51
|
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018; 180:143-162. [PMID: 30036727 PMCID: PMC6710094 DOI: 10.1016/j.biomaterials.2018.07.017] [Citation(s) in RCA: 562] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
Bone fractures are the most common traumatic injuries in humans. The repair of bone fractures is a regenerative process that recapitulates many of the biological events of embryonic skeletal development. Most of the time it leads to successful healing and the recovery of the damaged bone. Unfortunately, about 5-10% of fractures will lead to delayed healing or non-union, more so in the case of co-morbidities such as diabetes. In this article, we review the different strategies to heal bone defects using synthetic bone graft substitutes, biologically active substances and stem cells. The majority of currently available reviews focus on strategies that are still at the early stages of development and use mostly in vitro experiments with cell lines or stem cells. Here, we focus on what is already implemented in the clinics, what is currently in clinical trials, and what has been tested in animal models. Treatment approaches can be classified in three major categories: i) synthetic bone graft substitutes (BGS) whose architecture and surface can be optimized; ii) BGS combined with bioactive molecules such as growth factors, peptides or small molecules targeting bone precursor cells, bone formation and metabolism; iii) cell-based strategies with progenitor cells combined or not with active molecules that can be injected or seeded on BGS for improved delivery. We review the major types of adult stromal cells (bone marrow, adipose and periosteum derived) that have been used and compare their properties. Finally, we discuss the remaining challenges that need to be addressed to significantly improve the healing of bone defects.
Collapse
Affiliation(s)
- Antalya Ho-Shui-Ling
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Laurence E Rustom
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Amy Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61081, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium.
| | - Catherine Picart
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France.
| |
Collapse
|
52
|
Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem 2018; 23:1185-1204. [PMID: 30097748 DOI: 10.1007/s00775-018-1600-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.
Collapse
Affiliation(s)
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
53
|
Liu Q, Wang J, Chen Y, Zhang Z, Saunders L, Schipani E, Chen Q, Ma PX. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Acta Biomater 2018; 76:29-38. [PMID: 29940371 DOI: 10.1016/j.actbio.2018.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/03/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
Articular cartilage has a very limited ability to self-heal after injury or degeneration due to its low cellularity, poor proliferative activity, and avascular nature. Current clinical options are able to alleviate patient suffering, but cannot sufficiently regenerate the lost tissue. Biomimetic scaffolds that recapitulate the important features of the extracellular matrix (ECM) of cartilage are hypothesized to be advantageous in supporting cell growth, chondrogenic differentiation, and integration of regenerated cartilage with native cartilage, ultimately restoring the injured tissue to its normal function. It remains a challenge to support and maintain articular cartilage regenerated by bone marrow-derived mesenchymal stem cells (BMSCs), which are prone to hypertrophy and endochondral ossification after implantation in vivo. In the present work, a nanofibrous poly(l-lactic acid) (NF PLLA) scaffold developed by our group was utilized because of the desired highly porous structure, high interconnectivity, and collagen-like NF architecture to support rabbit BMSCs for articular cartilage regeneration. We further hypothesized that matrilin-3 (MATN3), a non-collagenous, cartilage-specific ECM protein, would enhance the microenvironment of the NF PLLA scaffold for cartilage regeneration and maintain the cartilage property. To test this hypothesis, we seeded BMSCs on the NF PLLA scaffold with or without MATN3. We found that MATN3 suppresses hypertrophy in this 3D culture system in vitro. Subcutaneous implantation of the chondrogenic cell/scaffold constructs in a nude mouse model showed that pretreatment with MATN3 was able to maintain chondrogenesis and prevent hypertrophy and endochondral ossification in vivo. These results demonstrate that the porous NF PLLA scaffold treated with MATN3 represents an advantageous 3D microenvironment for cartilage regeneration and phenotype maintenance, and is a promising strategy for articular cartilage repair. STATEMENT OF SIGNIFICANCE Articular cartilage defects, caused by trauma, inflammation, or joint instability, may ultimately lead to debilitating pain and disability. Bone marrow-derived mesenchymal stem cells (BMSCs) are an attractive cell source for articular cartilage tissue engineering. However, chondrogenic induction of BMSCs is often accompanied by undesired hypertrophy, which can lead to calcification and ultimately damage the cartilage. Therefore, a therapy to prevent hypertrophy and endochondral ossification is of paramount importance to adequately regenerate articular cartilage. We hypothesized that MATN3 (a non-collagenous ECM protein expressed exclusively in cartilage) may improve regeneration of articular cartilage with BMSCs by maintaining chondrogenesis and preventing hypertrophic transition in an ECM mimicking nanofibrous scaffold. Our results showed that the administration of MATN3 to the cell/nanofibrous scaffold constructs favorably maintained chondrogenesis and prevented hypertrophy/endochondral ossification in the chondrogenic constructs in vitro and in vivo. The combination of nanofibrous PLLA scaffolds and MATN3 treatment provides a very promising strategy to generate chondrogenic grafts with phenotypic stability for articular cartilage repair.
Collapse
|
54
|
Longley R, Ferreira AM, Gentile P. Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration. Int J Mol Sci 2018; 19:E1755. [PMID: 29899285 PMCID: PMC6032374 DOI: 10.3390/ijms19061755] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
Cartilage lesions of the knee are common disorders affecting people of all ages; as the lesion progresses, it extends to the underlying subchondral bone and an osteochondral defect appears. Osteochondral (OC) tissue compromises soft cartilage over hard subchondral bone with a calcified cartilage interface between these two tissues. Osteochondral defects can be caused by numerous factors such as trauma and arthritis. Tissue engineering offers the possibility of a sustainable and effective treatment against osteochondral defects, where the damaged tissue is replaced with a long-lasting bio-manufactured replacement tissue. This review evaluates both bi-phasic and multi-phasic scaffold-based approaches of osteochondral tissue regeneration, highlighting the importance of having an interface layer between the bone and cartilage layer. The significance of a biomimetic approach is also evidenced and shown to be more effective than the more homogenous design approach to osteochondral scaffold design. Recent scaffold materials and manufacturing techniques are reviewed as well as the current clinical progress with osteochondral regeneration scaffolds.
