims giving a more complete and reliable study of typical polyelectrolyte multilayers with regard to clinical applications. In particular, coatings consisting of hyaluronic acid and chitosan as natural polymers and sulfonated polystyrene and polyallylamine hydrochlorite as synthetic polymers were studied. The adsorption of polyelectrolytes was characterized by physico-chemical methods which show regular buildup. Biological examination of the native or modified polyelectrolyte multilayers was based on their effect to cell adhesion and morphology of endothelial cells by viability assays, immunostaining and scanning electron microscopy. Using the standard method, which is typically applied in literature--seeding cells on top of films--shows that the best adhesion and thus, viability can be achieved using sulfonated polystyrene/polyallylamine hydrochlorite. However, putting the films on top of endothelial cells reveals that hyaluronic acid/chitosan may also be suitable for clinical applications: This result is especially remarkable, since hyaluronic acid and chitosan mediate per se no cytotoxic effects, whereas the individual polyelectrolytes, sulfonated polystyrene and polyallylamine hydrochlorite, and their complexes show slight cytotoxicity.
Collapse
Affiliation(s)
- Andrea Nolte
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Go DP, Hung A, Gras SL, O’Connor AJ. Use of a Short Peptide as a Building Block in the Layer-by-Layer Assembly of Biomolecules on Polymeric Surfaces. J Phys Chem B 2012; 116:1120-33. [DOI: 10.1021/jp208898m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dewi P. Go
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville 3010, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Andrew Hung
- School of Applied Sciences, RMIT University, Melbourne 3001, Victoria, Australia
- Health Innovations Research Institute, RMIT University, Bundoora 3083, Victoria, Australia
| | - Sally L. Gras
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville 3010, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Andrea J. O’Connor
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
71
|
Choi BH, Choi YS, Hwang DS, Cha HJ. Facile Surface Functionalization with Glycosaminoglycans by Direct Coating with Mussel Adhesive Protein. Tissue Eng Part C Methods 2012; 18:71-9. [DOI: 10.1089/ten.tec.2011.0384] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bong-Hyuk Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Dong Soo Hwang
- Ocean Science and Technology Institute, Pohang University of Science and Technology, Pohang, Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Korea
- Ocean Science and Technology Institute, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
72
|
Francesko A, Soares da Costa D, Lisboa P, Reis RL, Pashkuleva I, Tzanov T. GAGs-thiolated chitosan assemblies for chronic wounds treatment: control of enzyme activity and cell attachment. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31051a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Wong YY, Yuan S, Choong C. Degradation of PEG and non-PEG alginate–chitosan microcapsules in different pH environments. Polym Degrad Stab 2011. [DOI: 10.1016/j.polymdegradstab.2011.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
74
|
Yoo SJ, Nam Y. Neurons on Parafilm: versatile elastic substrates for neuronal cell cultures. J Neurosci Methods 2011; 204:28-34. [PMID: 22068030 DOI: 10.1016/j.jneumeth.2011.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 01/23/2023]
Abstract
A variety of materials has been applied to neuronal cell culture substrates to improve the efficiency of the culture and to provide pertinent cell growth environment. Here we report the application of Parafilm(®) M ('Parafilm') as a novel substrate for neuronal culture and patterning. Cell culture results show that elastic Parafilm had effects on cell viability, length and number of neurites, and soma spreading. Parafilm was also an effective substrate to obtain patterned neuronal cultures using a conventional micro-contract printing (μCP) technique. Polylysine micropatterns in line or grid forms were readily transferred from PDMS stamp to bare Parafilm surfaces and spatially confined neuronal cultures were successfully maintained for over three weeks. We also demonstrate that batch-processing cell culture substrates can be easily fabricated using a piece of Parafilm. The softness, plasticity, and hydrophobicity were main features that made it attractive for Parafilm to be considered as a practical cell culture platform. The results can be extended to develop an inexpensive and practical neuronal culture substrates in tissue engineering and biochip applications.
Collapse
Affiliation(s)
- Sang Jin Yoo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
75
|
Hammond PT. Engineering materials layer-by-layer: Challenges and opportunities in multilayer assembly. AIChE J 2011. [DOI: 10.1002/aic.12769] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|