Collapse
Affiliation(s)
- Ryan Longley
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
55
|
Lavrador P, Gaspar VM, Mano JF. Bioinspired bone therapies using naringin: applications and advances. Drug Discov Today 2018; 23:1293-1304. [PMID: 29747006 PMCID: PMC7617200 DOI: 10.1016/j.drudis.2018.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/31/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
Abstract
The use of natural compounds for treating chronic bone diseases holds remarkable potential. Among these therapeutics, naringin, a flavanone glycoside, represents one of the most promising candidates owing to its multifaceted effect on bone tissues. This review provides an up-to-date overview on naringin applications in the treatment of bone disorders, such as osteoporosis and osteoarthritis, and further highlights its potential for stem cell pro-osteogenic differentiation therapies. A critical perspective on naringin clinical translation is also provided. The topic is discussed in light of recently developed biomaterial-based approaches that potentiate its bioavailability and bioactivity. Overall, the reported pro-osteogenic, antiresorptive and antiadipogenic properties establish this flavanone as an exciting candidate for application in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Pedro Lavrador
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vitor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
56
|
Font Tellado S, Chiera S, Bonani W, Poh PS, Migliaresi C, Motta A, Balmayor ER, van Griensven M. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Acta Biomater 2018; 72:150-166. [PMID: 29550439 DOI: 10.1016/j.actbio.2018.03.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 02/08/2023]
Abstract
The tendon/ligament-to-bone transition (enthesis) is a highly specialized interphase tissue with structural gradients of extracellular matrix composition, collagen molecule alignment and mineralization. These structural features are essential for enthesis function, but are often not regenerated after injury. Tissue engineering is a promising strategy for enthesis repair. Engineering of complex tissue interphases such as the enthesis is likely to require a combination of biophysical, biological and chemical cues to achieve functional tissue regeneration. In this study, we cultured human primary adipose-derived mesenchymal stem cells (AdMCs) on biphasic silk fibroin scaffolds with integrated anisotropic (tendon/ligament-like) and isotropic (bone/cartilage like) pore alignment. We functionalized those scaffolds with heparin and explored their ability to deliver transforming growth factor β2 (TGF-β2) and growth/differentiation factor 5 (GDF5). Heparin functionalization increased the amount of TGF-β2 and GDF5 remaining attached to the scaffold matrix and resulted in biological effects at low growth factor doses. We analyzed the combined impact of pore alignment and growth factors on AdMSCs. TGF-β2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. In addition, the combined delivery of TGF-β2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity. Altogether, the data obtained in this study improves current understanding on the combined effects of biological and structural cues on stem cell fate and presents a promising strategy for tendon/ligament-to-bone regeneration. STATEMENT OF SIGNIFICANCE Regeneration of the tendon/ligament-to-bone interphase (enthesis) is of significance in the repair of ruptured tendons/ligaments to bone to improve implant integration and clinical outcome. This study proposes a novel approach for enthesis regeneration based on a biomimetic and integrated tendon/ligament-to-bone construct, stem cells and heparin-based delivery of growth factors. We show that heparin can keep growth factors local and biologically active at low doses, which is critical to avoid supraphysiological doses and associated side effects. In addition, we identify synergistic effects of biological (growth factors) and structural (pore alignment) cues on stem cells. These results improve current understanding on the combined impact of biological and structural cues on the multi-lineage differentiation capacity of stem cells for regenerating complex tissue interphases.
Collapse
|
57
|
Lipman K, Wang C, Ting K, Soo C, Zheng Z. Tendinopathy: injury, repair, and current exploration. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:591-603. [PMID: 29593382 PMCID: PMC5865563 DOI: 10.2147/dddt.s154660] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Both acute and chronic tendinopathy result in high morbidity, requiring management that is often lengthy and expensive. However, limited and conflicting scientific evidence surrounding current management options has presented a challenge when trying to identify the best treatment for tendinopathy. As a result of shortcomings of current treatments, response to available therapies is often poor, resulting in frustration in both patients and physicians. Due to a lack of understanding of basic tendon-cell biology, further scientific investigation is needed in the field for the development of biological solutions. Optimization of new delivery systems and therapies that spatially and temporally mimic normal tendon physiology hold promise for clinical application. This review focuses on the clinical importance of tendinopathy, the structure of healthy tendons, tendon injury, and healing, and a discussion of current approaches for treatment that highlight the need for the development of new nonsurgical interventions.
Collapse
Affiliation(s)
| | - Chenchao Wang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA.,First Hospital of China Medical University, Shenyang, China.,Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
58
|
Yang W, Cao Y, Zhang Z, Du F, Shi Y, Li X, Zhang Q. Targeted delivery of FGF2 to subchondral bone enhanced the repair of articular cartilage defect. Acta Biomater 2018; 69:170-182. [PMID: 29408545 DOI: 10.1016/j.actbio.2018.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/28/2017] [Accepted: 01/25/2018] [Indexed: 01/25/2023]
Abstract
It is reported that growth factor (GF) is able to enhance the repair of articular cartilage (AC) defect, however underlying mechanisms of which are not fully elucidated yet. Moreover, the strategy for delivering GF needs to be optimized. The crosstalk between AC and subchondral bone (SB) play important role in the homeostasis and integrity of AC, therefore SB targeted delivery of GF represents one promising way to facilitate the repair of AC defect. In this study, we firstly investigated the effects and mechanism of FGF2 on surrounding SB and cartilage of detect defects in rabbits by using a homogenous collagen-based membranes. It was found that FGF2 had a modulating effect on the defect-surrounding SB via upregulation of bone morphogenetic protein (BMP)-2, BMP4 and SOX9 at the early stage. Low dose FGF2 improved the repair upon directly injected to SB. Inhibition of BMP signaling pathway compromised the beneficial effects of FGF2, which indicated the pivotal roles of BMP in the process. To facilitate SB targeted FGF2 delivery, a double-layered inhomogeneous collagen membrane was prepared and it induced increase of BMP2 and BMP4 in the synovial fluid, and subsequent successful repair of AC defect. Taken together, this targeted delivery of FGF2 to SB provides a promising strategy for AC repair owing to the relatively clear mechanism, less amount of it, and short duration of delivery. STATEMENT OF SIGNIFICANCE Articular cartilage (AC) and subchondral bone (SB) form an integral functional unit. The homeostasis and integrity of AC depend on its crosstalk with the SB. However, the function of the SB in AC defect repair is not completely understood. The application of growth factors to promote the repair articular cartilage defect is a promising strategy, but still under the optimization. Our study demonstrate that SB plays important roles in the repair of AC defect. Particularly, SB is the effective target of fibroblast growth factor 2 (FGF2), and targeted delivery of FGF2 can modulate SB and thus significantly enhances the repair of AC defect. Therefore, targeted delivery of growth factor to SB is a novel promising strategy to improve the repair of AC defect.
Collapse
|
59
|
Ibrahim M, Xue Y, Ostermann M, Sauter A, Steinmueller-Nethl D, Schweeberg S, Krueger A, Cimpan MR, Mustafa K. In vitro cytotoxicity assessment of nanodiamond particles and their osteogenic potential. J Biomed Mater Res A 2018; 106:1697-1707. [PMID: 29451353 DOI: 10.1002/jbm.a.36369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
Abstract
Scaffolds functionalized with nanodiamond particles (nDP) hold great promise with regard to bone tissue formation in animal models. Degradation of the scaffolds over time may leave nDP within the tissues, raising concerns about possible long-term unwanted effects. Human SaOS-2 osteoblast-like cells and U937 monoblastoid cells were exposed to five different concentrations (0.002-2 mg/L) of nDP (size range: 2.36-4.42 nm) for 24 h. Cell viability was assessed by impedance-based methods. The differential expression of stress and toxicity-related genes was evaluated by polymerase chain reaction (PCR) super-array, while the expression of selected inflammatory and cell death markers was determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Furthermore, the expression of osteogenic genes by SaOS-2 cells, alkaline phosphatase activity and the extracellular calcium nodule deposition in response to nDP were determined in vitro. Cells responded differently to higher nDP concentrations (≥0.02 mg/L), that is, no loss of viability for SaOS-2 cells and significantly reduced viability for U937 cells. Gene expression showed significant upregulation of several cell death and inflammatory markers, among other toxicity reporter genes, indicating inflammatory and cytotoxic responses in U937 cells. Nanodiamond particles improved the osteogenicity of osteoblast-like cells with no evident cytotoxicity. However, concentration-dependent cytotoxic and inflammatory responses were seen in the U937 cells, negatively affecting osteogenicity in co-cultures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1697-1707, 2018.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Centre for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Melanie Ostermann
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Alexander Sauter
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Sarah Schweeberg
- Institute for Organic Chemistry, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Anke Krueger
- Institute for Organic Chemistry, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Mihaela R Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
60
|
Ghosh P, Gruber SMS, Lin CY, Whitlock PW. Microspheres containing decellularized cartilage induce chondrogenesis in vitro and remain functional after incorporation within a poly(caprolactone) filament useful for fabricating a 3D scaffold. Biofabrication 2018; 10:025007. [PMID: 29394158 DOI: 10.1088/1758-5090/aaa637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, articular cartilage was decellularized preserving a majority of the inherent proteins, cytokines, growth factors and sGAGs. The decellularized cartilage matrix (dCM) was then encapsulated in poly(lactic acid) microspheres (MS + dCM) via double emulsion. Blank microspheres without dCM, MS(-), were also produced. The microspheres were spherical in shape and protein encapsulation efficiency within MS + dCM was 63.4%. The sustained release of proteins from MS + dCM was observed over 4 weeks in vitro. Both MS + dCM and MS(-) were cytocompatible. The sustained delivery of retained growth factors and cytokines from MS + dCM promoted cell migration in contrast to MS(-). Subsequently, chondrogenesis of human mesenchymal stem cells was upregulated in presence of MS + dCM as evidenced from immunohistochemistry, biochemical quantification and qPCR studies. Specifically, collagen II, aggrecan and SOX 9 gene expression were increased in the presence of MS + dCM by an order or more in magnitude compared to MS(-) with concomitant downregulation of hypertrophic genes (COL X) despite being cultured in the absence of chondrogenic media, (p < 0.05). Lastly, microspheres containing alkaline phosphatase (MS + ALP), a surrogate to assess the thermal stability of dCM proteins, incorporated within poly(caprolactone) filaments showed that the enzyme remained functional after filament production by melt extrusion. The establishment of a novel, thermally stable process for producing filaments containing chondroinductive microspheres provides evidence supporting subsequent development of a clinically-relevant, 3D scaffold fabricated from them for osteochondral regeneration and repair.
Collapse
Affiliation(s)
- Paulomi Ghosh
- Department of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | | | | | | |
Collapse
|
61
|
Growth factor delivery strategies for rotator cuff repair and regeneration. Int J Pharm 2018; 544:358-371. [PMID: 29317260 DOI: 10.1016/j.ijpharm.2018.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 12/21/2022]
Abstract
The high incidence of degenerative tears and prevalence of retears (20-95%) after surgical repair makes rotator cuff injuries a significant health problem. This high retear rate is attributed to the failure of the repaired tissue to regenerate the native tendon-to-bone insertion (enthesis). Biological augmentation of surgical repair such as autografts, allografts, and xenografts are confounded by donor site morbidity, immunogenicity, and disease transmission, respectively. In contrast, these risks may be alleviated via growth factor therapy, which can actively influence the healing environment to promote functional repair. Several challenges have to be overcome before growth factor delivery can translate into clinical practice such as the selection of optimal growth factor(s) or combination, identification of the most efficient stage and duration of delivery, and the design considerations for the delivery device. Emerging insight into the injury-repair microenvironment and our understanding of growth factor mechanisms in healing are informing the design of advanced delivery scaffolds to effectively treat rotator cuff tears. Here, we review potential growth factor candidates, design parameters and material selection for growth factor delivery, innovative and dynamic delivery scaffolds, and novel therapeutic targets from tendon and developmental biology for the structural and functional healing of rotator cuff repair.
Collapse
|
62
|
Emerging Concepts in Treating Cartilage, Osteochondral Defects, and Osteoarthritis of the Knee and Ankle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:25-62. [PMID: 29736568 DOI: 10.1007/978-3-319-76735-2_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The management and treatment of cartilage lesions, osteochondral defects, and osteoarthritis remain a challenge in orthopedics. Moreover, these entities have different behaviors in different joints, such as the knee and the ankle, which have inherent differences in function, biology, and biomechanics. There has been a huge development on the conservative treatment (new technologies including orthobiologics) as well as on the surgical approach. Some surgical development upraises from technical improvements including advanced arthroscopic techniques but also from increased knowledge arriving from basic science research and tissue engineering and regenerative medicine approaches. This work addresses the state of the art concerning basic science comparing the knee and ankle as well as current options for treatment. Furthermore, the most promising research developments promising new options for the future are discussed.
Collapse
|
63
|
Ren B, Hu X, Cheng J, Huang Z, Wei P, Shi W, Yang P, Zhang J, Duan X, Cai Q, Ao Y. Synthesis and characterization of polyphosphazene microspheres incorporating demineralized bone matrix scaffolds controlled release of growth factor for chondrogenesis applications. Oncotarget 2017; 8:114314-114327. [PMID: 29371989 PMCID: PMC5768406 DOI: 10.18632/oncotarget.23304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
As a promising strategy for the successful regeneration of articular cartilage, tissue engineering has received increasing recognition of control release. Two kinds of functional poly (alanine ethyl ester-co-glycine ethyl ester) phosphazene microspheres with different ratios of side-substituent groups were synthesized by emulsion technique. The rate of degradation/hydrolysis of the polymers was carefully tuned to suit the desired application for control release. For controlled delivery of growth factors, the microspheres overcame most of severe side effects linked to demineralized bone matrix (DBM) scaffolds, which had been previously optimized for cartilage regeneration. The application of scaffolds in chondrogenic differentiation was investigated by subcutaneous implantation in nude mice. In the present study, we have provided a novel microsphere-incorporating demineralized bone matrix (MS/DBM) scaffolds to release transforming growth factor-β1 or insulin-like growth factors-1. Laser confocal fluorescence staining showed that the surface of microspheres was a suitable environment for cell attachment. Histological and immunohistochemical evaluations have shown that significantly more cartilaginous extracellular matrix was detected in MS/DBM group when compared with DBM alone group (P<0.05). In addition, the biomechanical test showed that this composite scaffold exhibited favorable mechanical strength as a delivery platform. In conclusion, we demonstrated that MS/DBM scaffolds was sufficient to support stem bone marrow-derived mesenchymal stem cells chondrogenesis and neo-cartilage formation.
Collapse
Affiliation(s)
- Bo Ren
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Jin Cheng
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Zhaohui Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weili Shi
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Peng Yang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Jiying Zhang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Xiaoning Duan
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| |
Collapse
|
64
|
Lam J, Lee EJ, Clark EC, Mikos AG. Honing Cell and Tissue Culture Conditions for Bone and Cartilage Tissue Engineering. Cold Spring Harb Perspect Med 2017; 7:a025734. [PMID: 28348176 PMCID: PMC5710100 DOI: 10.1101/cshperspect.a025734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An avenue of tremendous interest and need in health care encompasses the regeneration of bone and cartilage. Over the years, numerous tissue engineering strategies have contributed substantial progress toward the realization of clinically relevant therapies. Cell and tissue culture protocols, however, show many variations that make experimental results among different publications challenging to compare. This collection surveys prevalent cell sources, soluble factors, culture medium formulations, environmental factors, and genetic modification approaches in the literature. The intent of consolidating this information is to provide a starting resource for scientists considering how to optimize the parameters for cell differentiation and tissue culture procedures within the context of bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Esther J Lee
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Elisa C Clark
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Antonios G Mikos
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251
| |
Collapse
|
65
|
Li X, He X, Yin Y, Wu R, Tian B, Chen F. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med 2017; 21:3162-3177. [PMID: 28767189 PMCID: PMC5706509 DOI: 10.1111/jcmm.13286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ex vivo-expanded stem cells have long been a cornerstone of biotherapeutics and have attracted increasing attention for treating intractable diseases and improving tissue regeneration. However, using exogenous cellular materials to develop restorative treatments for large numbers of patients has become a major concern for both economic and safety reasons. Advances in cell biological research over the past two decades have expanded the potential for using endogenous stem cells during wound healing processes, and in particular, recent insight into stem cell movement and homing has prompted regenerative research and therapy based on recruiting endogenous cells. Inspired by the natural healing process, artificial administration of specific chemokines as signals systemically or at the injury site, typically using biomaterials as vehicles, is a state-of-the-art strategy that potentiates stem cell homing and recreates an anti-inflammatory and immunomodulatory microenvironment to enhance in situ tissue regeneration. However, pharmacologically coaxing endogenous stem cells to act as therapeutics in the field of biomedicine remains in the early stages; its efficacy is limited by the lack of innovative methodologies for chemokine presentation and release. This review describes how to direct the homing of endogenous stem cells via the administration of specific signals, with a particular emphasis on targeted signalling molecules that regulate this homing process, to enhance in situ tissue regeneration. We also provide an outlook on and critical considerations for future investigations to enhance stem cell recruitment and harness the reparative potential of these recruited cells as a clinically relevant cell therapy.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Xiao‐Tao He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Yuan Yin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Rui‐Xin Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Bei‐Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Fa‐Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
66
|
Graney PL, Roohani-Esfahani SI, Zreiqat H, Spiller KL. In vitro response of macrophages to ceramic scaffolds used for bone regeneration. J R Soc Interface 2017; 13:rsif.2016.0346. [PMID: 27466438 DOI: 10.1098/rsif.2016.0346] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 01/09/2023] Open
Abstract
Macrophages, the primary cells of the inflammatory response, are major regulators of healing, and mediate both bone fracture healing and the inflammatory response to implanted biomaterials. However, their phenotypic contributions to biomaterial-mediated bone repair are incompletely understood. Therefore, we used gene expression and protein secretion analysis to investigate the interactions in vitro between primary human monocyte-derived macrophages and ceramic scaffolds that have been shown to have varying degrees of success in promoting bone regeneration in vivo Specifically, baghdadite (Ca3ZrSi2O9) and strontium-hardystonite-gahnite (Sr-Ca2ZnSi2O7-ZnAl2O4) scaffolds were chosen as two materials that enhanced bone regeneration in vivo in large defects under load compared with clinically used tricalcium phosphate-hydroxyapatite (TCP-HA). Principal component analysis revealed that the scaffolds differentially regulated macrophage phenotype. Temporal changes in gene expression included shifts in markers of pro-inflammatory M1, anti-inflammatory M2a and pro-remodelling M2c macrophage phenotypes. Of note, TCP-HA scaffolds promoted upregulation of many M1-related genes and downregulation of many M2a- and M2c-related genes. Effects of the scaffolds on macrophages were attributed primarily to direct cell-scaffold interactions because of only minor changes observed in transwell culture. Ultimately, elucidating macrophage-biomaterial interactions will facilitate the design of immunomodulatory biomaterials for bone repair.
Collapse
Affiliation(s)
- Pamela L Graney
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2026, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2026, Australia
| | - Kara L Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
67
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
68
|
Lo SC, Li KC, Chang YH, Hsu MN, Sung LY, Vu TA, Hu YC. Enhanced critical-size calvarial bone healing by ASCs engineered with Cre/loxP-based hybrid baculovirus. Biomaterials 2017; 124:1-11. [DOI: 10.1016/j.biomaterials.2017.01.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022]
|
69
|
Mohan S, Raghavendran HB, Karunanithi P, Murali MR, Naveen SV, Talebian S, Mehrali M, Mehrali M, Natarajan E, Chan CK, Kamarul T. Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(lactic-co-glycolic acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9291-9303. [PMID: 28266827 DOI: 10.1021/acsami.6b13422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, growth factors clearly play important roles in regulating cellular fate. However, uncontrolled release of growth factors has been demonstrated to produce severe side effects on the surrounding tissues. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) incorporated three-dimensional (3D) CORAGRAF scaffolds were engineered to achieve controlled release of platelet-derived growth factor-BB (PDGF-BB) for the differentiation of stem cells within the 3D polymer network. Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and microtomography were applied to characterize the fabricated scaffolds. In vitro study revealed that the CORAGRAF-PLGA-PDGF-BB scaffold system enhanced the release of PDGF-BB for the regulation of cell behavior. Stromal cell attachment, viability, release of osteogenic differentiation markers such as osteocalcin, and upregulation of osteogenic gene expression exhibited positive response. Overall, the developed scaffold system was noted to support rapid cell expansion and differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering applications.
Collapse
Affiliation(s)
- Saktiswaren Mohan
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya , Kuala Lumpur 50603, Malaysia
| | - Hanumantharao Balaji Raghavendran
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya , Kuala Lumpur 50603, Malaysia
| | - Puvanan Karunanithi
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya , Kuala Lumpur 50603, Malaysia
| | - Malliga Raman Murali
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya , Kuala Lumpur 50603, Malaysia
| | - Sangeetha Vasudevaraj Naveen
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya , Kuala Lumpur 50603, Malaysia
| | - Sepehr Talebian
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - Mohammad Mehrali
- Process and Energy Department, Delft University of Technology , Leeghwaterstraat 39, Delft 2628 CB, The Netherlands
| | - Mehdi Mehrali
- DTU Nanotech, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark , Kongens Lyngby 2800, Denmark
| | - Elango Natarajan
- Mechanical Engineering Department, Faculty of Engineering, UCSI University , Technology and Built Environment, Kuala Lumpur 506000, Malaysia
| | - Chee Ken Chan
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya , Kuala Lumpur 50603, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya , Kuala Lumpur 50603, Malaysia
| |
Collapse
|
70
|
Gorain B, Tekade M, Kesharwani P, Iyer AK, Kalia K, Tekade RK. The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov Today 2017; 22:652-664. [PMID: 28219742 DOI: 10.1016/j.drudis.2016.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/02/2016] [Accepted: 12/16/2016] [Indexed: 01/02/2023]
Abstract
To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Bapi Gorain
- Faculty of Pharmacy, Lincoln University College, Kuala Lumpur, Malaysia
| | - Muktika Tekade
- TIT College of Pharmacy, Technocrats Institute of Technology, Anand Nagar, Bhopal, MP 462021, India
| | - Prashant Kesharwani
- The International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
71
|
Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. Eur J Pharm Biopharm 2017; 114:69-78. [PMID: 28087378 DOI: 10.1016/j.ejpb.2016.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/28/2022]
Abstract
The regeneration of articular cartilage remains an unresolved question despite the current access to a variety of tissue scaffolds activated with growth factors relevant to this application. Further advances might result from combining more than one of these factors; here, we propose a scaffold composition optimized for the dual delivery of BMP-7 and TGF-β3, two proteins with described chondrogenic activity. First, we tested in a mesenchymal stem cell micromass culture with TGF-β3 whether the exposure to microspheres loaded with BMP-7 would improve cartilage formation. Histology and qRT-PCR data confirmed that the sustained release of BMP-7 cooperates with TGF-β3 towards chondrogenic differentiation. Then, we optimized a scaffold prototype for tissue culture and dual encapsulation of BMP-7 and TGF-β3. The scaffolds were prepared from poly(lactic-co-glycolic acid), and BMP-7/TGF-β3 were loaded as nanocomplexes with heparin and Tetronic 1107. The scaffolds showed the sustained release of both proteins over four weeks, with minimal burst effect. We finally cultured human mesenchymal stem cells on these scaffolds, in the absence of exogenous chondrogenic factor supplementation. The cells cultured on the scaffolds loaded with BMP-7 and TGF-β3 showed clear signs of cartilage formation macroscopically and histologically. RT-PCR studies confirmed a clear upregulation of cartilage markers SOX9 and Aggrecan. In summary, scaffolds encapsulating BMP-7 and TGF-β3 can efficiently deliver a cooperative growth factor combination that drives efficient cartilage formation in human mesenchymal stem cell cultures. These results open attractive perspectives towards in vivo translation of this technology in cartilage regeneration experiments.
Collapse
Affiliation(s)
- Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Erea Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
72
|
Zhang ML, Cheng J, Xiao YC, Yin RF, Feng X. Raloxifene microsphere-embedded collagen/chitosan/β-tricalcium phosphate scaffold for effective bone tissue engineering. Int J Pharm 2016; 518:80-85. [PMID: 27988379 DOI: 10.1016/j.ijpharm.2016.12.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022]
Abstract
Engineering novel scaffolds that can mimic the functional extracellular matrix (ECM) would be a great achievement in bone tissue engineering. This paper reports the fabrication of novel collagen/chitosan/β-tricalcium phosphate (CCTP) based tissue engineering scaffold. In order to improve the regeneration ability of scaffold, we have embedded raloxifene (RLX)-loaded PLGA microsphere in the CCTP scaffold. The average pore of scaffold was in the range of 150-200μm with ideal mechanical strength and swelling/degradation characteristics. The release rate of RLX from the microsphere (MS) embedded scaffold was gradual and controlled. Also a significantly enhanced cell proliferation was observed in RLX-MS exposed cell group suggesting that microsphere/scaffold could be an ideal biomaterial for bone tissue engineering. Specifically, RLX-MS showed a significantly higher Alizarin red staining indicating the higher mineralization capacity of this group. Furthermore, a high alkaline phosphatase (ALP) activity for RLX-MS exposed group after 15days incubation indicates the bone regeneration capacity of MC3T3-E1 cells. Overall, present study showed that RLX-loaded microsphere embedded scaffold has the promising potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ming-Lei Zhang
- Depatrment of Orthopaedics, China-Japan Union Hospital, Jilin University, China
| | - Ji Cheng
- Depatrment Obstetrics and Gynecology, China-Japan Union Hospital, Jilin University, China
| | - Ye-Chen Xiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, China
| | - Ruo-Feng Yin
- Depatrment of Orthopaedics, China-Japan Union Hospital, Jilin University, China.
| | - Xu Feng
- Department of Spine Surgery, 1st Hospital of Jilin University No. 71 Xinmin St, Changchun, China.
| |
Collapse
|
73
|
|
74
|
Lima AC, Alvarez‐Lorenzo C, Mano JF. Design Advances in Particulate Systems for Biomedical Applications. Adv Healthc Mater 2016; 5:1687-723. [PMID: 27332041 DOI: 10.1002/adhm.201600219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/09/2016] [Indexed: 12/13/2022]
Abstract
The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field.
Collapse
Affiliation(s)
- Ana Catarina Lima
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Carmen Alvarez‐Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - João F. Mano
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
75
|
Zhong Q, Li W, Su X, Li G, Zhou Y, Kundu SC, Yao J, Cai Y. Degradation pattern of porous CaCO 3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Colloids Surf B Biointerfaces 2016; 143:56-63. [DOI: 10.1016/j.colsurfb.2016.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/23/2016] [Accepted: 03/06/2016] [Indexed: 12/31/2022]
|
76
|
Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials 2016; 104:168-81. [PMID: 27454063 DOI: 10.1016/j.biomaterials.2016.06.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
The rapid and effective bone regeneration of large non-healing defects remains challenging. Bioactive proteins, such as bone morphogenetic protein (BMP)-2, are proved their osteoinductivity, but their clinical use is currently limited to collagen as biomaterial. Being able to deliver BMP-2 from any other biomaterial would broaden its clinical use. This work presents a novel means for repairing a critical size volumetric bone femoral defect in the rat by combining a osteoinductive surface coating (2D) to a polymeric scaffold (3D hollow tube) made of commercially-available PLGA. Using a polyelectrolyte film as BMP-2 carrier, we tune the amount of BMP-2 loaded in and released from the polyelectrolyte film coating over a large extent by controlling the film crosslinking level and initial concentration of BMP-2 in solution. Using microcomputed tomography and quantitative analysis of the regenerated bone growth kinetics, we show that the amount of newly formed bone and kinetics can be modulated: an effective and fast repair was obtained in 1-2 weeks in the best conditions, including complete defect bridging, formation of vascularized and mineralized bone tissue. Histological staining and high-resolution computed tomography revealed the presence of bone regeneration inside and around the tube with spatially distinct organization for trabecular-like and cortical bones. The amount of cortical bone and its thickness increased with the BMP-2 dose. In view of the recent developments in additive manufacturing techniques, this surface-coating technology may be applied in combination with various types of polymeric or metallic scaffolds to offer new perspectives of bone regeneration in personalized medicine.
Collapse
|
77
|
Zhang Y, Huang J, Wang C, Zhang Y, Hu C, Li G, Xu L. Application of HIF-1α by gene therapy enhances angiogenesis and osteogenesis in alveolar bone defect regeneration. J Gene Med 2016; 18:57-64. [PMID: 26929250 DOI: 10.1002/jgm.2876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yang Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing China
- Stomatological Hospital of Chongqing Medical University; Chongqing China
| | - Jiao Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing China
- Stomatological Hospital of Chongqing Medical University; Chongqing China
| | - Chao Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - Yan Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - Changhong Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing China
- Stomatological Hospital of Chongqing Medical University; Chongqing China
| | - Guangyue Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing China
- Stomatological Hospital of Chongqing Medical University; Chongqing China
| | - Ling Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing China
- Stomatological Hospital of Chongqing Medical University; Chongqing China
| |
Collapse
|
78
|
Santo VE, Babo P, Amador M, Correia C, Cunha B, Coutinho DF, Neves NM, Mano JF, Reis RL, Gomes ME. Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules 2016; 17:1985-97. [DOI: 10.1021/acs.biomac.6b00150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vítor E. Santo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Pedro Babo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Miguel Amador
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Bárbara Cunha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Daniela F. Coutinho
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Nuno M. Neves
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - João F. Mano
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Rui L. Reis
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Manuela E. Gomes
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| |
Collapse
|
79
|
Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle. Acta Biomater 2016; 36:310-22. [PMID: 26965394 DOI: 10.1016/j.actbio.2016.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3μg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. STATEMENT OF SIGNIFICANCE The presentation of growth factors from material surfaces currently presents significant challenges in academia, clinics and industry. Applying osteoinductive factors to different types of implants, made of metals or polymers, may improve bone repair in difficult situations. Here, we show the effects of an osteoinductive coating made of polyelectrolyte multilayer films on two widely used materials, titanium TA6V alloys and PEEK implants, which were implanted in the rabbit femoral condyle. We show that a too high dose of BMP-2 delivered from the screw surface has a negative short-term effect on bone regeneration in close vicinity of the screw surface. In contrast, bone formation was increased at early times in the empty spaces around the screw. These results highlight the need for future dose-dependence studies on bone formation in response to osteoinductive coatings.
Collapse
|
80
|
Deng M, Chang Z, Hou T, Dong S, Pang H, Li Z, Luo F, Xing J, Yu B, Yi S, Xu J. Sustained release of bioactive protein from a lyophilized tissue-engineered construct promotes the osteogenic potential of mesenchymal stem cells. J Orthop Res 2016; 34:386-94. [PMID: 26267597 DOI: 10.1002/jor.23027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/06/2015] [Indexed: 02/06/2023]
Abstract
Tissue-engineered constructs (TECs) seeded with mesenchymal stem cells (MSCs) represent a therapy for large bone defects. However, massive cell death in TECs in the early postimplantation period prompted us to investigate the osteoinductive mechanism of TECs. Previous studies demonstrated that stem cell extracts retained equivalent levels of bioactive proteins and exhibited an osteoinductive nature similar to that of intact cells. These data led us to hypothesize that despite the massive cell death in TECs, devitalized MSC-derived proteins remain on the scaffolds and are released to improve cell function. Here, TECs were prepared using demineralized bone matrix seeded with human umbilical cord Wharton's jelly-derived MSCs (hWJMSCs), and the cells seeded in TECs were devitalized by lyophilizing the TECs. Scanning electron microscopy, BCA protein assays, quantitative cytokine array analysis and immunofluorescent staining indicated that approximately 3 mg/cm(3) of total protein and 49 types of cytokines derived from hWJMSCs were preserved in the lyophilized TECs (LTECs). The sustainable release of total protein and cytokines from LTECs lasted for more than 2 weeks. The released protein improved the osteogenic behavior of and gene expression in MSCs. Furthermore, the lyophilized hWJMSC-derived proteins had immunoregulatory properties similar to those of live MSCs in mixed lymphocyte reactions. Collectively, we present a novel perspective on the osteoinductive mechanism of TECs and introduce LTECs as new systems for delivering multiple cytokines to enhance MSC behavior.
Collapse
Affiliation(s)
- Moyuan Deng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhengqi Chang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Orthopedics, General Hospital of Jinan Military Commanding Region, Jinan, China
| | - Tianyong Hou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Hao Pang
- Department of Surgery, Fuzhou Mawei Naval Hospital, Fujian, China
| | - Zhiqiang Li
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junchao Xing
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bo Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shaoxuan Yi
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
81
|
Balmayor ER, Geiger JP, Aneja MK, Berezhanskyy T, Utzinger M, Mykhaylyk O, Rudolph C, Plank C. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 2016; 87:131-146. [PMID: 26923361 DOI: 10.1016/j.biomaterials.2016.02.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 01/24/2023]
Abstract
Limitations associated to the use of growth factors represent a major hurdle to musculoskeletal regeneration. On the one hand, they are needed to induce neo-tissue formation for the substitution of a necrotic or missing tissue. On the other hand, these factors are used in supraphysiological concentrations, are short lived and expensive and result in many side effects. Here we develop a gene transfer strategy based on the use of chemically modified mRNA (cmRNA) coding for human bone morphogenetic protein 2 (hBMP-2) that is non-immunogenic and highly stable when compared to unmodified mRNA. Transfected stem cells secrete hBMP-2, show elevated alkaline phosphatase levels and upregulated expression of RunX2, ALP, Osterix, Osteocalcin, Osteopontin and Collagen Type I genes. Mineralization was induced as seen by positive Alizarin red staining. hBMP-2 cmRNA transfected human fat tissue also yielded an osteogenic response in vitro as indicated by expression of hBMP-2, RunX2, ALP and Collagen Type I. Delivering hBMP-2 cmRNA to a femur defect in a rat model results in new bone tissue formation as early as 2 weeks after application of very low doses. Overall, our studies demonstrate the feasibility and therapeutic potential of a new cmRNA-based gene therapy strategy that is safe and efficient. When applied clinically, this approach could overcome BMP-2 growth factor associated limitations in bone regeneration.
Collapse
Affiliation(s)
- Elizabeth R Balmayor
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany; Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | | | | | - Taras Berezhanskyy
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany
| | | | - Olga Mykhaylyk
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany
| | | | - Christian Plank
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany.
| |
Collapse
|
82
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
83
|
Monteiro N, Martins A, Pires RA, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM. Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Adv 2016. [DOI: 10.1039/c6ra21623d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dual release of growth/differentiation factors from liposomes induced osteogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Albino Martins
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Ricardo A. Pires
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Susana Faria
- Research Center Officinal Mathematical
- Department of Mathematics for Science and Technology
- University of Minho
- Portugal
| | - Nuno A. Fonseca
- Center for Neurosciences and Cell Biology (CNC)
- Faculty of Pharmacy of the University of Coimbra
- 3000 Coimbra
- Portugal
| | - João N. Moreira
- Center for Neurosciences and Cell Biology (CNC)
- Faculty of Pharmacy of the University of Coimbra
- 3000 Coimbra
- Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Nuno M. Neves
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| |
Collapse
|
84
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
85
|
Auer JA, Grainger DW. Fracture management in horses: Where have we been and where are we going? Vet J 2015; 206:5-14. [DOI: 10.1016/j.tvjl.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
|
86
|
Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den Beucken JJJP, Tabata Y, Kasper FK, Scott DW, Wong ME, Jansen JA, Mikos AG. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites. Tissue Eng Part C Methods 2015; 21:1216-25. [PMID: 26177155 DOI: 10.1089/ten.tec.2015.0117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.
Collapse
Affiliation(s)
- Steven Lu
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | - Johnny Lam
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | | | - Esther J Lee
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | - Hajar Seyednejad
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | | | - Yasuhiko Tabata
- 3 Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - F Kurtis Kasper
- 4 Department of Orthodontics, University of Texas School of Dentistry at Houston , Houston, Texas
| | - David W Scott
- 5 Department of Statistics, Rice University , Houston, Texas
| | - Mark E Wong
- 6 Department of Oral and Maxillofacial Surgery, University of Texas School of Dentistry at Houston , Houston, Texas
| | - John A Jansen
- 2 Department of Biomaterials, Radboudumc , Nijmegen, The Netherlands
| | - Antonios G Mikos
- 1 Department of Bioengineering, Rice University , Houston, Texas
| |
Collapse
|
87
|
Patel JJ, Modes JE, Flanagan CL, Krebsbach PH, Edwards SP, Hollister SJ. Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps. Tissue Eng Part C Methods 2015; 21:889-97. [PMID: 25809081 DOI: 10.1089/ten.tec.2014.0643] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and <1% BMP2 and 83% EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm(3)) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm(3)). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps.
Collapse
Affiliation(s)
- Janki Jayesh Patel
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Jane E Modes
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Colleen L Flanagan
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Paul H Krebsbach
- 2 School of Dentistry, University of Michigan , Ann Arbor, Michigan
| | - Sean P Edwards
- 3 Department of Oral and Maxillofacial Surgery, University of Michigan , Ann Arbor, Michigan
| | - Scott J Hollister
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
88
|
Monteiro N, Martins A, Reis RL, Neves NM. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther 2015; 1:109-118. [PMID: 31245450 PMCID: PMC6581799 DOI: 10.1016/j.reth.2015.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/07/2015] [Accepted: 05/25/2015] [Indexed: 11/22/2022] Open
Abstract
The inability to deliver bioactive agents locally in a transient but sustained manner is one of the challenges on the development of bio-functionalized scaffolds for tissue engineering (TE) and regenerative medicine. The mode of release is especially relevant when the bioactive agent is a growth factor (GF), because the dose and the spatiotemporal release of such agents at the site of injury are crucial to achieve a successful outcome. Strategies that combine scaffolds and drug delivery systems have the potential to provide more effective tissue regeneration relative to current therapies. Nanoparticles (NPs) can protect the bioactive agents, control its profile, decrease the occurrence and severity of side effects and deliver the bioactive agent to the target cells maximizing its effect. Scaffolds containing NPs loaded with bioactive agents can be used for their local delivery, enabling site-specific pharmacological effects such as the induction of cell proliferation and differentiation, and, consequently, neo-tissue formation. This review aims to describe the concept of combining NPs with scaffolds, and the current efforts aiming to develop highly multi-functional bioactive agent release systems, with the emphasis on their application in TE of connective tissues.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
89
|
Oliveira SM, Reis RL, Mano JF. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnol Adv 2015; 33:842-55. [PMID: 26025038 DOI: 10.1016/j.biotechadv.2015.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/03/2023]
Abstract
The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation are achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemical control than top-down strategies, and are the main focus of this review.
Collapse
Affiliation(s)
- Sara M Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco- Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017 Barco-Guimarães, Portugal.
| |
Collapse
|
90
|
Li KC, Hu YC. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 2015; 4:948-68. [PMID: 25656682 DOI: 10.1002/adhm.201400773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/10/2015] [Indexed: 12/16/2022]
Abstract
Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.
Collapse
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| | - Yu-Chen Hu
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| |
Collapse
|
91
|
Healing of massive segmental femoral bone defects in minipigs by allogenic ASCs engineered with FLPo/Frt-based baculovirus vectors. Biomaterials 2015; 50:98-106. [DOI: 10.1016/j.biomaterials.2015.01.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 12/25/2022]
|
92
|
Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 2015; 84:45-67. [PMID: 25445719 PMCID: PMC4428953 DOI: 10.1016/j.addr.2014.11.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022]
Abstract
Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo.
Collapse
Affiliation(s)
- Julia E Samorezov
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
93
|
Lam J, Lu S, Kasper FK, Mikos AG. Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev 2015; 84:123-34. [PMID: 24993610 DOI: 10.1016/j.addr.2014.06.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023]
Abstract
The delivery of biologics is an important component in the treatment of osteoarthritis and the functional restoration of articular cartilage. Numerous factors have been implicated in the cartilage repair process, but the uncontrolled delivery of these factors may not only reduce their full reparative potential but can also cause unwanted morphological effects. It is therefore imperative to consider the type of biologic to be delivered, the method of delivery, and the temporal as well as spatial presentation of the biologic to achieve the desired effect in cartilage repair. Additionally, the delivery of a single factor may not be sufficient in guiding neo-tissue formation, motivating recent research toward the delivery of multiple factors. This review will discuss the roles of various biologics involved in cartilage repair and the different methods of delivery for appropriate healing responses. A number of spatiotemporal strategies will then be emphasized for the controlled delivery of single and multiple bioactive factors in both in vitro and in vivo cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Steven Lu
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.
| |
Collapse
|
94
|
Pasold J, Zander K, Heskamp B, Grüttner C, Lüthen F, Tischer T, Jonitz-Heincke A, Bader R. Positive impact of IGF-1-coupled nanoparticles on the differentiation potential of human chondrocytes cultured on collagen scaffolds. Int J Nanomedicine 2015; 10:1131-43. [PMID: 25709437 PMCID: PMC4327566 DOI: 10.2147/ijn.s72872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In the present study, silica nanoparticles (sNP) coupled with insulin-like growth factor 1 (IGF-1) were loaded on a collagen-based scaffold intended for cartilage repair, and the influence on the viability, proliferation, and differentiation potential of human primary articular chondrocytes was examined. METHODS Human chondrocytes were isolated from the hyaline cartilage of patients (n=4, female, mean age: 73±5.1 years) undergoing primary total knee joint replacement. Cells were dedifferentiated and then cultivated on a bioresorbable collagen matrix supplemented with fluorescent sNP coupled with IGF-1 (sNP-IGF-1). After 3, 7, and 14 days of cultivation, cell viability and integrity into the collagen scaffold as well as metabolic cell activity and synthesis rate of matrix proteins (collagen type I and II) were analyzed. RESULTS The number of vital cells increased over 14 days of cultivation, and the cells were able to infiltrate the collagen matrix (up to 120 μm by day 7). Chondrocytes cultured on the collagen scaffold supplemented with sNP-IGF-1 showed an increase in metabolic activity (5.98-fold), and reduced collagen type I (1.58-fold), but significantly increased collagen type II expression levels (1.53-fold; P=0.02) after 7 days of cultivation compared to 3 days. In contrast, chondrocytes grown in a monolayer on plastic supplemented with sNP-IGF-1 had significantly lower metabolic activity (1.32-fold; P=0.007), a consistent amount of collagen type I, and significantly reduced collagen type II protein expression (1.86-fold; P=0.001) after 7 days compared to 3 days. CONCLUSION Collagen-based scaffolds enriched with growth factors, such as IGF-1 coupled to nanoparticles, represent an improved therapeutic intervention for the targeted and controlled treatment of articular cartilage lesions.
Collapse
Affiliation(s)
- Juliane Pasold
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | - Kathleen Zander
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | - Benjamin Heskamp
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | | | - Frank Lüthen
- Institute of Cell Biology, University Medicine Rostock, Rostock, Germany
| | - Thomas Tischer
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
95
|
Patel JJ, Flanagan CL, Hollister SJ. Bone Morphogenetic Protein-2 Adsorption onto Poly-ɛ-caprolactone Better Preserves Bioactivity In Vitro and Produces More Bone In Vivo than Conjugation Under Clinically Relevant Loading Scenarios. Tissue Eng Part C Methods 2015; 21:489-98. [PMID: 25345571 DOI: 10.1089/ten.tec.2014.0377] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND One strategy to reconstruct large bone defects is to prefabricate a vascularized flap by implanting a biomaterial scaffold with associated biologics into the latissimus dorsi and then transplanting this construct to the defect site after a maturation period. This strategy, similar to all clinically and regulatory feasible biologic approaches to surgical reconstruction, requires the ability to quickly (<1 h within an operating room) and efficiently bind biologics to scaffolds. It also requires the ability to localize biologic delivery. In this study, we investigated the efficacy of binding bone morphogenetic protein-2 (BMP2) to poly-ɛ-caprolactone (PCL) using adsorption and conjugation as a function of time. METHODS BMP2 was adsorbed (Ads) or conjugated (Conj) to PCL scaffolds with the same three-dimensional printed architecture while altering exposure time (0.5, 1, 5, and 16 h), temperature (4°C, 23°C), and BMP2 concentration (1.4, 5, 20, and 65 μg/mL). The in vitro release was quantified, and C2C12 cell alkaline phosphatase (ALP) expression was used to confirm bioactivity. Scaffolds with either 65 or 20 μg/mL Ads or Conj BMP2 for 1 h at 23°C were implanted subcutaneously in mice to evaluate in vivo bone regeneration. Micro-computed tomography, compression testing, and histology were performed to characterize bone regeneration. RESULTS After 1 h exposure to 65 μg/mL BMP2 at 23°C, Conj and Ads resulted in 12.83 ± 1.78 and 10.78 ± 1.49 μg BMP2 attached, respectively. Adsorption resulted in a positive ALP response and had a small burst release; whereas conjugation provided a sustained release with negligible ALP production, indicating that the conjugated BMP2 may not be bioavailable. Adsorbed 65 μg/mL BMP2 solution resulted in the greatest regenerated bone volume (15.0 ± 3.0 mm³), elastic modulus (20.1 ± 3.0 MPa), and %bone ingrowth in the scaffold interior (17.2% ± 5.4%) when compared with conjugation. CONCLUSION Adsorption may be optimal for the clinical application of prefabricating bone flaps due to BMP2 binding in a short exposure time, retained BMP2 bioactivity, and bone growth adhering to scaffold geometry and into pores with healthy marrow development.
Collapse
Affiliation(s)
- Janki J Patel
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | | | | |
Collapse
|
96
|
Barbeck M, Lorenz J, Kubesch A, Böhm N, Booms P, Choukroun J, Sader R, Kirkpatrick CJ, Ghanaati S. Porcine Dermis-Derived Collagen Membranes Induce Implantation Bed Vascularization Via Multinucleated Giant Cells: A Physiological Reaction? J ORAL IMPLANTOL 2014; 41:e238-51. [PMID: 25546240 DOI: 10.1563/aaid-joi-d-14-00274] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the tissue reactions to 2 new porcine dermis-derived collagen membranes of different thickness were analyzed. The thicker material (Mucoderm) contained sporadically preexisting vessel skeletons and fatty islands. The thinner membrane (Collprotect) had a bilayered structure (porous and occlusive side) without any preexisting structures. These materials were implanted subcutaneously in mice to analyze the tissue reactions and potential transmembranous vascularization. Histological and histomorphometrical methodologies were performed at 4 time points (3, 10, 15, and 30 days). Both materials permitted stepwise connective tissue ingrowth into their central regions. In the Mucoderm matrix, newly built microvessels were found within the preexisting vessel and fatty island skeletons after 30 days. This vascularization was independent of the inflammation-related vascularization on both material surfaces. The Collprotect membrane underwent material disintegration by connective tissue strands in combination with vessels and multinucleated giant cells. The histomorphometric analyses revealed that the thickness of Mucoderm did not decrease significantly, while an initial significant decrease of membrane thickness in the case of Collprotect was found at day 15. The present results demonstrate that the 2 analyzed collagen membranes underwent a multinucleated giant cell-associated vascularization. Neither of the materials underwent transmembraneous vascularization. The microvessels were found within the preexisting vessel and fatty island skeletons. Additional long-term studies and clinical studies are necessary to determine how the observed foreign body giant cells affect tissue regeneration.
Collapse
Affiliation(s)
- Mike Barbeck
- 1 Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jonas Lorenz
- 1 Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alica Kubesch
- 1 Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nicole Böhm
- 1 Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Booms
- 1 Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Robert Sader
- 1 Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Shahram Ghanaati
- 1 Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
97
|
Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 2014; 11:20140459. [PMID: 25401172 PMCID: PMC4223894 DOI: 10.1098/rsif.2014.0459] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 01/13/2023] Open
Abstract
Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
98
|
Ahn J, Park S, Cha BH, Kim JH, Park H, Joung YK, Han I, Lee SH. Delivery of growth factor-associated genes to mesenchymal stem cells for cartilage and bone tissue regeneration. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2014. [DOI: 10.12989/bme.2014.1.3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
99
|
Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den Beucken JJJP, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 2014; 35:8829-8839. [PMID: 25047629 DOI: 10.1016/j.biomaterials.2014.07.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022]
Abstract
The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the structural layers of the osteochondral unit, and insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) were loaded into gelatin microparticles and embedded within the OPF hydrogel matrix in a spatially controlled manner. Three different scaffold formulations were implanted in a medial femoral condyle osteochondral defect: 1) IGF-1 in the chondral layer, 2) BMP-2 in the subchondral layer, and 3) IGF-1 and BMP-2 in their respective separate layers. The quantity and quality of osteochondral repair was evaluated at 6 and 12 weeks with histological scoring and micro-computed tomography (micro-CT). While histological scoring results at 6 weeks showed no differences between experimental groups, micro-CT analysis revealed that the delivery of BMP-2 alone increased the number of bony trabecular islets formed, an indication of early bone formation, over that of IGF-1 delivery alone. At 12 weeks post-implantation, minimal differences were detected between the three groups for cartilage repair. However, the dual delivery of IGF-1 and BMP-2 had a higher proportion of subchondral bone repair, greater bone growth at the defect margins, and lower bone specific surface than the single delivery of IGF-1. These results suggest that the delivery of BMP-2 enhances subchondral bone formation and that, while the dual delivery of IGF-1 and BMP-2 in separate layers does not improve cartilage repair under the conditions studied, they may synergistically enhance the degree of subchondral bone formation. Overall, bilayered OPF hydrogel composites demonstrate potential as spatially-guided, multiple growth factor release vehicles for osteochondral tissue repair.
Collapse
Affiliation(s)
- Steven Lu
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Johnny Lam
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Jordan E Trachtenberg
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Esther J Lee
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Hajar Seyednejad
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | | | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mark E Wong
- Department of Surgery, Division of Oral and Maxilofacial Surgery, The University of Texas School of Dentistry at Houston, Houston, USA
| | - John A Jansen
- Department of Biomaterials, Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA.
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA.
| |
Collapse
|
100
|
Alexander PG, Gottardi R, Lin H, Lozito TP, Tuan RS. Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med (Maywood) 2014; 239:1080-95. [PMID: 24994814 DOI: 10.1177/1535370214539232] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tissue engineered constructs have the potential to function as in vitro pre-clinical models of normal tissue function and disease pathogenesis for drug screening and toxicity assessment. Effective high throughput assays demand minimal systems with clearly defined performance parameters. These systems must accurately model the structure and function of the human organs and their physiological response to different stimuli. Musculoskeletal tissues present unique challenges in this respect, as they are load-bearing, matrix-rich tissues whose functionality is intimately connected to the extracellular matrix and its organization. Of particular clinical importance is the osteochondral junction, the target tissue affected in degenerative joint diseases, such as osteoarthritis (OA), which consists of hyaline articular cartilage in close interaction with subchondral bone. In this review, we present an overview of currently available in vitro three-dimensional systems for bone and cartilage tissue engineering that mimic native physiology, and the utility and limitations of these systems. Specifically, we address the need to combine bone, cartilage and other tissues to form an interactive microphysiological system (MPS) to fully capture the biological complexity and mechanical functions of the osteochondral junction of the articular joint. The potential applications of three-dimensional MPSs for musculoskeletal biology and medicine are highlighted.
Collapse
Affiliation(s)
- Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA Ri.MED Foundation, Palermo, I-90133 Italy
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Thomas P Lozito
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA Department of Mechanical Engineering and Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| |
Collapse
|